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Abstract

Transfer learning has attracted increasing attention in recent years for adaptively borrowing 

information across different data cohorts in various settings. Cancer registries have been widely 

used in clinical research because of their easy accessibility and large sample size. Our method 

is motivated by the question of how to utilize cancer registry data as a complement to improve 

the estimation precision of individual risks of death for inflammatory breast cancer (IBC) patients 

at The University of Texas MD Anderson Cancer Center. When transferring information for risk 

estimation based on the cancer registries (i.e., source cohort) to a single cancer center (i.e., target 

cohort), time-varying population heterogeneity needs to be appropriately acknowledged. However, 

there is no literature on how to adaptively transfer knowledge on risk estimation with time-to-event 

data from the source cohort to the target cohort while adjusting for time-varying differences in 

event risks between the two sources. Our goal is to address this statistical challenge by developing 

a transfer learning approach under the Cox proportional hazards model. To allow data-adaptive 

levels of information borrowing, we impose Lasso penalties on the discrepancies in regression 

coefficients and baseline hazard functions between the two cohorts, which are jointly solved in the 

proposed transfer learning algorithm. As shown in the extensive simulation studies, the proposed 

method yields more precise individualized risk estimation than using the target cohort alone. 

Meanwhile, our method demonstrates satisfactory robustness against cohort differences compared 

with the method that directly combines the target and source data in the Cox model. We develop a 

more accurate risk estimation model for the MD Anderson IBC cohort given various treatment and 

baseline covariates, while adaptively borrowing information from the National Cancer Database to 

improve risk assessment.
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1 Introduction

Estimating the risk of a failure event is an important topic in clinical research for chronic 

diseases such as cardiovascular disease and cancer (Jiao et al., 2018; Kumar et al., 2020). 

If the population of interest comes from a single institution or a clinical trial, however, the 

limited sample size may prevent accurate individualized risk assessment, especially for rare 

diseases. Here, we consider a rare but aggressive type of cancer called inflammatory breast 

cancer (IBC) (Jaiyesimi et al., 1992). Although IBC constitutes only 1% to 6% of all breast 

cancer patients in the United States, the diagnosed patients have a worse prognosis with 

five-year survival of around 34% to 47% (Masuda et al., 2014). IBC patients seen at the 

Morgan Welch Inflammatory Breast Cancer Research Program and Clinic at The University 

of Texas MD Anderson (MDA) Cancer Center are the target population of this study. 

Although MD Anderson Cancer Center is a leading cancer care institute, the performance 

of risk assessment using the data of the MDA cohort alone is far from satisfactory due 

to the rarity of the disease. Large population-based registry data sources, including the 

Surveillance, Epidemiology and End Results (SEER) and the National Cancer Data Base 

(NCDB), have been increasingly used as complement data cohorts because of their easy 

accessibility and large sample size (Carvalho et al., 2005; Bilimoria et al., 2008).

Combining information from outside registry data (i.e., the source cohort) in the analysis 

of the target cohort (e.g., the MDA IBC cohort in the motivating example) has been a 

promising solution to the small sample size problem in risk estimation. NCDB data were 

obtained as our source cohort in the motivating example. Cancer registries have been used 

as auxiliary information to improve statistical inference in recent literature (Chatterjee et 

al., 2016; Antonelli et al., 2017; Chen et al., 2021). Specifically, Chatterjee et al. (2016) 

and Huang et al. (2016) developed likelihood-based frameworks to borrow information from 

external data sources in regression models. Most of these methods rely on an essential 

assumption, i.e., the two study populations are comparable (Chatterjee et al., 2016; Li et al., 

2022). This assumption is often violated in practice. It is well noted that there is substantial 

referral bias in the MDA population compared to general patients from cancer registries, 

i.e., the MDA patients may have more complicated conditions or delayed diagnosis (Carlé 

et al., 2013). In our motivating example, the MDA-IBC cohort has a worse prognosis 

compared to the IBC patients of the NCDB cohort due to referral bias, suggesting substantial 

heterogeneity between the cohorts. An essential question here is how and to what extent we 

can learn from using cancer registry data in the risk estimation. Both Liu et al. (2014) and 

Huang et al. (2016) modified the Cox model by relaxing the cumulative hazard function in 

the target population and multiplying a constant factor. Still, their methods could not address 

the potential differences in the baseline hazards of the two populations. A recent work by 

Chen et al. (2021) developed an adaptive estimation procedure, which allows the source 

population to be incomparable with the target population. They used summary statistics 

Li et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to adjust the level of information borrowed from external sources. This is a promising 

approach, but it is also restricted in that only the summary level survival data, such as 

10-year survival rate, can be borrowed from the external data.

