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Distinct molecular profiles drive multifaceted
characteristics of colorectal cancer metastatic seeds
Yuanyuan Zhao1,2*, Bing Zhang3,4*, Yiming Ma5*, Mengmeng Guo1, Fuqiang Zhao6, Jianan Chen6, Bingzhi Wang7, Hua Jin1,
Fulai Zhou1, Jiawei Guan1, Qian Zhao1, Qian Liu6, Hongying Wang5, Fangqing Zhao3,4,8,9, and Xia Wang1,2

Metastasis of primary tumors remains a challenge for early diagnosis and prevention. The cellular properties and molecular
drivers of metastatically competent clones within primary tumors remain unclear. Here, we generated 10–16 single cell–derived
lines from each of three colorectal cancer (CRC) tumors to identify and characterize metastatic seeds. We found that intrinsic
factors conferred clones with distinct metastatic potential and cellular communication capabilities, determining organ-
specific metastasis. Poorly differentiated or highly metastatic clones, rather than drug-resistant clones, exhibited poor clinical
prognostic impact. Personalized genetic alterations, instead of mutation burden, determined the occurrence of metastatic
potential during clonal evolution. Additionally, we developed a gene signature for capturing metastatic potential of primary
CRC tumors and demonstrated a strategy for identifying metastatic drivers using isogenic clones with distinct metastatic
potential in primary tumors. This study provides insight into the origin and mechanisms of metastasis and will help develop
potential anti-metastatic therapeutic targets for CRC patients.

Introduction
Despite encouraging progress in cancer treatment, such as ad-
vances in surgical techniques and targeted therapies, metastatic
disease remains the leading cause of cancer-associated deaths
due to the lack of effective metastasis-specific therapies
(Lambert et al., 2017; Turajlic and Swanton, 2016). Traditionally,
metastasis is considered to be a product of evolution that appears
in the late or end stages of tumor development (Birkbak and
McGranahan, 2020). Emerging evidence suggests that the initi-
ation of metastasis may be attributed to select subpopulations
within primary tumors that possess unique characteristics. For
example, in colorectal cancer (CRC) tumors, residual EMP1+ cells
(Cañellas-Socias et al., 2022), and TP53 wild-type cancer cells with
a fetal gene signature (Solé et al., 2022), as well as primary tumor
clusters with plakoglobin-dependent intercellular adhesion in
breast cancer (Aceto et al., 2014). The metastatic potential of
cancer cells is an appropriate parameter for designing optimal
strategies to prevent metastasis early and specifically targeting

metastatic clones. However, it remains a methodological challenge
to capture, identify, and characterize these metastatically com-
petent clones within human primary tumors (Lawson et al., 2018;
Turajlic and Swanton, 2016).

Currently, our understanding of the intrinsic properties of
potential metastatic cells within primary tumors is limited. It is
unclear whether specific mechanisms exist by which metastatic
seeds within the primary tumors colonize specific organ soils,
known as metastatic organotropism. The intrinsic molecular
properties that predispose clones with the ability to adapt and
colonize specific organ environments remain largely unex-
plored. Additionally, metastatic cells are characterized by
stem cell traits and undergo epithelial–mesenchymal transition
(EMT) (Brabletz et al., 2005; Cheung et al., 2020; Gkountela
et al., 2019; Lambert and Weinberg, 2021), but it is uncertain
to what extent differentiation programs predispose to metastatic
potential in individual primary tumors (Brabletz, 2012; Lambert
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et al., 2017). There is also controversy surrounding whether
metastases arise from primary tumor cells that are resistant to
chemotherapy (Lambert et al., 2017; Oskarsson et al., 2014).
Since each primary tumor consists of genetically and func-
tionally diverse cancer cells (Greaves, 2015; Kreso et al., 2013;
Marusyk et al., 2020; McGranahan and Swanton, 2015), it is
essential to characterize the extent of inter- and intratumoral
heterogeneity in the characteristics of metastatic cells. There-
fore, the challenge is to move from observational studies toward
deeper functional studies and to integrate the genotypes, phe-
notypes, and functions into a single cell (Lawson et al., 2018;
Marusyk et al., 2020).

Questions regarding the evolution of clones with metastatic
potential in human primary tumors, and whether there are
metastasis-specific genes and genetic alterations, have long been
debated and remain unanswered (Hunter et al., 2018; Oskarsson
et al., 2014). As a result, the success of precision oncology, based
on molecular-driven cancer treatment, has yet to be applied to
guide therapies against metastasis. Large-scale cohort analysis
has found little evidence of recurrent or universal driver mu-
tations in specific “metastasis genes” (Birkbak andMcGranahan,
2020; Brannon et al., 2014; Robinson et al., 2017; Zehir et al.,
2017). This information implicates that metastatic evolutionmay
depend on the heterogeneous progression of individual tumors
(Kim et al., 2015). Comparative genetic studies of primary tu-
mors and metastases have revealed certain alterations that are
enriched at metastatic lesions (Armenia et al., 2018; Bertucci
et al., 2019; Goswami et al., 2015; Turajlic et al., 2018; Xie
et al., 2014; Yates et al., 2017). Nevertheless, these genetic dif-
ferences between primary tumors and matched metastases do
not accurately indicate metastatic drivers due to the continuous
genomic evolution of metastasis. Additionally, bulk tumor
analysis may potentially mask metastatic divergences, partic-
ularly when subclonal driver mutations are present at a low
frequency. Therefore, the challenge remains to accurately de-
cipher the natural occurrence of metastasis and explore specific
genes and mutations that engender metastatic potential in hu-
man primary tumors.

In this study, we captured, identified, and characterized
metastatic seeds within primary CRC by generating 10–16 single
cell–derived clonal cell lines from each tumor of three patients.
We found that these metastatic seeds exhibit inter- and intra-
tumoral heterogeneity, characterized by their organ-selective
metastatic potential, differentiation potential, chemoresponse,
and clonal evolutionary patterns. We analyzed that clonal cell
lines with poor differentiation or high metastatic potential are
significantly associated with clinical prognosis, rather than
drug-resistant clones. We also investigated the molecular
mechanisms behind metastatic organotropism and explored
genetic alterations and signature genes associated with me-
tastasis to capture the metastatic potential of primary CRC
tumors. Our insights into the cellular and molecular charac-
teristics of metastatic seeds within primary CRC tumors
advance our multifaceted understanding of the natural oc-
currence and mechanisms of metastatic potential in primary
tumors and provide potential therapeutic antimetastatic tar-
gets for CRC patients.

Results
Generating single cell–derived clonal cell lines from individuals
To investigate which cellular and molecular features confer
metastasis potential to clones in the widely diverse clonal line-
ages within human primary CRC tumors, we cultured patient-
derived cancer cells (PDCCs) from six patients (P1–P6; Table S1).
We applied a previously established 2D and 3D model system for
culturing PDCCs and air–liquid interface organoids (ALI PDOs)
to capture inter- and intratumor heterogeneity of CRC tumors
(Zhao et al., 2022). Briefly, each tumor tissue was minced and
divided into three parts for clonal derivation, genomic analysis,
and transcriptomic analysis, respectively. Primary cancer cells
formed pooled colonies on the 3T3-J2 feeder layer. We estab-
lished 10–16 single cell–derived clonal cell lines (SC-PDCC lines)
from pooled colonies of each primary CRC tumor of three un-
treated patients without clinically overt metastatic lesions (P1,
P2, and P3, see Materials and methods; Fig. S1 A). These 2D SC-
PDCC lines from the same individual tumor showed heteroge-
neous morphologies and 3D ALI PDOs showed heterogeneous
histological architecture (Fig. S1 B). The SC-PDCC lines represent
10–16 individual cancer cells within each patient’s primary tu-
mor that should, in theory, allow us to study the cellular and
molecular features that may contribute to metastasis potential.

Intratumoral molecular heterogeneity of single cell–derived
clonal cell lines
We verified whether SC-PDCC lines can capture the intratumor
heterogeneity at molecular level. First, to assess the genomic
diversification of SC-PDCC lines, we performed exome se-
quencing analysis on patient-matched samples from three CRC
patients (P1, P2, and P3, Table S2), including three pooled PDCCs,
40 SC-PDCC lines, three primary tumor tissues, and three cor-
responding adjacent normal biopsies (as references to distin-
guish germlinemutations). Analysis of somatic single nucleotide
variants (SNVs) revealed that the majority of CRC-associated
somatic mutations were presented in pooled PDCCs and SC-
PDCC lines (Fig. 1 A). In these three patients, the root SNVs were
54.0%, 53.5%, and 80.0%; the shared SNVs were 39.0%, 41.7%,
and 12.5%; and the private SNVs were 5.7%, 4.5%, and 7.7%, re-
spectively (Fig. 1 B and Fig. S1 C). On average, 76.80%, 88.31%,
and 86.81% of SNVs detected in parental tumors were retained
in the SC-PDCC lines of P1, P2, and P3, respectively. However,
19.07%, 35.98%, and 14.37% of SNVs in the SC-PDCC lines of P1,
P2, and P3, respectively, were undetectable in the corresponding
parental tumors (Fig. S1 D). This may be due to the limited
biomass of cells carrying these mutations in tissues, resulting in
the failure of tissue-based analyses to detect these mutations.
The majority of copy number alterations (CNAs) in parental
tumorswerewell preserved in pooled PDCCs and SC-PDCC lines.
However, distinct somatic mutations, amplifications, and dele-
tions occurred in each SC-PDCC line (Fig. 1 C and Fig. S1 E),
which represent intrinsic molecular features of each SC-PDCC
line and their intratumoral heterogeneity.

Next, to determine the diversification of SC-PDCC lines on
gene expression profiling, we performed RNA sequencing (RNA-
seq) on patient-matched samples (Table S2). Principal compo-
nent analysis (PCA) and hierarchical clustering showed that
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Figure 1. Establishment of SC-PDCCs with molecular heterogeneity. (A) Somatic mutations related to CRC were detected in all samples from P1, P2, and
P3. C, pooled PDCCs; T, parental tumor; P1SC12, SC-PDCC lines #12 from P1, and so on. n = 46. (B) In the left panel, a heatmap illustrating the allele frequency
of SNVs in the parental tumor, pooled PDCCs, and 16 SC-PDCC lines of P1. Variations are classified as root (present in all samples), share (present in multiple
samples but not all), and private (present in specific samples). In the right panel, the boxplot shows the distribution of each SNV type among samples, and the
labeled numbers indicate the median proportion of mutations. n = 18. (C) Heatmap shows CNAs in parental tumor, pooled PDCCs, and different SC-PDCC lines
of P1. Red denotes copy number gains, and blue denotes copy number loss. n = 18. (D) PCA plot of transcriptome variation of SC-PDCC lines within the
individual tumors. Different SC-PDCC lines in each patient are dispersed. Significance was determined by PERMANOVA test, P = 0.0001. P1, n = 16; P2, n = 14;
P3, n = 10. (E) GOEA of consensus clustered genes. Each column represents a SC-PDCC sample of P1, and samples were grouped based on the top 1,000 highly
variable genes. Rows represent DEGs (Padj < 0.05 and |log2fold-change| > 0.5), which was the result of comparing each sample groupwith other samples. n = 16.
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SC-PDCC lines derived from the same individuals displayed
distinct subgroups and exhibited intratumor transcriptomic
variations (Fig. 1, D and E; and Fig. S1 F). Analysis of RNA and
exome sequencing data demonstrated a significant correlation
between genomic and transcriptional heterogeneity in SC-PDCC
lines from P1 and P2 (Fig. S1 G). However, this correlation was
not observed in P3, possibly due to the relatively low degree of
intratumoral heterogeneity in the SC-PDCC lines derived from
P3 (Fig. 1 B and Fig. S1 C). These data demonstrate that we have
captured a variety of SC-PDCC lines from the primary CRC tu-
mors that exhibit both genomic and transcriptional heteroge-
neity, despite the fact that our culture conditions and expansion
processes may favor certain cell types and/or may cause some
changes in molecular program and cellular phenotype.

Identifying metastatic seeds within primary CRC tumors
Given the high intratumor heterogeneity of primary CRC tumors
at the molecular level (Punt et al., 2017), we investigated
whether SC-PDCC lines have varying degrees of metastatic po-
tential. We first measured the invasive capability of SC-PDCC
lines using the Transwell cell invasion assay (Li and Hanahan,
2013).We found varying degrees of invasive potential among the
SC-PDCC lines from P1, P2, and P3, with high (>75 cells/field),
moderate (25–75 cells/field), and low (<25 cells/field) invasive
ability. Among the SC-PDCC lines of P1, five, six, and five lines
showed high, low, and intermediate invasive capability, re-
spectively (Fig. 2 A and Table S2). In P2, all except one of the
14 SC-PDCC lines showed low invasive capability (Fig. S2 A and
Table S2). In P3, three highly invasive, four moderately invasive,
and three low invasive lines were obtained, respectively (Fig. S2
B and Table S2).

Next, we performed a tail vein injection assay for lung me-
tastasis and an intrasplenic injection assay for liver metastasis
using immunodeficient NSG (NOD.Cg-Prkdcscid Il2rgtm1) mice
(Bouvet et al., 2006; Golovko et al., 2015; Khanna and Hunter,
2005; Sonoda et al., 2006) to evaluate the metastatic potential of
the high and low invasive SC-PDCC lines from P1 and P3. We did
not evaluate the metastatic potential in vivo of the P2 clonal cell
lines because only one of them showed moderate invasive ca-
pability in vitro, whereas all other lines showed low invasive
capability. After 8–13 wk, we observed a much higher rate of
lung metastasis in mice injected with high invasive SC-PDCC
lines of P1 (75–80%) than in mice injected with low invasive SC-
PDCC lines of P1 (0–7%) in the tail vein injection mouse model
(Fig. 2 B and Table S3). However, neither the high nor the low
invasive SC-PDCC lines of P3 yielded lung metastasis even 16–20
wk after transplantation (Table S3). We observed that moderate
and high invasive SC-PDCC lines from P3 yielded a much higher
rate of liver metastasis (25–40%) than the low invasive SC-PDCC
line (0%) 23–26 wk after intrasplenic injection (Fig. 2 C and
Table S3). However, no liver metastasis was observed in mice
even 16–32 wk after splenic injection of SC-PDCC lines of P1
(Table S3). KI67 staining patterns showed a high proportion of
proliferating cancer cells in the metastases (Fig. 2, B and C).
These results demonstrate a strong correlation between the in-
vasive potential of SC-PDCC lines and their metastatic potential
in vivo. Consequently, we classified all SC-PDCC lines into three

categories based on their invasive ability: high (>75 cells/field),
moderate (25–75 cells/field), and low (<25 cells/field) metastatic
potential.

We then evaluated whether themetastasis potential of PDCCs
in mice correlates with clinical metastasis in patients from
whom they were derived. NSG mice were intrasplenically in-
jected with pooled PDCCs derived from primary CRC of P1, P3,
and P4 (CRC patients without diagnosed liver metastases at the
time of sample collection), and of P5 and P6 (CRC patients with
diagnosed liver metastasis at the time of sample collection). We
observed liver metastasis in mice 15–32 wk after splenic injec-
tion of pooled PDCCs of P5 (metastasis rate 80%) and P6 (me-
tastasis rate 100%), while no liver metastasis was observed from
mice with transplantation of pooled PDCCs from P1, P3, and P4
(Fig. S2 C and Table S4). This result shows that liver metastasis
potential of pooled PDCCs in mice correlates with clinical liver
metastasis in patients.

Taken together, we have successfully captured and identified
SC-PDCC lines with varying degrees of metastatic potential
within primary CRC tumors. Interestingly, the high metastatic
SC-PDCC lines (serve as metastatic seeds) derived from different
patients exhibited organ-selective metastatic potential, coloniz-
ing specific organs, such as the lung or liver. Such clones, with
intrinsically different metastatic potential and organotropsim,
provide a valuable resource to understand the cellular and mo-
lecular features and mechanisms that confer metastatic poten-
tial to metastatic seeds within primary CRC tumors.

Genetic alterations of metastatic potential
The existence of specific metastasis-driver alterations has long
been a contentious and unresolved issue (Hunter et al., 2018;
Oskarsson et al., 2014; Turajlic and Swanton, 2016). However,
the genetic divergence found in SC-PDCC lines with distinct
metastatic potential from the same individual may contribute to
the metastatic potential, making them an ideal resource for
exploring genetic alterations and genes associated with metas-
tasis. Exome sequencing data of each SC-PDCC line of P1 re-
vealed 222–261 somatic SNVs, with each line harboring 4–72
unique SNVs (Table S2 and Fig. 1 B). We identified 14 shared
non-synonymous mutant genes in highly metastatic SC-PDCC
lines from P1 (Fig. 3 A). Specifically, SCRIB, SERPINA3, NOTCH3,
and FPR1 have been previously associated with CRC metastasis
(Cao et al., 2018; Li et al., 2017; Shen et al., 2021; Sugiura et al.,
2023). Interestingly, the protein interaction genes of these
mutant genes are primarily involved in the development of lung
epithelium and endothelium (Fig. S3 A), which is consistent with
their potential for specific lung metastasis (Fig. 2 B and Table
S3). Additionally, the protein-interacting genes that showed
significant transcriptional alterations (Table S5) were found to
be enriched in the pathway of migration and proliferation of
epithelial and endothelial cells, as well as cell adhesion (Fig. S3
A). Additionally, SC-PDCC lines with highmetastatic potential in
P1 had a unique CNAs signature that enriched the copy number
amplifications of specific genes (Fig. S3 B and Data S1), some of
which (e.g., SLP1 [Wei et al., 2020], SERINC3 [Haan et al., 2014],
TTPAL [Haan et al., 2014], PABPC1L [Wu et al., 2019], SDC4
[Jechorek et al., 2021], and UBE2C [Wang et al., 2017]), were
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Figure 2. Identification of SC-PDCC lines with distinct metastatic potential from the same primary CRC tumor. (A) In vitro invasion assay of 12 SC-
PDCC lines in P1. Cells were seeded in a Matrigel-coated Transwell and were cultured in serum-free media. The bar graphs represent the relative numbers of
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previously reported as associate with metastasis, while other
genes such as R3HDML, FITM2, and RIMS4 were newly found.
The CNAs signature was particularly enriched with genes in-
volved in serine-type endopeptidase inhibitor activity (Fig.
S3 C).

Previous studies suggested that higher burden of somatic
mutations and CNAs are usually characteristics of metastatic
tumors compared with cohorts of primary tumors (Armenia
et al., 2018; Birkbak and McGranahan, 2020; Robinson et al.,
2017). We, therefore, compared the genetic features of SC-
PDCC lines with high and low metastatic potential and found
that in the same primary tumor (P1 and P3, Table S2), high
metastatic SC-PDCC lines did not exhibit an increased somatic
mutation burden compared with low metastatic SC-PDCC lines
(Fig. 3 B). Taken together, these results suggest that, at least in
some cases, personalized genetic mutations and CNAs, rather

than mutational burden, determine the occurrence of metastatic
potential during clonal evolution. The use of SC-PDCC lines
showed to be a valuable resource for identifying newly
metastasis-associated genetic alterations and investigating the
genetic mechanisms underlying metastasis.

Molecular properties of metastatic potential
We next assessed whether metastatic seeds have unique mo-
lecular features at the transcriptional and protein levels that
endow them with metastatic potential in human primary tu-
mors. PCA plots clearly separated high and low metastatic SC-
PDCC lines from P1 and P3 into two groups, respectively (Fig. 3 C
and Fig. S3 D).We identified 2,783 differentially expressed genes
(DEGs) between high and low metastatic SC-PDCC lines of P1,
including 2,247 upregulated genes and 536 downregulated
genes in high metastatic SC-PDCC lines (Fig. S3 E). Gene set

invaded cells. The invaded cells were counted in five randomly chosen areas (repeat, n = 3). Error bars represent SD of the mean. ****, P < 0.0001; by two-
tailed unpaired Student’s t test. n = 4 for each group. Scale bar, 100 µm. HM, high metastatic potential; MM, moderate metastatic potential; LM, lowmetastatic
potential. (B) Representative H&E staining and KI67 staining images of lung metastases derived from P1 SC-PDCC lines with high and low metastatic potential.
P1SC7, n = 8; P1SC27, n = 15. Scale bar: up, 500 µm; down, 100 µm. (C) Representative H&E staining and KI67 staining images of liver metastases derived from
P3 SC-PDCC lines with high and low metastatic potential. P3SC11, n = 4; P3SC4, n = 9. Scale bar: up, 500 µm; down, 50 µm.

Figure 3. Molecular characteristics of
metastatic SC-PDCC lines. (A) 14 non-
synonymous mutations enriched in the high
metastatic potential (HM) SC-PDCC lines of P1.
Fisher test, two-tailed; HM, n = 5; LM, n = 6.
(B) Comparison of the numbers of SNVs be-
tween lowmetastatic potential (LM), moderate
metastatic potential (MM), and HM in P1 and
P3. P > 0.1; the Mann–Whitney test, two-tailed,
was used. For P1, HM, n = 5; LM, n = 6. For P3,
HM, n = 3; LM, n = 3. (C) PCA showing the es-
sential difference between HM (red, n = 5) and
LM (blue, n = 6) SC-PDCC lines of P1. Signifi-
cance determined by PERMANOVA test, P =
0.0024. (D) GSEA analysis of differential en-
richment of molecular pathways at the mRNA
level in the HM (n = 5) and LM (n = 6) SC-PDCC
lines from P1. The gene sets were collected from
the Molecular Signatures Database. (E) Corre-
lation betweenmRNA and protein levels of 1,727
DEGs (P < 0.1) in HM (n = 4) and LM (n = 2) SC-
PDCC lines from P1. Evaluated using Spearmans
correlation coefficient. (F) GSEA analysis of
pathways differentially enriched at the protein
level in HM (n = 4) and LM (n = 2) SC-PDCC lines
from P1. FC, fold change.
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enrichment analysis (GSEA) identified significant enrichment of
the following biological processes in high metastatic SC-PDCC
lines of P1: EMT, cell migration, tissue migration, ligand, re-
ceptor, vascular endothelial cell (EC) proliferation, epithelial cell
proliferation, mesenchyme development, cell chemotaxis, KRAS
signaling, cell adhesion, and extracellular matrix structural
constituent (Fig. 3 D). In highmetastatic SC-PDCC lines of P3, we
observed 553 upregulated and 1,176 downregulated genes com-
pared with low metastatic SC-PDCC lines (Fig. S3 F). GSEA
analysis revealed significant enrichments in EMT, metastasis,
and P53 signaling pathways in the high metastatic SC-PDCC
lines of P3. In contrast, GSEA analysis showed significant
enrichments in epithelial structure maintenance, peroxisome
proliferator-activated receptor signaling pathway, epidermal
growth factor (EGF) signaling, and the epithelial differentiation
module in the low metastatic SC-PDCC lines of P3 (Fig. S3 G).