Recently, a few transfer-learning-based statistical methods have been proposed to adaptively 

borrow information from the source population under different analysis frameworks. The 

advantage of these transfer-learning approaches is that, even when the external population 

is dramatically different from the target cohort, termed “negative transfer,” these methods 

can still provide reasonable estimations because the level of information borrowing was 

adaptively determined by the data similarities. The considered scenarios include transfer 

learning in Gaussian graphical models (Li et al., 2022), nonparametric classification (Cai 

and Wei, 2021), high-dimensional linear regression (Li et al., 2020), generalized linear 

models (GLM) (Tian and Feng, 2022), and federated learning with GLM (Li et al., 2021). 

However, none of these methods can be applied to the analysis of time-to-event outcomes, 

as considered in the motivating problem. Cox models are widely used for assessing risk 

with time-to-event data due to their easy interpretation and model flexibility (Cox, 1972). 

There are a number of additional statistical challenges in transferring the knowledge from 

the source to the target cohort in lifetime analysis under the Cox models. First, compared 

to the transfer learning in the regression setting in which models borrow information 

for the coefficients only, Cox models would be represented by different baseline hazard 

functions when the source and target cohorts have time-varying risk shifts. Additionally, 

the coefficients of baseline covariates and baseline hazards in the Cox models could have 

different but dependent levels of information sharing, and thus they should be controlled 

simultaneously. Second, the baseline cumulative hazards function is routinely estimated 

semi-parametrically in the framework of Cox models. The jump points of its estimation 

are decided by the event times in the observed data. As a result, the target and source 

populations can have distinct sets of breakpoints for the baseline hazard estimations, which 

makes information borrowing more challenging. Third and finally, individual-level data may 

not always be available for the source population due to privacy and logistical concerns 

(Platt and Kardia, 2015). The desired method should be able to allow both scenarios, i.e., 

using individual-level data or incorporating summary statistics obtained from the source 

population without the need to share individual-level data.

In this article, we address all the aforementioned challenges in transfer learning for time-to-

event data under the Cox models. The proposed method overcomes the difficulty of sharing 

information with different sets of event times in the two cohorts. We allow different levels 

of information borrowing in the regression coefficients and baseline hazards through tuning 

parameters, and the resultant estimates are obtained in a unified framework simultaneously. 

As a result, the proposed method has great flexibility in that both covariate distributions 

and the associated coefficients, as well as baseline hazards are all allowed to be different 

between the two cohorts. As shown in our extensive simulation studies, the proposed method 

demonstrates satisfactory robustness, accuracy, and efficiency gained even when the source 

and target cohorts are heterogeneous in varying patterns and degrees. The applications to the 

MDA IBC cohort with NCDB data as a complement cohort also suggest improved precision 

of risk estimation compared with a regular Cox model with the MDA cohort alone. We 

present the notation, model, and algorithm in Section 2. The results from the simulation 
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studies are present in Section 3 to evaluate the empirical performance. In Section 4, we 

present the data analysis results for the motivating example with IBC cohorts and interpret 

the results. We provide concluding remarks and discussions in Section 5.

2 Method

2.1 Notation and Model

Denote the outcome, the time from an initial event to an event of interest, by T . Let the 

covariates of interest be the p-dimensional vector X. Given X = x, define the conditional 

density function and conditional survival function of T  as f(T |x) and S(T |x). We denote 

the censoring time by C and the occurrence of the interested events (e.g., time to death) 

by δ = I(T ≤ C). In the context of transfer learning, we have two sets of cohorts: a 

target cohort and a source cohort. The target cohort consists of N independent samples, 

(Y i, δi, Xi), i = 1, · · · , N , where Y i = min T i, Ci , δi = I(T i ≤ Ci). Let the number of 

unique event time points in the target cohort be n0.

In the target cohort, the Cox model assumes the covariate specific hazard function follows

ℎ(t Xi) = ℎ0(t)exp(Xi
Tβ), i = 1, · · · , N .

Here, β is the p-dimensional vector of regression coefficients and ℎ0( · ) is an unspecified 

baseline hazard function.