We performed a global proteomics analysis of P1 SC-PDCC
lines using isobaric tandem mass tags (TMT) to validate the
protein-level expression of genes related to metastasis (Table
S2). We investigated whether mRNA with differential expres-
sion trends (P < 0.1) in SC-PDCC lines with high and low met-
astatic potential of P1 also exhibited consistent changes at the
protein level. The analysis revealed a significantly positive
correlation (Fig. 3 E).We identified 149 upregulated proteins and
103 downregulated proteins in the P1 high metastatic SC-PDCC
lines compared to the P1 low metastatic SC-PDCC lines (Fig.
S3 H). GSEA indicated significant enrichment of pathways as-
sociated with angiogenesis, integrin binding, epithelial devel-
opment, and negative regulation of cell-substrate adhesion in
high metastatic SC-PDCC lines of P1 (Fig. 3 F). These data show
that high metastatic SC-PDCC lines have a unique gene ex-
pression profile characterized by pathways related tometastasis.

The metastatic signature evaluates the metastatic potential of
primary CRC tumors
We then investigated whether a metastatic signature could be
identified from these SC-PDCC lines with distinct metastatic
potential to capture the metastatic potential of primary CRC
tumors. To confirm the signature’s validity in vivo, only SC-
PDCC lines validated by the tail vein injectionmousemodel were
analyzed. By analyzing the overlapping DEGs between high and
low metastatic SC-PDCC lines from P1 and P3 (Table S2), we
identified a metastatic gene signature consisting of 58 upregu-
lated genes and 23 downregulated genes that were shared among
highmetastatic SC-PDCC lines of both patients (Fig. 4 A and Data
S2). Subsequently, we evaluated this metastatic signature in
cancer cells using published single-cell RNA-seq (scRNA-seq)
data (Xu et al., 2022) obtained from seven primary CRC tumors
without observed metastasis (CRC.NM) and six primary CRC
tumors with preoperative or intraoperative metastasis (CRC.M)
(Fig. S4, A and B). Uniform Approximation and Projection
(UMAP) plots demonstrated consistent distribution of upregu-
lated and downregulated gene signatures in 11,608 cancer cells
(Fig. 4 A). The metastatic signature was significantly higher in
CRC.M cells than CRC.NM cells (P < 0.0001, Wilcoxon test)
(Fig. 4 B). High-scoring cells were significantly enriched in
CRC.M (P < 0.0001, Fisher test) (Fig. 4, C and D; and Table S6).

Furthermore, our analysis of publicly available bulk RNA-seq
data (GSE41258 and GSE72718) confirmed a significantly higher
signature in primary CRC with metastasis than in those without
metastasis (P < 0.05, Wilcoxon test) (Fig. 4 E). The findings
suggest the promising utility of this gene signature in evaluating
the metastatic potential of primary CRC tumors.

Identifying metastatic drivers using isogenic SC-PDCC lines
with distinct metastatic potential
Deciphering the driver genes that confer the metastatic potential
of cancer cells is challenging. This is because genetic differences
between primary tumors and metastases do not necessarily in-
dicate metastatic drivers, and subclonal driver genes at low
frequencies may be masked by bulk tumor analysis. To address
this challenge, we provided a demonstration of the feasibility of
identifying metastatic drivers at the single-cell level using SC-
PDCC lines with distinct metastatic potential within the primary
tumor of the same patient origin. Within an individual’s primary
tumor, clones with high and low metastatic potential share
similar genetic backgrounds. However, their genetic di-
vergences can provide valuable information for exploring met-
astatic driver genes. We selected the top four upregulated genes
(AKR1C1, NAMPT, SAMHD1, and OSTM1) and two downregulated
genes (SPINK4 and EPHB3) in the high and moderate metastatic
potential SC-PDCC lines of P1 (Fig. S3 I and Table S2), and per-
formed functional verification in the colorectal cell line DLD1.
We found that knocking down SAMHD1, AKR1C1, and NAMPT or
overexpressing SPINK4 and EPHB3 significantly reduced invasive
capability as tested by the Transwell cell invasion assay (Fig. 4 F).
However, changing the expression of OSTM1 had no effect on the
metastatic potential. In addition, previous studies using colo-
rectal cell lines have shown a suppressive role for EPHB3 in CRC
metastasis (Chiu et al., 2009). Western blot analysis clearly in-
dicates that the EPHB3 protein was highly expressed in the low
metastatic SC-PDCC line (P1SC27) but not in the three high
metastatic SC-PDCC lines (Fig. 4 G). We then verified the func-
tion of EPHB3 in this lowmetastatic SC-PDCC line and found that
knocking down EPHB3 significantly enhanced its metastatic po-
tential (Fig. 4 H). Moreover, we also found several new potential
metastasis-associated genes (i.e., GULP1, PCBP3, DDIT4L, AMPD3,
ARHGAP4, SYNGR3, PPP1R3E, and ZNF25) from the upregulated
and downregulated genes in the high metastatic potential
lines of P1. These genes have a significant impact on poor
clinical prognosis (Fig. 4 I). In summary, we innovatively
explored metastatic driver genes from the intrinsically distinct
metastatic potential of single cell–derived lines within human
primary CRC. This research provides valuable resources and
information for understanding the origin and mechanism of
metastasis and will help develop antimetastatic targets within
primary CRC tumors.

Intrinsic cellular communication capabilities endow
metastatic seeds with soil preselection
Elucidating the cellular and molecular factors of metastatic
organotropism may help identify therapeutic targets for organ-
specific metastasis. However, our understanding of the mecha-
nisms underlying metastatic organotropism is still limited. To
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Figure 4. Identification of metastatic signature and driver genes in primary CRC tumors. (A) Top: Venn diagram illustrating the metastatic signature
derived from the overlapping sets of DEGs between high and lowmetastatic SC-PDCC lines from P1 and P3. For P1, highmetastasis, n = 2; lowmetastasis, n = 2;
for P3, high metastasis, n = 2; low metastasis, n = 1. Bottom: Distribution of high metastatic potential (HM) and low metastatic potential (LM) signature in
cancer cells. Each dot represents a cell (Xu et al. [2022] dataset PRJNA748525). The HM score and LM signature were calculated based on shared significantly
upregulated and downregulated genes in high metastatic SC-PDCC lines from P1 and P3. (B) Comparison of the difference in metastatic score between the
CRC.M and CRC.NM groups (from Xu et al. [2022] dataset PRJNA748525). Metastatic score was calculated by subtracting the LM signature from the HM
signature. The P value was measured byWilcoxon test; the number (n) is indicated. (C)Distribution of metastatic score among cells; the number (n) is indicated.
(D) Proportion comparison of different cell sources between risk groups. P values were calculated by Chisq test. ****, P < 0.0001. (E) Comparison of metastatic
scores between primary CRC with and without liver metastasis. P value calculated by Wilcoxon test, with the number of samples (n) indicated. Data obtained
from GSE41258 and GSE72718 datasets. **, P < 0.01. (F) Quantification of invasive assays following knockdown or overexpression of target gene in DLD1,
respectively. Knockdown assays were performed using two independent shRNAs per gene (repeat, n = 3). Differences in invasion phenotype relative to control
shRNAs (control) were significant by two-tailed t test, error bars show SD across three reduplicates, ***, P < 0.001. (G)Western blot analysis showing elevated
expression of EPHB3 in LM SC-PDCC line (P1SC27), repeat, n = 3. (H) Knockdown of EPHB3 increases invasion of LM SC-PDCCs. The invaded cells were counted
in five randomly chosen areas (n = 3; ****, P < 0.0001). Scale bar, 50 µm. (I) The Kaplan–Meier curves of patient outcomes were plotted for the TCGA-COAD
cohort (cases = 458) based on indicated genes. The red and blue lines represent patients with upregulated and downregulated genes in HM SC-PDCC lines,
respectively. The significance of differences between the two groups was assessed using a Cox test. Dotted line represents median survival. The plus signs
represent the censored cases. Source data are available for this figure: SourceData F4.
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investigate this, we analyzed ligand–receptor mediated multi-
cellular signaling (Ramilowski et al., 2016) using RNA-seq data
from P1 high metastatic SC-PDCC lines and P3 high metastatic
SC-PDCC lines (Tables S2 and S3). Our analysis included
708 ligands, 691 receptors, and 2,557 ligand–receptor pairs
(Ramilowski et al., 2015). GSEA analysis revealed that P1 high
metastatic SC-PDCC lines with a specific inclination for lung
metastasis (lung-metastatic lines, SC-PDCC 7# and 23#) showed
significantly higher expression of both receptor and ligand
genes than P3 high metastatic SC-PDCC lines with a specific
inclination for liver metastasis (liver-metastatic lines, SC-PDCC
11# and 22#) (Fig. 5 A). Our findings were further supported by
publicly available data (GSE68468) (Fig. S4 C), which revealed
significantly increased expression of receptor and ligand genes
in lung metastases compared with liver metastases in CRC
patients.

Functional enrichment analysis of receptors and ligands ex-
pressed in lung-metastatic lines and liver-metastatic lines re-
vealed that although they have distinct gene expression profiles,
there was a high degree of sharing of pathways involved in their
ligand genes, whereas the pathways involved in their receptor
genes showed significant differences (Fig. 5 B). Both kinds of
lines were significantly enriched ligand genes involved in
pathways associated with fibroblast growth factor receptor
binding, chemokine activity, growth factor receptor binding,
glycosaminoglycan binding, G protein−coupled receptor bind-
ing, and heparin binding, suggesting an implicated mechanism
in the general metastasis process (Fig. 5 B). In contrast, integrin
binding, immune receptor activity, cell adhesion mediator activity,
and extracellular matrix structural constituent were significantly
enriched in lung-metastatic lines, but not in liver-metastatic
lines, suggesting that a specific molecular mechanism for lung
tropism exists in the metastatic cells of P1 (Fig. 5 B).

To further analyze the genetic basis of metastatic organo-
tropism in these clonal cell lines, we constructed a map of cell–
cell communication using RNA-seq data of SC-PDCC lines from
P1 and P3 (Tables S2 and S3), as well as scRNA-seq data of 64
primary cell types in the human lung and 73 primary cell types in
the human liver from the DISCO database (Li et al., 2022). We
first quantified the strength of cellular communication by ana-
lyzing the ligand–receptor binding potential of each SC-PDCC
linewith cell types in the human lung and liver. Interestingly, we
found that P1 lung-metastatic lines had a higher communication
potential than P3 liver-metastatic lines (Fig. S4, D–F). Specifi-
cally, lung-metastatic lines communicate better with cell types in
lung tissue than liver-metastatic lines (Fig. 5 C and Fig. S4, D–F).
Lung-metastatic lines show high potential for communication
with fibroblasts that are specific to the lung (CFD+MGP+ fibro-
blast, myofibroblast, ADAMDEC1+ADAM28+ fibroblast, GPC3+

fibroblast, S phase GPC3+ fibroblast), as well as with vascular-
associated cells present in both liver and lung tissues (capillary
ECs, arterial ECs, and venous ECs). Compared with liver-
metastatic lines, lung-metastatic lines show significantly
higher expression of some ligand genes, such as RGMB, EFEMP2,
COL1A1, COL1A2, THBS1, TGFB1, and PTN (Fig. S4 G), all of
which can activate the receptors BMPR2, AQP1, CD36, ENG, and
PTPRB expressed on the cell surface of capillary ECs (Fig. 5 D).

Moreover, through analysis of a publicly available dataset
(GSE68468), we have validated that EFEMP2, COL1A2, TGFB1,
and PTN, among the ligand genes, show significantly higher
expression in CRC lung metastases compared with CRC liver
metastases (Fig. 5 E). These mechanisms may be required for P1
lung metastases because, unlike the fenestrated endothelial
layer of the liver sinusoid, the endothelial layer in the lung has
tight junctions between ECs and an intact basement membrane.
P1 metastatic seeds therefore need to interact more with cap-
illary ECs to facilitate extravasation. Notably, CD36 on capillary
ECs can bind to the ligands COL1A1, COL1A2, and THBS1 of lung-
metastatic lines. It has been reported that low expression of
CD36 on vascular ECs can inhibit angiogenesis (Bou Khzam
et al., 2020). Therefore, the activation of CD36 on vascular
ECs by ligands of P1 metastatic seeds may stimulate angiogen-
esis, aiding in metastatic colonization in the lung. The specific
molecular mechanisms involved need to be confirmed by fur-
ther experimental validation.

Taken together, our findings suggest that unique intrinsic
molecular properties, as well as specific and robust cellular
communication capabilities, confer the potential for metastatic
seeds in P1 and P3 primary CRC tumors to metastasize in their
preselected organ soil.

Distinct differentiation potential of metastatic seeds
The differentiation status of tumor cells has been a major aspect
of histopathological grading, and poorly differentiated clusters
are currently considered a major adverse prognostic factor in
CRC (Barresi et al., 2015; Jögi et al., 2012). Previous studies
suggested that metastatic cancer cells of CRC have stem cell
characteristics (de Sousa e Melo et al., 2017; Dieter et al., 2011);
however, it remains unclear to what extent the differentiation
program predisposes to metastatic potential (Brabletz, 2012;
Lambert et al., 2017). To explore this issue, we evaluated the
differentiation capability of SC-PDCC lines with distinct meta-
static potential using 3D ALI PDOs. We classified the phenotypes
as either well-differentiated or poorly differentiated by com-
bining histopathological evaluation with MUC2 (a goblet cell–
specific marker to indicate the differentiation status) positivity
or negativity (Fig. 6 A and Fig. S5 A; and Table S2). The results
showed that high metastatic SC-PDCC lines showed a poorly
differentiated phenotype in P1, while low and moderate meta-
static lines exhibited both well and poorly differentiated phe-
notypes (Fig. 6 A and Table S2). Moderate and low metastatic
SC-PDCC lines in P2 had a well-differentiated phenotype, and all
SC-PDCC lines in P3 exhibited well-differentiation potential
regardless of metastatic potential (Fig. S5 A and Table S2).

We analyzed gene expression levels to assess differentiation
status. Poorly differentiated 3D ALI PDO samples clustered with
their original 2D SC-PDCC lines in P1, while well-differentiated
groups for P1, P2, and P3 had distinct clusters for 3D and 2D
samples (Fig. 6 B and Fig. S5 B). This suggests that the poorly
differentiated group has a similar gene expression profile to
their 2D SC-PDCC lines, while the well-differentiated group has
a distinct profile. DEGs in the well-differentiated group were
enriched in signaling pathways related to cell differentiation
(Fig. 6, C and D).
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Finally, we evaluated the differentiation status by analyzing
cell cycle phases at the single-cell level using scRNA-seq on
30,304 cells isolated from poorly differentiated ALI PDOs
(P1SC17 and P1SC23) and well-differentiated ALI PDOs (P1SC27
and P1SC3) (Fig. 6 E and Fig. S5 C). We identified seven clusters
representing cycling cells and eight clusters containing non-
cycling cells (Fig. 6 E and Fig. S5 C). The proportion of cycling
cells was higher in the poorly differentiated ALI PDOs, while
the proportion of noncycling cells was higher in the well-
differentiated ALI PDOs (Fig. 6, F and G). The differentiation
score of well-differentiated ALI PDOs was also higher than that
of poorly differentiated ALI PDOs (Fig. S5 D). Taken together,
these results show intratumoral heterogeneity in the differen-
tiation potential of metastatic seeds.

Distinct chemoresponse of metastatic seeds
It is unclear whether metastatic cells are inherently more re-
sistant to chemotherapy than primary cancer cells (Lambert
et al., 2017; Oskarsson et al., 2014). To investigate this, we
compared the chemoresponse of high and low metastatic SC-
PDCC lines in primary CRC using 5-fluorouracil (5-FU), a fre-
quently used chemotherapeutic agent (Vodenkova et al., 2020).
Chemoresponse was determined by assessing the half-maximal
inhibitory concentration (IC50) and by using dose-response
curves (Broutier et al., 2017; van de Wetering et al., 2015). We
found that SC-PDCC lines derived from P1, P2, and P3 exhibited
striking differences in response to 5-FU (Table S2; Fig. 6, H and I;
and Fig. S5 E). To validate the response to 5-FU, we performed
PDCC colony counting, and the results were consistent with the

Figure 5. Intrinsic cellular properties and communication capabilities endow metastatic seeds with soil preselection. (A) GSEA shows higher ex-
pression of receptor and ligand genes in lung-metastatic lines (n = 2) compared with liver-metastatic lines (n = 2). ES, enrichment score. (B) Functional
enrichment analysis of receptor and ligand genes in liver-metastatic and lung-metastatic lines. (C) The thickness of the lines represents the intensity of cellular
communication between P1 lung-metastatic lines and P3 liver-metastatic lines with specific cell types in human lung tissue. (D) Lung-metastatic lines exhibited
significant overexpression of ligand genes whose corresponding receptors were expressed on the cell surface of capillary ECs. (E) Comparison of ligand genes
between CRC lung- and liver-metastatic tissues. P values were calculated using the R package limma. The y-axis represents the signal intensity after log2 RNA
signal transformation. M.lung, lung metastases from CRC; M.liver, liver metastases from CRC. *, P < 0.05; **, P < 0.01; ****, P < 0.0001.
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Figure 6. Differentiation potential and drug response of SC-PDCC lines with different metastatic potential. (A) MUC2 (red) and E-cadherin (green)
staining of ALI PDOs derived from different SC-PDCC lines with different metastatic potential in P1. Scale bar, 50 µm. HM, high metastatic potential; MM,
moderate metastatic potential; LM, low metastatic potential; HM, n = 4; MM, n = 4; LM, n = 4. (B) PCA showing high similarity between the SC-PDCC lines
(PD_2D) and poorly differentiated ALI PDOs (PD_3D) (P = 0.186), and great difference between the SC-PDCC lines (WD_2D) and moderately differentiated ALI
PDOs (WD_3D) (P = 0.028). Significance was determined by PERMANOVA test (all SC-PDCC lines from P1; n = 4 for each group). WD, well differentiation; PD,
poor differentiation. (C) Volcano plot of genes that were differentially expressed between WD SC-PDCCs and their derived ALI PDOs. DEGs were determined
based on adjusted (P < 0.05) and log2 fold-change (absolute value >1). n = 4 for both the WD_2D group and the WD_3D group. (D) GOEA of DEGs betweenWD
SC-PDCCs and their derived ALI PDOs in P1. (E) UMAP plot of single-cell RNA expression from two HM SC-PDCC lines (P1SC17 and P1SC23) and one MM SC-
PDCC lines (P1SC3) and one LM SC-PDCC lines (P1SC27). Color code for cell type assignment. (F) Cell cycle scores for each cell based on the expression of S and
G2/M phase genes. (G) Relative fractions of cycling and noncycling cells across four SC-PDCC lines in P1. (H and I)Dose-response curves of SC-PDCC lines with
different metastatic potential from P1 and P3 after 6 days treatment with 5-FU. Error bars represent SEM of three independent experiments; HM, n = 5; MM,
n = 3; LM, n = 6. (J) The drug response indicated by SC-PDCC lines from P1 treated with 10 µM 5-FU. Cells were fixed, rhodamine stained, and photographed
after 6 days of treatment. HM, n = 4; MM, n = 2; LM, n = 2. Three technical replicates for each SC-PDCC line.
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dose-response curves (Fig. 6 J and Fig. S5 F). In summary, this
result demonstrates intratumor heterogeneity in response to 5-
FU in metastatic seeds of primary CRC.

Personalized evolution of metastatic seeds within
primary CRC
It is still unclear how clones with metastatic potential evolve
within human primary tumors, and whether the acquisition of
metastatic potential is contingent upon the evolution of genetic
mutations during tumor progression (Birkbak andMcGranahan,
2020; Lambert et al., 2017). We therefore explored the clonal
evolution of metastatic seeds within the primary tumor of P1, P2,
and P3 based on SNV data from SC-PDCC lines (Fig. 7 A). These
phylogenetic trees integrated intratumoral heterogeneities for
the genetic landscape and for metastatic potential, revealing
both genomic and metastatic evolution trajectories of SC-PDCC
lines in each primary tumor. In the clonal evolution of P1, a
branch of clonal clusters with high metastatic potential was
evident, while this pattern was not evident for high metastatic
SC-PDCC lines of P3. Although only one SC-PDCC line in P2 was
identified as havingmoderate metastatic potential, it was clearly
separated into a distinct branch from the low metastatic SC-
PDCC lines. These results suggest that the natural occurrence
of metastatic potential in primary CRC is the result of genetic
evolution in some individuals, which is contingent upon the
individualized evolution of the tumor. In addition, poorly dif-
ferentiated SC-PDCC lines in P1, as well as chemoresistant SC-
PDCC lines in three patients, were widely scattered throughout
the phylogenetic tree, revealing distinct evolution trajectories
compared with that of metastatic potential (Fig. 7 A). These
phylogenetic trees reveal diverse evolutionary patterns of met-
astatic seeds in different primary CRC tumors and provide in-
formative clues to understand themechanisms bywhich specific
metastatic seeds arise during personalized tumor evolution.

Significant impact of metastatic seeds on clinical prognosis
The studies mentioned above indicate that SC-PDCC lines de-
rived from primary CRC tumors exhibit significant heteroge-
neity both at the molecular and functional levels (Fig. 7 A),
which poses a challenge in determining which clones should be
prioritized as therapeutic targets to achieve optimal clinical
outcomes. Therefore, we predicted the relationship between
different phenotypic SC-PDCC lines and clinical prognosis based
on their gene expression profiles in P1, P2, and P3 (Table S2).
The Kaplan–Meier curves of patients based on DEGs between
SC-PDCC groups with distinct functions were used to charac-
terize the prognostic impact of SC-PDCC lines. Through bio-
informatics prediction, we found for the first time that different
clones in a single tumor showed varying degrees of clinical
impact. In P3, the survival probability of high metastatic SC-
PDCC lines was significantly lower than that of low metastatic
lines (P = 0.03; Fig. 7 B), although this result in P1 was obvious
but not significant (P = 0.18; Fig. 7 C). In P1, poorly differentiated
SC-PDCC lines showed significantly lower survival probability
compared with well-differentiated SC-PDCC lines (P < 0.0001;
Fig. 7 D). There was no significant difference in the survival
probability between 5-FU resistant SC-PDCC lines and 5-FU

sensitive lines derived from the three patients (P = 0.22, 0.19,
0.41, respectively; Fig. 7, E–G). Especially in P1, the survival
probability of multifunction SC-PDCC lines was significantly
lower than that of both single-function lines (P = 0.02; Fig. 7 H)
and zero-function lines (P = 0.01; Fig. 7 I).