For the source cohort, we consider two scenarios when the individual-level data are or are 

not available. When the individual-level data are available, the source cohort is represented 

by Ns independent observations, (Y i
s, δi

s, Xi
s), i = 1, · · · , Ns  The number of unique event 

time points is n0
s. The corresponding Cox model for the source population also has the 

proportional hazards assumption,

ℎs(t Xi
s) = ℎ0

s(t)exp (Xi
s)Tβs , i = 1, · · · , Ns,

where ℎ0
s( · ) is an unspecified baseline hazard function. The cumulative baseline hazard 

function is denoted by H0
s(t) = ∫0

tℎ0
s(u)du. If the individual-level data cannot be shared due 

to privacy and logistical concerns, the proposed method still works given the estimators 

of coefficients βs and baseline cumulative hazards H0
s( · ), which can be transferred by the 

source cohort site.

In addition to the proportional hazards assumption, we assume that the same set of 

covariates are available in both cohorts. However, the distributions of the covariates are 

allowed to be different in the two cohorts, which is termed as a “covariate shift” (Sugiyama 

et al., 2007; Jeong and Namkoong, 2020). Note that we do not need to assume the two 

cohorts are comparable, i.e., the regression coefficient βs and baseline cumulative hazards 

H0
s( · ) in the source cohort can be different from β and H0( · ) in the target cohort, as well as 

the covariate distribution.
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2.2 Transfer Learning Algorithm

With both the target and the source cohorts, a naïve approach to obtaining a more accurate 

risk assessment model is to combine data from the two cohorts and apply a Cox model. 

However, it is possible that the source cohort is different from the target cohort, which would 

lead to biased estimates (or risk estimation) of the target cohort. Even if the differences 

of the coefficients and baseline hazards in the two cohorts are small, the estimation bias 

by combining the two datasets can still be substantial when the sample size of the source 

cohort is much larger than that of the target cohort. To facilitate borrowing information from 

the source cohort, which may or may not be similar to the target cohort, our solution is to 

propose a transfer learning algorithm, called Trans-Cox, for improving the efficiency and 

accuracy of risk estimation for the target cohort.

When the individual-level data from the source cohort is available, we fit a Cox model using 

the source cohort only. Denote the ordered observed unique failure times in the target dataset 

by y1, · · · , yn0  and in the source dataset by y1
s, · · · , yn0

ss . The log-likelihood for modeling 

the source cohort is

l(Y s , Xs , δs; Hs , βs) = ∑
i = 1

Ns

δi
s[(Xi

s)T βs + log ℎi
s ] − ∑

i = 1

Ns

H0
s(Y i

s) exp (Xi
s)T βs ,

(1)

where ℎi
s = dH0

s(Y i
s) After inserting the Breslow estimator of the baseline hazard function 

(Breslow, 1972),

ℎj
s(βs) = ∑

i ∈ R yj
s

exp (Xi
s)T βs

−1
,

the baseline cumulative hazard function is estimated by H0
s(t) = ∑

j = 1

n0
s

ℎ̂j
s
I(ỹj

s ≤ t) , where 

R(t) = j :yj
s ≥ t  is the risk set at t. We obtain the partial likelihood,

l(βs) = ∑
i = 1

Ns
δi

s(Xi
s)T βs − ∑

i = 1

Ns
δi

s log ∑
j ∈ ℛ Y i

s
exp (Xj

s)T βs .

(2)

The coefficients in the source cohort βs can be estimated by maximizing (2), and the 

cumulative baseline hazards can be estimated from the Breslow estimator
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H0
s(t) = ∑

i = 1

Ns
I(Y i

s ≤ t)δi
s

∑j ∈ ℛ Y i
s exp (Xj

s)T βs .

(3)

In reality, sharing individual-level data can be challenging across multiple sites due to 

different data sharing policies for privacy, feasibility, and other concerns (Toh, 2020; Karr et 

al., 2007). Instead of sharing the individual-level data, a more practical approach is to share 

the summary-level statistics from external sites and draw conclusions using meta-analysis 

or distributed analysis (Lin and Zeng, 2010; Li et al., 2018). Our proposed method shares 

the same principle as the distributed analysis. When individual data are not available, our 

proposed method takes summary statistics in the form of estimated coefficients βs and 

cumulative baseline hazards H0
s( · ) from the source cohort to achieve the same purpose. 

The whole analysis procedure (described below) demonstrates how the same outcomes are 

obtained with individual-level data or with summary statistics only.

Starting from the estimated coefficients βs and the cumulative baseline hazard function 

H0
s( · ), we first obtain the “source” version of hazard estimations at the event times of the 

target cohort by creating a reference hazard estimation. We define the reference hazards 

ΔH0
s(t) at t = yi by the difference of the baseline cumulative hazards function from the 

source dataset at the neighboring two consecutive time points of the target cohort, i.e.,

ΔH0
s(yi) = H0

s(yi) − H0
s(yi − 1), i = 1, · · · , n0 .

(4)

When inferring the risk estimation through the Cox model to the target cohort, we allow the 

two to be different by assuming that

β = βs + η and dH0(yj) = ΔH0
s(yj) + ξj, j = 1, · · · , n0 .

(5)

The two sets of parameters, η and ξ = (ξ1, · · · , ξn0), are to quantify potential discrepancies 

in the covariate effects and the time-varying baseline hazard. When the two resources are 

comparable in terms of risk models, the two sets of parameters degenerate to zero, i.e., 

η = ξ = 0. Otherwise, there exists at least one non-zero component of the two vectors. 

Under this scenario, directly transferring the estimated Cox model from the source cohort 

to target cohort or combining the two cohorts for joint estimation would result in biased 

risk estimation. Our strategy is to estimate and identify a nonzero subset of these parameters 

adaptively for this scenario using information from the two resources.

Inspired by the penalized likelihood for variable selection in regression analysis, we add an 

L-1 penalty to the changing terms to control the sparsity and let the data drive the magnitude 
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of source cohort information borrowing. With the formulation (5), the objective function to 

be minimized is:

O(η, ξ, λη, λξ) = − ∑
i = 1

N
δi xi

T βs + η + log ΔH0
s(yi) + ξi

+ ∑
i = 1

N
∑

j = 1

n0
ΔH0

s(yj) + ξj I (yj ≤ yi) exp xi
T (βs + η)

+ λη ∥ η ∥1 + λξ ∥ ξ ∥1 ,

(6)

where λη and λξ  are tuning parameters controlling the sparsity. The optimal values of λη and 

λξ  can be selected using the Bayesian Information Criterion (BIC) (Neath and Cavanaugh, 

2012) with grid search. Our proposed Trans-Cox algorithm is formally presented in 

Algorithm 1.

Algorithm 1: Trans-Cox algorithm

Data: Individual-level data from target cohort (X, Y , δ); Individual-level data (Xs, Y s, δs) or 

summary statistics {βs, H0
s

 from the source cohort.

Result: β, H0
s

Step 1. Obtain βs and H0
s
 from source cohort.

if (Xs, Y s, δs) available then

Estimate coefficients βs by maximizing the partial log-likelihood defined in (2);

Estimate cumulative baseline hazards H0
s
 by (3).

else

Take βs and H0
s
 as inputs.

end

Step 2. Estimate reference hazards at the unique event time points of the target cohort by 

equation (4).

Step 3. Identify values for tuning parameters λη, λξ , T lr, and T sp using BIC.

Step 4. Estimate (η, ξ) by minimizing the objective function (6). The estimated coefficients 

and baseline hazards of the target cohort are

β = βs + η and dH0(y) = ΔH0
s(y) + ξ .
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The cumulative baseline hazards function is H0(t) = ∑
i = 1

n0
dĤ0(ỹi) I(ỹi ≤ t).

2.3 Remark on Optimization

Solving the objective function (6) is a challenging non-linear optimization problem. We 

implement the minimization using R 4.0.3 by invoking the TensorFlow (Dillon et al., 

2017) solver from Python. This core optimization step is solved by the “tfp.math.minimize” 

function from TensorFlow probability (Dürr et al., 2020). After the required Python 

environment has been installed, users can use all the Trans-Cox functions we coded in 

R without additional coding in Python. To achieve optimal numerical performance, the 

TensorFlow functions need the inputs of two additional tuning parameters: learning rate T lr

and number of steps T sp. For any given target data, we first select the combination of T lr and 

T sp with the smallest BIC values by fixing the other two tuning parameters λη and λξ  as 0.1. 

Then we fix T lr and T sp as the selected values, and we select the optimal set of λη and λξ

with BIC. Our method has been implemented in a user-friendly R package Trans-Cox with a 

detailed usage manual, and it is publicly available at https://github.com/ziyili20/TransCox.

3 Simulation

We conduct simulation studies to evaluate the finite sample performance of the proposed 

Trans-Cox algorithm. We also compare the performance of the Trans-Cox results with those 

of the standard Cox regression models using the target cohort only, the naïve combination of 

target and source cohorts, or the stratified Cox model.

3.1 Simulation set-ups

Without loss of generality, we assume that individual data of both cohorts are available. 