In conclusion, the prognostic impact of clones largely de-
pends on whether the clone has the functional property of poor
differentiation or high metastatic potential, and whether the
clone has multiple functions. It is worth noting that for these
three patients, drug-resistant clones may not lead to poor
prognosis. To improve clinical outcomes, we should develop
strategies to specifically target clones with poor differentiation
or highmetastatic potential, especially these multitasking clones
that play a more dangerous role in clinical prognosis.

Discussion
Metastasis remains the major challenge to clinical treatment and
experimental investigation (Birkbak and McGranahan, 2020;
Steeg, 2016). It has been noted that metastatic dissemination of
malignant CRC tumors occurs far earlier than clinical diagnosis
(Hu et al., 2019), and that disseminated tumor cells and nu-
merous micrometastatic lesions can spread throughout the body
(Marusyk et al., 2012). Therefore, to achieve substantial im-
provements in therapeutic outcomes against metastasis, we
must target and eliminate these metastatic seeds before they
sprout and develop into clinically overt metastatic lesions. Se-
quencing technology provides valuable insights into the phylo-
genetic relationship of metastases and primary tumors at the
genetic level (Hunter et al., 2018; Sylvester and Vakiani, 2015),
while how to assign the metastatic potential to specific clones
within the primary tumor remains a challenge (Lawson et al.,
2018). To address this, our study cultured and identified mul-
tiple single cell–derived clonal cell lines with different degrees of
metastatic potential in the human primary CRC through in vitro
and in vivo experimental validation. Those clones with high
metastatic potential may serve as seeds for the origin of future
metastases. Our insights on the cellular and molecular charac-
teristics of these clones with different degrees of metastatic
potential provide potential therapeutic targets for personalized
primary CRC.

Moreover, we have identified the clinically relevant charac-
teristics of clones with metastatic potential in terms of organ-
selective metastatic potential, differentiation potential, and
chemoresponse. Interestingly, we have found that metastatic
seeds exhibit intertumoral heterogeneity in their ability to se-
lectively colonize certain organs. This suggests that theremay be
an inherent mechanism within metastasis seeds for selecting
specific soil for colonization. Our pioneering analysis with
organ-specific metastatic seeds from primary CRC tumors shows
that specific and robust cellular communication capabilities
confer the potential for metastatic seeds to metastasize in a
lung-specific manner. This result suggests that robust cellular
communication capabilities play a crucial role in lung-specific
metastasis, shedding light on potential therapeutic targets.

Genetically distinct clones arise through branching evolution
in primary tumors (Burrell et al., 2013; Greaves andMaley, 2012;
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Figure 7. Metastasis evolution and the impact of clinical prognosis of metastatic potential. (A) Phylogenetic trees were constructed using SNVs from
SC-PDCC lines of three individuals, integrating functional heterogeneity. Branch lengths indicate mutation numbers. Colored labels correspond to each
function. The size represents the strength of each function. (B and C) Kaplan–Meier curves of patients according to DEGs between HM and LM SC-PDCC lines
from P3 (B) and P1 (C) in the TCGA-CAOD cohort (cases = 458). Red and blue lines denote the patients with genes highly expressed in HM and LM SC-PDCC
lines, respectively. Significance of differences between the two groups was assessed by Cox test (B, P = 0.03; C, P = 0.18). HM, high metastatic potential; LM,
low metastatic potential. Dotted line represents median survival. The plus signs represent the censored cases. (D) Kaplan–Meier curves of patients according
to DEGs between WD and PD SC-PDCC lines from P1 in the TCGA-CAOD cohort (cases = 458). Red and blue lines denote the WD and PD SC-PDCC lines,
respectively (P < 0.0001). WD, well differentiation potential; PD, poor differentiation potential. (E–G) Kaplan–Meier curves of patients according to DEGs
between DR and DS SC-PDCC lines from P1 (E), P2 (F), and P3 (G) in the TCGA-CAOD cohort (cases = 458). Red and blue lines denote the DR and DS SC-PDCC
lines, respectively (E, P = 0.22; F, P = 0.19; G, P = 0.41). DR, drug resistant; DS, drug sensitive. (H and I) Kaplan–Meier curves of patients according to DEGs
between multitask and single-task SC-PDCC lines (H) and between multitask and zero-task SC-PDCC lines (I) from P1 in the TCGA-CAOD cohort (cases = 458).
Red line denotes the mutitask SC-PDCCs, blue line denotes the single-task (H) or zero-task (I) SC-PDCC lines (H, P = 0.02; I, P = 0.01).
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McGranahan and Swanton, 2017), but whether genetic or non-
genetic factors dictate the metastatic potential remains poorly
understood. Therefore, to determine the genetic divergence of
metastatic clones within the primary tumor at the single-cell
level, the ideal strategy is to integrate genotypes and meta-
static capacity into a single cell. Recently, single cell–derived
organoids have accomplished the integration of molecular
features and drug response (Roerink et al., 2018). Using
this strategy, we have achieved the integration of genotype–
phenotype at the single-cell level, as well as the integration of
mutational phylogenetic trees and metastatic evolution patterns
in individual primary tumors. We have used this integration to
develop a gene signature that shows promising potential for
predicting the risk of metastasis in primary CRC tumors. It im-
plies that, despite the heterogeneity in the evolution of meta-
static potential in individual tumors, there may be common
genetic factors or pathways that consistently contribute to fa-
cilitating metastasis across a broader spectrum of cases. This
gene signature likely represents a subset of genes that are con-
sistently associated with metastatic potential in CRC, even if the
precise mechanisms and mutations leading to metastasis differ
between individual tumors. Nevertheless, it is important to note
that while this signature may be effective in predicting meta-
static risk in a general sense, it may not capture all the intricacies
of the diverse pathways to metastasis seen in individual tumors.
We anticipate that more precise and comprehensive prediction
tools, potentially tailored to specific tumor subtypes, may
emerge in the future as we gather data from a larger and more
diverse patient cohort.

In summary, we have constructed amore comprehensive and
diverse landscape of metastatic seeds in primary tumors. Our
findings have highlighted the inter- and intratumoral hetero-
geneity of metastatic seeds, characterized by their metastatic
organs, differentiation potential, chemoresponse, and evolu-
tionary trajectory. We have also identified genetic andmolecular
characteristics associated with metastatic potential, as well as a
metastatic signature that can be used to capture the metastatic
potential of primary CRC tumors. Our study provides valuable
insights into the mechanisms underlying metastasis and may
contribute to the development of personalized treatment strat-
egies for CRC patients by identifying and targeting metastatic
seeds and their specific signature genes.

Materials and methods
Study design
This study aimed to identify and characterize single cell–derived
clonal cell lines with varying degrees of metastatic potential
within primary CRC tumors. 10–16 single-cell clonal cell lines
were established from each of five primary CRC tumors to
evaluate their metastatic potential both in vitro and in vivo. The
clone’s differentiation potential, chemoresponse, and genetic
and molecular characteristics associated with metastatic po-
tential were investigated to profile these metastatic seeds in
primary CRC. A metastatic signature was then identified and
used to capture the metastatic potential of 13 primary CRC tu-
mors with or without metastasis. Finally, some of the metastatic

signature genes were validated through functional experiments
in a colorectal cell line.

Human samples
The study was approved by the ethics committee of institution
review board of the Tsinghua University (#20170019 and
#20190303), National Cancer Center/Cancer Hospital, Chinese
Academy ofMedical Sciences, and Peking UnionMedical College
(#19/172-1956). Normal and CRC tissue samples were obtained
from patients who were diagnosed with CRC and underwent
surgical resection at the hospital. All patients gave written in-
formed consent. Information on cancer and non-cancer tissue
specimens is shown in Table S1.

SC-PDCC culture
CRC tissue was excised after surgery, stored, and transported in
wash buffer: F12 (Gibco), 5% FBS (Hyclone), 1% penicillin/
streptomycin (Gibco), 0.1% Amphotericin B (Gibco), 0.25%
Gentamicin (Gibco), 1% HEPES (Gibco), and 5 μMRock inhibitor
(Calbiochem) at 4°C. Tumor tissues were cut into small pieces
and incubated in 1 mg/ml collagenase type XI buffer (Gibco) at
37°C for 10–15 min. The digested cell solution was filtered
through a 70-μm cell strainer (Falcon) and washed four times
with wash buffer. Isolated cells were resuspended in stem cell
medium (SCM): advanced DMEM/F12 (Hyclone) supplemented
with 10% FBS, 1% penicillin/streptomycin, 1% L-Glutamine
(Hyclone), 0.1% Amphotericin B, 0.5% Gentamicin, 0.18 mM
Adenine (Sigma-Aldrich), 5 μg/ml insulin (Sigma-Aldrich),
2 nM T3 (Sigma-Aldrich), 200 ng/ml hydrocortisone (Sigma-
Aldrich), 125 ng/ml R-Spondin 1 (R&D), 100 ng/ml Noggin (Pe-
protech), 2.5 μM Rock inhibitor (Calbiochem), 2 μM SB431542
(Cayman chemical), 10 mM Nicotinamide (Sigma-Aldrich), and
10 ng/ml EGF (Upstate Biotechnology). After resuspension, the
cells were seeded onto irradiated 3T3-J2 feeder cells that were
paved 1 day in advance and cultured at 37°C in 7.5% CO2. The
primary cancer cells formed numerous colonies on the feeder
layer, collectively referred to as pooled PDCCs. From each in-
dividual primary tumor of P1, P2, and P3, 10–16 individual col-
onies from the primary pooled PDCC culture without passage
were selected and expanded separately. Subsequently, single
cells were obtained by performing flow sorting on the dis-
aggregated single-cell suspension, and each single cell–derived
line (SC-PDCC line) was generated from a single cancer cell of
each expanded colony. The culture medium was replaced every
2 days. We propagated PDCCs into the medium without
R-Spondin-1 to remove the contamination of normal intestinal
stem cell clones.

When the colonies were generated after processing tissue,
individual colonies were picked and cultured in 48-well plates
for expanding. For each primary tumor, 10–16 individual colo-
nies were picked from pooled PDCC cultures (not passaged) and
expanded separately. Then, cells were digested in a 0.25%
trypsin-EDTA solution (Gibco) for 5–8 min at 37°C and cell
suspensions were passed through 30-µm filters (Miltenyi Bio-
tec). 106 cells were blocked with 0.1% FBS at 4°C for 30 min and
then incubated with CD326Monoclonal Antibody (1:50, 53-9326-
42; Thermo Fisher Scientific) at 4°C for 30 min. Samples were
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collected and sorted with an Aria SORP Cell Sorter (BD). Single
cells were seeded into 96-well plates coated with feeder cells.
Thus, single cells were obtained by performing flow sorting on
the disaggregated single-cell suspensions, and a single cell–
derived clonal cell line (SC-PDCC) was generated from each
expanded colony.

3D ALI-PDO culture
ALI PDO culture was performed as described (Wang et al., 2015).
Initially, each Transwell insert (Corning) was coated with 20%
Matrigel (growth factor reduced, BD Biosciences) and incubated
at 37°C for 30 min for polymerization. Then, 200,000 feeder
cells were seeded into each Transwell insert and incubated
overnight at 37°C in 7.5% CO2. PDCCs were digested in a 0.25%
trypsin-EDTA solution at 37°C for 8 to10min and passed through
30 µm filters (Miltenyi Biotec) to obtain single cells. The PDCCs
pellets were then resuspended in 80 μl F12 and 20 μl mouse
feeder removing MicroBeads (130-095-531; Miltenyi Biotec),
followed by an incubation at 4°C for 15 min in low-light con-
ditions. The columns were placed in the magnetic MACS Sepa-
rator and rinsed with 3 ml F12 buffer. Then 400 μl F12 buffer
was added to the 100 μl PDCCs solution incubated with Mi-
croBeads, gently mixed and added to the column to separate
the PDCCs from mouse feeder cells. After counting, between
200,000–300,000 PDCCs were seeded onto each Transwell in-
sert and cultured with SCM medium. After PDCCs’ growth
reached confluence (3–7 days), the medium on the Transwell’s
apical side was carefully removed by pipetting, leaving only the
medium (SCM minus nicotinamide, named SCM-6) on the bot-
tom side of the Transwell. The PDCCs were further cultured for
6–12 days in SCM-6 medium prior to analysis. The medium was
refreshed daily.

Liver and lung metastasis in mice
All animal procedures were conducted in accordance with the
guidelines for the welfare of animals in cancer research pro-
vided by the Institutional Review Board of the Chinese Academy
of Medical Sciences Cancer Institute and Tsinghua University
Animal Ethics Committee guidelines. NSG mice (6–12 wk old)
were obtained from HFK Bioscience Co., Ltd. To induce forced
liver metastases, PDCCs were harvested and resuspended in 50%
Matrigel (Corning) and 50% PBS media. Then, 1 × 106 cells in
25 μl of PDCC suspension were injected into spleen of male
NOD/SCID mice. The livers were isolated 15–32 wk after trans-
plantation. Forced lung metastases were induced by injecting
100 μl of PBS containing 1 × 106 PDCC cells into the tail vein of
the mice. The lungs were isolated 10–32 weeks after transplan-
tation. The number of mice used for each SC-PDCC line is shown
in Table S3. Finally, all samples were fixed in 4% paraformal-
dehyde for subsequent immunohistochemical analysis.

RNA-seq analysis
RNA was isolated from PDCCs and tissues with Trizol Reagent
(Invitrogen) and with RNeasy mini kit (QIAGEN). 2 µg of pre-
pared input RNA was sequenced on the Illumina platform gen-
erating 150 bp paired-end reads. Gene abundance was quantified
using HISAT2 (Kim et al., 2019) (version 2.0.5) and StringTie

(Kovaka et al., 2019) (version 1.3.4) pipeline (Pertea et al., 2016).
DESeq2 (version 1.24.0) (Love et al., 2014) was used to perform
differential expression analysis of high abundance genes (mean
reads >10). DEGs were detected at a strict threshold of adjusted
P < 0.01 and |log2(fold-change)| > 1.

GSEA and Gene Ontology term enrichment analysis (GOEA)
were performed with R package clusterProfiler (version 3.12.0)
(Yu et al., 2012). PCA was performed based on the top 10,000
most variable genes by prcomp function in R and was
visualized with ggbioplot (version 0.55) (https://github.com/
vqv/ggbiplot). Multivariate Analysis of Variance Using Dis-
tance Matrices (PERMANOVA) was performed using the adonis
function in the vegan package (https://github.com/vegandevs/
vegan).

Whole-exome sequencing (WES) analysis
Genomic DNA was extracted with DNeasy Blood & Tissue kit
(Qiagen). 1–3 µg DNA was used for WES. Single base mutations,
insertions, and deletions were identified by Genome Analysis
Toolkits (version 4.1.0.0) pipeline (McKenna et al., 2010). First,
potentially contaminating DNA of mouse cells from feeder layer
was filtered by mapping reads to mouse reference genome
(GRCm38) by Bowtie2 (version 2.3.2) (Langmead and Salzberg,
2012). Then, filtered reads were quality-filtered and aligned
to the human reference genome (hg19) by TrimGalore (https://
github.com/FelixKrueger/TrimGalore) and BWA (version
0.7.15) (Li and Durbin, 2009), respectively. Next, Picard (ver-
sion 2.18.27) was used to mark duplicate reads and Mutect2 was
used to call somatic mutations in tumor samples by comparison
to their matched adjacent normal tissues. In detail, the param-
eters (1) --af-of-alleles-not-in-resource was set to 0.0000025 to
filter germline variant, and (2) –annotation was set as Unique-
AltReadCount. Subsequently, GATK FilterMutectCalls (--unique-
alt-read-count 5) and FilterByOrientationBias were used to
perform second filtration with default parameters. Variants
were annotated to the functional consequence using ANNOVAR
(version Apr 2018) based on the human genome (Wang et al.,
2010). CNAs were called using FACETS (version 0.5.14), which
are integer copy number calls that correct for tumor purity,
ploidy, and clonal heterogeneity (Shen and Seshan, 2016). Fish-
er’s test was used to analyze differences in the frequency of
mutations in samples with different phenotypes.

Correlation analysis between genomic and
transcriptional heterogeneity
To assess the potential impact of genomic mutations on the
transcriptome, we generated a binary matrix that encoded
mutations within the exonic regions. Subsequently, the Euclid-
ean distance was applied to quantify the genomic dissimilarity
across diverse SC-PDCC lines. For transcriptome analysis, we
identified the top 10,000 genes with the highest coefficient of
variation across distinct SC-PDCC lines. Following a log2+1
transformation of transcripts per million values, we computed
the Euclidean distance to assess transcriptomic dissimilarity
across different cell lines. Lastly, we utilized Spearman’s cor-
relation coefficient to evaluate the overall consistency of the SC-
PDCC lines.

Zhao et al. Journal of Experimental Medicine 15 of 21

Metastatic seeds of primary colorectal cancer https://doi.org/10.1084/jem.20231359

https://github.com/vqv/ggbiplot
https://github.com/vqv/ggbiplot
https://github.com/vegandevs/vegan
https://github.com/vegandevs/vegan
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://doi.org/10.1084/jem.20231359


scRNA-seq
Single-cell suspensions were achieved as described above and
then resuspended into 1 × PBS for 10× genomics processing. The
aimed target cell recovery for each library was 8,000 and the
libraries were performed on an Illumina HiSeq X Ten platform.
Data produced by scRNA-seq were processed, aligned, and
summarized for unique molecular identifier (UMI) counts
against the human (hg19) and mouse (mm10) reference genome
by Cellranger software (version 3.1.0) (Zheng et al., 2017) with
default parameters. The raw, unfiltered count matrices were
imported into R for further processing by Seurat (version 3.2.0)
(Stuart et al., 2019). Quality control was performed to discard
genes detected <200 counts, genes detected in mouse more than
in human, as well as those with a mitochondrial transcription
ratio >30%. The function FindIntegrationAnchors from Seurat
was then used to integrate different samples and remove batch
effects and biological covariates (Tran et al., 2020).

Dimensionality reduction was performed using PCA. Cells
were clustered in the reduced dimension space using the Seurat
package (resolution = 0.8) and were visualized using UMAP
plots. We used the function AddModuleScore from Seurat and
the list of G2M-associated genes to calculate a cell cycle score
for each cell (Scialdone et al., 2015). To analyze the well-
differentiation (WD) score and poor-differentiation (PD) score
in each cell, 237 PD marker genes and 122 WD marker genes
were detected by DEG analysis of bulk RNA-seq data from P1.
Then the function AddModuleScore was used to calculate the
WD and PD scores in each cell. The P value was calculated based
on wilcox.test in R.

We found 15 cell clusters including seven cycling clusters and
eight noncycling clusters. Cluster marker genes were detected
with the FindAllMarkers in Seurat package using the wilcox test.
scCATCH (version 2.1) (Shao et al., 2020) and SCSA (version)
(Cao et al., 2020) were used to preliminary annotate cell clusters.
They were further confirmed manually. Cluster marker genes
with adjusted P < 0.05 and log2(fold-change) > 5 were selected to
perform GOEA by Enrichr (Kuleshov et al., 2016; Xie et al., 2021).

The somatic mutation-based phylogenetic trees
Phylogenies were constructed based on a binary matrix of mu-
tations present or absent in each sample (Roerink et al., 2018).
The program pipline of seqboot, Mix, and Consense in Phylip
(version 3.695) (https://phylipweb.github.io/phylip/install.html)
were used with the same parameters as published (Roerink et al.,
2018). In short, all private mutations were excluded because they
are uninformative and misleading. The seqboot program was
used to generate bootstrap replicates, the program Mix (with
Wagner method) reconstructed each bootstrap replicate by
maximum parsimony, and a consensus of all trees was built by
the program Consense with the majority rule (extended) option.
The tree was visualized by R package ggtree (version 1.16.6) (Yu,
2020).

Processing scRNA-seq data, cell clustering, and
metastatic score
Publicly available single-cell sequence data (PRJNA748525) of 13
CRC samples were downloaded and reanalyzed. In detail, the

raw reads were downloaded and aligned against GRCh38 human
reference genome provided by Cell Ranger (version 5.0.0, 10×
genomics). Then, the R package Seurat (version 4.1.1) was used
to remove genes expressed in fewer than three cells, cells with
fewer than 500 genes, and cells with high percentages of mi-
tochondrial genes (more than 15%). After quality control, the
UMI counts were log-normalized using a scale of 10,000. The top
1,000 variable genes were selected with the ‘‘FindVaria-
bleGenes’’ function of Seural. Next, “var.to.regress” option
UMI’s and percent mitochondrial content were used to regress
out unwanted sources of variation. Next, Harmony (version
0.1.0) was used to correct for batch effects and biological co-
variates. The “FindClusters” functionwas used to detect clusters,
which employs an optimization algorithm of nearest-neighbor
modularity implemented in Seurat. The identified clusters were
then visualized using the UMAP algorithm. The annotation of
each cell cluster was confirmed by the expression of canonical
marker genes. The canonical marker genes KRT8, KRT18, EPCAM,
ELF3, and KRT19 were used to identify the cluster of cancer cells
(Che et al., 2021), and a total of 11,608 tumor cells were
identified.

Next, all cancer cells were extracted and reanalyzed accord-
ing to the above procedure to identify cell subcluster. Signifi-
cantly high and low expression of genes in high metastatic
SC-PDCC lines were used to calculate metastatic and non-
metastatic scores for each cell by the function “AddModule-
Score.” The combined metastatic risk score was obtained using
the metastatic score minus the non-metastatic scores. According
to the metastatic risk scores, we identified cells with the top 20%
and bottom 20% scores as high metastatic risk cells and low
metastatic risk cells, respectively.

Cell communication analysis
Cell communication between different cell types and tissues
primarily relies on the interaction between ligands secreted by
cells and cell surface receptors (Ramilowski et al., 2016). To
investigate the strength of cell communication among different
SC-PDCC lines and between lung and liver, we performed an
analysis using the DISCO database (Li et al., 2022), which in-
tegrates over 18 million single-cell omics data from 4,593
samples. From this database, we obtained and curated the sig-
nificantly upregulated genes in each cell type of lung or liver
tissues. These genes were defined as exhibiting significantly
higher (adjusted P value <0.01) expression in the respective cell
type compared with other cells in the tissue. We identified
53 liver-specific cell types, 44 lung-specific cell types, and 20 cell
types shared between the two tissues. DEG analysis of signifi-
cantly upregulated genes between different SC-PDCC lines was
performed using the R package DESeq2 (Love et al., 2014). For
the significantly upregulated genes between SC-PDCC lines with
high metastatic to liver and high metastatic to lung, we applied
the thresholds of adjusted P value <0.01 and |log2fold-change| >
1. For SC-PDCC lines with low metastatic to lung and high
metastatic to lung, the thresholds used were adjusted P value
<0.05 and |log2fold-change| > 1. For SC-PDCC lines with low
metastatic to liver and high metastatic to liver, the thresholds
were P value <0.05 and |log2fold-change| > 1.
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Information on pair of ligands and receptors was obtained
from the built-in dataset “ramilowski_pairs” in the R package
celltalker (Cillo et al., 2020), which includes 691 receptors and
708 ligands, forming a total of 2,557 receptor–ligand pairs
(Ramilowski et al., 2015). To calculate the communication den-
sity between SC-PDCC lines, we counted the pairs of highly
expressed receptor genes in SC-PDCC lines and highly expressed
ligand genes in each cell type, as well as the pairs of highly ex-
pressed ligand genes in SC-PDCC lines and highly expressed
receptor genes in each cell type. By determining the number of
receptor–ligand pairs between them, we defined the communi-
cation density between SC-PDCC lines and different cell types of
each tissue.

Enrichment analysis of receptors and ligands in SC-PDCC lines
The GSEA analysis was performed to analyze DEGs in SC-PDCC
lines with different phenotypes. The gene lists of receptors and
ligands were obtained from the R package celltalker (Cillo et al.,
2020). The GSEA function from the R package clusterProfiler
(Wu et al., 2021) was used for enrichment analysis of the re-
ceptor gene set and ligand gene set.

For GO analysis, first, we identified DEGs between SC-PDCC
lines associated with the ability of high metastatic to liver and
that with the ability of high metastatic to lung with the
thresholds adjusted P value <0.05 and |log2fold-change| > 1. In
total, we identified 789 upregulated DEGs in high metastatic to
liver, with 33 receptor genes and 83 ligand genes. In SC-PDCC
lines with high metastatic to lung, 1,381 DEGs were upregulated,
including 32 receptor genes and 89 ligand genes. Subsequently,
the obtained receptor and ligand genes were subjected to GO
enrichment analysis using the compareCluster function from
the R package clusterProfiler (Wu et al., 2021).

Processing of public data
GSE68468 contains expression profiles of 20 CRC metastatic
tissue with lung metastasis and 47 samples of metastatic tissue
with CRC liver metastasis (Gavert et al., 2007). GSE72718 con-
tains expression profiles of nine samples of primary CRC with
liver metastasis and 10 samples of primary CRC without liver
metastasis (Gao et al., 2016). GSE41258 contains expression
profiles of 17 ascending colon samples of primary CRC with
metastasis and 30 ascending colon samples of primary CRC
without liver metastasis (Martin et al., 2018)). The expression
profiles for these three datasets were obtained using the
“GEOquery” package, available at https://github.com/seandavi/
GEOquery. Probes were converted to gene symbols using an
annotation file provided by the manufacturer. The metastatic
signature for GSE72718 and GSE41258 was calculated using the
“gsva” function with the method set to “zscore” in the R package
GSVA (Hänzelmann et al., 2013). The differential gene expres-
sion analysis for GSE68468 was performed using the limma
package (Ritchie et al., 2015).

Drug response test
Five concentrations (0, 0.1, 1, 10, and 100 μM) of chemothera-
peutic agent 5-FU were prepared and assayed. PDCCs were
gently disrupted into single cells and feeder cells were removed

with magnetic beads. 10,000 cells were plated on 96-well plates
coated with 10% Matrigel. Drug was added individually after
overnight incubation, and cell viability was measured using
CellTiter-Glo reagent (Promega) after 6 days. Each SC-PDCCwas
performed with three technical replicates and two biological
replicates with different passages. The results were normalized
to controls and expressed as percent cell viability. The deter-
mination of IC50 values was conducted using Graph Pad Prism9.
For 2D PDCCs, the drug was added to SCM medium at final
concentration of 10 µM on the second day of PDCC culture. 0.1%
DMSO was used as control. Following 6 days of treatment, the
cells were washed twice with PBS, fixed with 4% paraformal-
dehyde for 20 min, and stained with 10% rhodamine staining
solution. Surviving cells were counted under a bright-field mi-
croscope. PDCCs with survival rate >50% were defined as drug
resistant, and PDCCs with survival rate <50% were defined as
drug sensitive.

Proteome analysis
SC-PDCCs from P1 were homogenized in 200 μl lysis buffer. The
lysis buffer consisted of 1 mM PMSF (Sigma-Aldrich). Lysates
were centrifuged at 20,000 g for 10 min and protein concen-
trations of the clarified lysates were measured by BCA assay
(Pierce). For each sample, 200 μg peptides were prepared by
vacuum centrifugation dryness for the following TMT labeling
experiment. The isobaric labeling experiment was conducted
according to the TMT kit instructions. For each set of TMT 11-
plex labeling experiment, the mixed peptides were labeled with
channel 126 as the internal reference, and three low metastatic
SC-PDCC samples and four high metastatic SC-PDCC samples
were labeled with the other seven channels (low metastatic la-
beled with 127N, 127C, 129N; high metastatic labeled with 129C,
130N, 130C, and 131).

Data were normalized using the median centering method
across total proteins to correct sample loading differences. In
normalized samples, these proteins should have a log TMT ratio
value centered at zero. Normalized proteins/phosphorylation
sites with SwissProt ID were converted to Human Genome
Nomenclature Committee’s (HGNC) HUGO symbols provided by
HGNC (https://www.genenames.org). First, Limma (version
3.40.6) was used to detect significantly changed proteins. Then,
GSEA was performed in clusterProfiler (version 3.12.0) to ana-
lyze the pathways of significant changes. Pearson correlation
coefficients were used to detect the consistency of transcriptome
and proteome changes.

Survival analysis
Transcriptomic data were collected from the The Cancer Ge-
nome Atlas Colon Adenocarcinoma Collection (TCGA-COAD)
dataset. The Fragments Per Kilobase Million (FPKM) normalized
expression data were downloaded by R package GEOquery
(version 2.52.0) (Davis and Meltzer, 2007) and TCGAbiolinks
(version 2.12.6) (Colaprico et al., 2016). For single genes, the top
40 and bottom 40% of samples (based on FPKM) were aligned to
the high and low abundance groups. A list of phenotypic-related
genes with adjusted P < 0.001 and |log2(fold-change)| > 2 were
detected by DESeq2 (with samples classified based on the z-score
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transformed method). In detail for each sample, the sum of the
z-score was used as the final overall score to classify the samples
to the high (top 40%) and low (lower 40%) groups. Kaplan–
Meier survival curves were generated using the ggsurvplot
function from the survminer package (version 0.4.8) (https://
github.com/kassambara/survminer). P-values of survival dif-
ferences were calculated with age and gender covariates in the
coxph function of the survival (version 2.44.1.1) package.

Immunohistochemistry and immunofluorescence
Sections of formalin-fixed, paraffin-embedded tissues, xeno-
grafts, and ALI PDOs were stained by standard hematoxylin and
eosin (H&E) staining. For immunohistochemistry and immu-
nofluorescence staining, slides were subjected to antigen re-
trieval in citrate buffer (pH 6.0; Sigma-Aldrich) at 95°C for
20min, and a blocking procedure was performed overnight with
5% BSA (Sigma-Aldrich) and 0.05% Triton X-100 (Sigma-Al-
drich) in Dulbecco’s Phosphate-Buffered Saline(−) (Gibco) at 4°C.
Primary antibodies used in this study included antibodies against
MUC2 (1:200; Santa Cruz), KI67 (1:500; Thermo Fisher Scien-
tific), CK20 (1:200; Dako), and E-Cadherin (1:200; R&D Systems).
Secondary antibodies were either Alexa Fluor-488 or Alexa
Fluor-594 Donkey anti-goat/mouse/rabbit IgG (Thermo Fisher
Scientific). Images were acquired by Olympus IX73 microscopy.

Cell invasion assay
100,000 cells suspended in 100 μl serum-free culture medium
were seeded in the upper chambers coated with 20%Matrigel of
Transwells (Corning, pore size 8 µm) and the lower chambers
were loaded with 600 μl culture medium with 10% FBS. Fol-
lowing incubation for 24 h, cells were fixed in ethanol overnight
and stained with crystal violet. At least five fields were randomly
selected and counted under a bright-field microscope. Assays
were performed in duplicate or triplicate.

Quantitative PCR (qPCR)
Total RNA was extracted from PDCCs, ALI PDOs, and tissues using
the RNeasymini kit (QIAGEN), and cDNAs were synthesized using
the high-capacity cDNA reverse transcription Kit (Thermo Fisher
Scientific). Expression levels were measured with iTaq Universal
SYBR Green Supermix (Biorad) and normalized to GAPDH. All
experiments were carried out in triplicate.

Western blot
PDCCs were collected in radioimmunoprecipitation buffer
(Thermo Fisher Scientific) containing protease inhibitor cocktail
(Bimake) and phosphatase inhibitor cocktail (1:100; Bimake).
Protein was quantified with BCA reagent (Thermo Fisher Sci-
entific). The extracts were resolved by SDS-PAGE on a 10%
gradient gel, transferred onto polyvinylidene difluoride mem-
branes (GE healthcare life sciences), and incubated with primary
antibodies EPHB3 (1:1,000; Abnova), and β-ACTIN (1:1,000; Cell
signaling) overnight at 4°C. Incubation with secondary antibody
(Anti-mouse IgG, HRP-linked Antibody; Cell signaling) was
performed for 2 h at room temperature. After detection using an
ECL Western blot Substrates (Thermo Fisher Scientific), images
were acquired using an ImageQuant LAS 4000.

Cell line culture and transfection
Human colon cancer cell line DLD1 was obtained from ATCC and
cultured in DMEM supplemented with 10% FBS at 37°C in 5%
CO2. For stable knockdown of AKR1C1, NAMPT, SAMHD1, OSTM1,
and for stable overexpression of EPHB3 and SPINK4, cells were
infected with lentiviruses expression of two different shRNAs
(Table S7).

For PDCCs, cells were dissociated into single cells as men-
tioned above. Then cells were resuspended in SCMmedium and
lentiviruses at a 1:1 ratio (1 ml each), with the addition of 8 µg/ml
polybrene. The cell solutionwas transferred to a 6-well plate and
incubated overnight at 37°C in 7.5% CO2. After 24 h, the medium
was replaced with fresh SCM medium. 2 days after injection,
PDCCs were cultured in SCM medium added with 4 µg/ml pu-
romycin for 2 wk. The effect of knockdown or overexpression
was confirmed by qPCR or Western blot.

Statistical analysis
Analysis procedures of genome and transcriptome data are
provided in the relevant sections of Materials and methods.
Statistical analysis was performed with GraphPad Prism and
presented as mean values ± SD. Unpaired two-tailed Student’s
t test was used to calculate P values between two groups. The ‘‘n’’
numbers for each experiment were provided in the text and
figures. Corresponding statistical significance was denoted with
*P < 0.05; **P < 0.01; ***P < 0.001 and ****P < 0.0001 in the
figures and figures legends.

Online supplemental material
Fig. S1 illustrates how SC-PDCC lines can recapitulate the in-
tratumoral heterogeneity of histology, genomic, and transcrip-
tional landscape. Fig. S2 offers additional information on
evaluating the metastatic potential of SC-PDCC lines. Fig. S3
demonstrates the molecular divergence of metastatic SC-PDCC
lines from individual tumors. Fig. S4 includes the analysis of
primary CRC tumor scRNA-seq data and the cellular communi-
cation capacity of SC-PDCC lines. Fig. S5 explains the differen-
tiation potential and drug response of SC-PDCC lines with
varying metastatic potential. Table S1 shows clinicopathological
data of CRC patients. Table S2 shows SC-PDCC information and
test results for various analyses. Table S3 shows liver and lung
metastasis of SC-PDCCs in mice, related to Figs. 2 and S3. Table
S4 shows the metastasis potential of pooled PDCC in mice, re-
lated to Figs. 2 and S3. Table S5 shows a total of 21 protein in-
teraction genes with differential expression in high metastatic
SC-PDCC lines from P1. Table S6 shows the proportion of cancer
cells with metastatic signatures in each individual primary CRC
tumor (from Xu et al. [2022] dataset PRJNA748525). Table S7
shows the shRNA information, related to Fig. 7 D. Data S1 shows
differential CNAs between high and low metastatic SC-PDCC
lines in P1. Data S2 shows the metastatic signature.

Data availability
The raw sequence data reported in this study have been de-
posited in the Genome Sequence Archive at the National Ge-
nomics Data Center, China National Center for Bioinformation/
Beijing Institute of Genomics, Chinese Academy of Sciences
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under the Bioproject accession codes PRJCA006448 and
PRJCA023187. Specifically, the WES data and single-cell se-
quencing data have been deposited under the accession
code HRA001280 (https://ngdc.cncb.ac.cn/gsa-human/browse/
HRA001280). The RNA-seq data have been deposited under the
accession code HRA006587 (https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA006587). All additional data supporting the findings
of this study are located within the article, in the supplemental
information files, or can be obtained from the corresponding au-
thor upon request.
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Figure S1. SC-PDCC lines recapitulate the intratumoral heterogeneity of the histology, genomic, and transcriptional landscape, related to Fig. 1.
(A) Schematic procedure of establishing SC-PDCC lines from CRC patient. Colonies were generated after processing tissues, different morphological colonies
were picked and expanded, then sorted using EPCAM+ to obtain single cell per well. SC-PDCC lines were established after expansion. (B) Representative bright
field microscopy and H&E staining images of SC-PDCC colonies and matched 3D ALI PDOs from three patients. Scale bar, 50 µm. (C) In the left panel, a
heatmap illustrating the allele frequency of SNVs in the parental tumor, pooled PDCCs, and SC-PDCC lines of P2 (up, n = 16) and P3 (down, n = 12). Variations
are classified as: root (present in all samples), share (present in multiple samples but not all), and private (present in specific samples). In the right panel, the
boxplot shows the distribution of each SNV types among samples, and the labeled numbers indicate the median proportion of mutations. (D) Distribution of
mutations in SC-PDCC lines, including retained parental tumor mutations (left) and SC-PDCC line-specific mutations (right). (E) Heatmap shows CNAs in
parental tumor, pooled PDCCs, and different SC-PDCC lines of P2 (up, n = 16) and P3 (down, n = 12). Red denotes copy number gains, and blue denotes copy
number loss. (F) GOEA of consensus clustered genes in P2 (right, n = 14) and P3 (left, n = 10). Each column represents a SC-PDCC sample, and samples were
grouped based on the top 1,000 highly variable genes. Rows represent DEGs (padj < 0.05 and |log2fold-change| > 0.5), which was the result of comparing each
sample group with other samples. (G) Effects of mutations in exons on the transcriptome. Each data point represents the genomic dissimilarity (x-axis) and
transcriptomic dissimilarity (y-axis) of a cell line pair. Consistency was assessed using the Spearman correlation coefficient.
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Figure S2. Evaluation of metastatic potential of SC-PDCC lines and pooled PDCCs, related to Fig. 2. (A) In vitro invasion assay of six SC-PDCC lines in P2.
The invaded cells were counted in five randomly chosen areas. Moderate metastatic potential (MM) compared with low metastatic potential (LM) group; ****,
P < 0.0001; t test, two-tailed; error bars represent SD of the mean. Scale bar, 100 µm; n = 6. (B) In vitro invasion assay of nine SC-PDCC lines in P3. ***, P <
0.001; ****, P < 0.0001; t test, two-tailed. Error bars represent SD of the mean. Scale bar, 100 µm; n = 9. HM, high metastatic potential. (C) Representative
H&E staining and KI67 staining images of liver metastases derived from pooled PDCC lines of P5 with diagnosed liver metastasis. Scale bar: up, 500 µm; down,
50 µm.
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Figure S3. Molecular divergence ofmetastatic SC-PDCC lines from individual tumors, related to Fig. 3. (A) 14 non-synonymousmutations were enriched
in HM SC-PDCC lines of P1. GOEA of genes with protein interactions with these mutations, as well as signaling pathways enriched for DEGs associated with
these mutant genes. (B) Specific amplified genes present in HM SC-PDCC lines from P1. Fisher’s test was used to analyze different CNAs; HM, n = 5; LM, n = 7.
(C) GO terms enriched by the differential CNAs between HM SC-PDCC lines and LM SC-PDCC lines in P1. BP, biological process; MF, molecular function.
(D) PCA showing the difference between HM SC-PDCC lines (n = 3) and LM SC-PDCC lines (n = 3) in P3. The P value was determined by PERMANOVA test, P =
0.089. (E and F) Volcano plot of genes that were differentially expressed between HM SC-PDCCs and LM SC-PDCCs in P1 (C, HM, n = 5, LM, n = 6) and P3 (D,
HM, n = 3, LM, n = 3). (G) GSEA showing significantly enriched pathway in HM and LM SC-PDCC lines of P3, respectively, P values are shown. GOBP, GO terms
of biological process. (H) Volcano plot showing the differentially expressed proteins between HMSC-PDCCs (n = 4) and LM SC-PDCCs (n = 2) in P1. (I) Six genes
were selected for functional verification. Differential analysis was performed based on SC-PDCC lines from P1, the number (n) is indicated. HM, high metastatic
potential; MM, moderate metastatic potential; LM, low metastatic potential.
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Figure S4. Analysis of primary CRC tumor scRNA-seq data and cellular communication capacity of SC-PDCC lines, related to Figs. 4 and 5. (A) An
UMAP plot shows all cells from the public dataset PRJNA748525 (Xu et al., 2022), which retained a total of 87,717 cells after quality control and filtration.
Cluster 2 was identified as a cluster of cancer cells based on the expression of five typical cancer cell markers. (B) The expression of indicated cancer cell
markers in the cells of the public dataset PRJNA748525 (Xu et al., 2022). (C) GSEA analysis of publicly available data (the GSE68468 dataset) revealed a higher
expression of receptors and ligands in CRC metastatic tissues from the lung (n = 20) compared to CRC metastatic tissues from the liver (n = 47). (D) Analysis of
communication strength between P1 lung-metastatic lines and P3 liver-metastatic lines with lung-specific cells. (E) Analysis of communication strength
between P1 lung-metastatic lines and P3 liver-metastatic lines with liver-specific cells. (F) Analysis of communication strength between P1 lung-metastatic
lines and P3 liver-metastatic lines with shared cells for liver and lung. The numbers represent the intensity of cellular communication, determined by the
number of receptor-ligand pairs. (G) Volcano plot of genes that were differentially expressed between lung-metastatic lines in P1(n = 2) and liver-metastatic
lines in P3 (n = 2). P value < 0.05, |log2(fold-change)| > 1. HM, high metastatic potential.
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Figure S5. Assessment of differentiation potential and drug response of SC-PDCC lines with different metastatic potential, related to Fig. 6.
(A) MUC2 (red) and E-cadherin (green) staining of ALI PDOs derived from different SC-PDCC lines in P2 (n = 6) and P3 (n = 6), respectively. Scale bar, 50 µm.
(B) PCA showing large difference between the SC-PDCC lines (2D) and corresponding ALI PDOs (3D) in P2 (n = 9) and P3 (n = 9). Significance was determined by
PERMANOVA test; P2, P = 0.0029; P3, P = 0.005. (C) UMAP plot of single-cell RNA expression from two PD SC-PDCC lines (n = 2; P1SC17 and P1SC23) and two
MD SC-PDCC lines (n = 2; P1SC3 and P1SC27) in P1. Color code for different samples. MD, moderate differentiation; PD, poor differentiation. (D) Differentiation
score and undifferentiated score of single cells in four SC-PDCC lines. These scores were evaluated by the expression of DEGs from bulk RNA data of cor-
respondingWD SC-PDCCs and PD SC-PDCCs. TwoWD SC-PDCC lines (P1SC3 and P1SC27) showed higherWD scores (left), and two PD SC-PDCC lines (P1SC17
and P1SC23) showed higher PD scores (right). TheMann–Whitney test, two-tailed, was used. ****, P < 0.0001. (E) Dose-response curves of SC-PDCC lines (n =
14) with different metastatic potential from P2 after 6 days treatment with 5-FU (repeat, n = 3). Error bars represent the SEM of three independent ex-
periments. (F) The functional phenotypes of drug response indicated by SC-PDCC lines from P3 treated with 10 µM 5-FU (n = 9). Cells were fixed, rhodamine
stained, and photographed after 6 days of treatment. Three technical replicates for each SC-PDCC line. HM, high metastatic potential; MM, moderate
metastatic potential; LM, low metastatic potential.
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Provided online are seven tables and two datasets. Table S1 shows clinicopathological data of CRC patients. Table S2 shows
SC-PDCC information and test results for various analyses. Table S3 shows liver and lungmetastasis of SC-PDCCs in mice, related to
Figs. 2 and S3. Table S4 shows themetastasis potential of pooled PDCC inmice, related to Figs. 2 and S3. Table S5 shows a total of 21
protein interaction genes with differential expression in HM SC-PDCC lines from P1. Table S6 shows the proportion of cancer cells
with metastatic signatures in each individual primary CRC tumor (from Xu et al. [2022] dataset PRJNA748525). Table S7 shows the
shRNA information, related to Fig. 7 D. Data S1 shows differential CNAs between high and low metastatic SC-PDCC lines in P1. Data
S2 shows the metastatic signature.
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