For both cohorts, we consider five covariates X = X1, X2, X3, X4, X5
T . Of these, X1, X4 and 

X5 are continuous covariates following a uniform distribution ranging from 0 to 1 and X2

is a binary variable from a Bernoulli distribution with p = 0.5. Taking into account the 

potentially different distributions of covariates between the target and source cohorts, we 

assume that X3 follows a standard uniform distribution in the target cohort, whereas it 

follows a Beta(1, 2) distribution in the source cohort. We generate the covariate-specific 

survival times from a Weibull distribution with a hazard function ℎ(t |X) = κt · exp(XT β)
where β = −0.5, 0.5, 0.2, 0.1, 0.1 T  and k = 2 for the target cohort. To mimic real-world 

scenarios in practice, we consider a total of four simulation settings for the source cohort. 

The source samples in the first setting are generated using the exact parameters as those 

of the target cohort. The source samples in the second setting are generated by changing 

β2 from 0.5 to 0.2, which enables us to evaluate the performance of Trans-Cox when 

the covariate X2 has different effects on the survival time between two cohorts. In the 

third setting, the two cohorts share the same regression coefficients but have different 

time-varying hazard functions, which reflects a different baseline risk for the outcome of 

interest (e.g., overall worse or improved survival over time for the patients). Specifically, we 

set the baseline hazard function of the source cohort as 3t (i.e., k = 3), indicating there is 

a time-varying risk shift between two resources. The last setting allows both the regression 
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coefficients and baseline hazard functions to be different, indicating less shared information 

between the two cohorts (β2 = 0.2, k = 3).

It is worth noting that the cumulative baseline hazards in Settings 3 and 4 exhibit significant 

differences between the two cohorts, as shown in Figure S1, indicating that the amount 

of shared knowledge between the cohorts regarding baseline hazards is limited. For this 

simulation study, the sample size is fixed at N = 250 and Ns = 6400 to best mimic the 

observation amount in the real data application. In our evaluation, we compare the proposed 

Trans-Cox algorithm with two direct applications of Cox regressions with the target cohort 

only (i.e., Cox-Tonly) and with the combined cohort (i.e., Cox-Both), as well as stratified 

Cox with the combined cohort (i.e., Cox-Str). We further evaluate the bootstrap-based 

variance estimation using simulation study. The tuning parameters T lr, T sp, λη, and λξ  are 

selected using BIC (Burnham and Anderson, 2004).

3.2 Simulation results

Figure 1 summarizes the simulation results of the first three estimated regression coefficients 

(Panel A). To save space, the estimates for the fourth and fifth coefficients are not included 

as they have similar bias levels to the first one as the three covariates share the same uniform 

distribution in the two cohorts. We present the estimated biases using the four methods 

under four simulation settings. Note that the results from Cox-Tonly remain the same across 

the four settings as the differences across the settings only occur in the source cohort. For 

regression coefficients, the Trans-Cox results have smaller variations than Cox-Tonly while 

maintaining a similar level of biases. For example, the mean biases(× 103) for estimating 

β1 by Trans-Cox models are 14.4, 13.3, 3.3, and 54.2 in the four settings, respectively, 

while the mean bias(× 103) of the Cox model using the target cohort only is −27.1. The 

corresponding standard deviations (SD × 103) of β1 by Trans-Cox (169.5, 170.3, 50.4, and 

93.6, respectively) are about half the SD by Cox-Tonly for β1 (265.6). It is expected that 

Cox-Both tends to provide even smaller estimated variances and biases if the two cohorts 

have the same risk models. However, the biases by Cox-Both can be substantially larger 

when the two cohorts are heterogeneous in terms of regression coefficients or baseline 

hazards. In Settings 2 and 4, the estimation biases(× 103) of β2 by Cox-Both (−291.4 and 

−296.8) are four to six times the biases by Trans-Cox (−50.2 and −82.3). Stratified Cox 

presents similarly poor results as Cox-Both when the true coefficients are different in the 

two cohorts (Settings 2 and 4). The gray dotted lines in Figure 1(A) mark the place where 

the estimation biases are zero. It is clear that Cox-Both and Cox-Str have more biased 

boxes in Settings 2 and 4 (dark green and dark orange boxes), while the boxes representing 

Trans-Cox (red) and Cox-Tonly (blue) have similarly good performance (closer to the gray 

line) in all settings. It is also worth noting that different covariate coefficients in the two 

cohorts have a minimum impact on the estimations by Trans-Cox and Cox-Str, but affect the 

estimation by Cox-Both in Settings 3 and 4.

We report the biases of the cumulative baseline hazard estimators at two time points, 

H1 = H0 t = 0.6  and H2 = H0 t = 1.2 , by the four methods in Figure 1(B). An interesting 

observation is that there is no major negative impact on the baseline hazards estimation 
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when the regression coefficients differ between the two cohorts except for the stratified 

Cox model (Setting 2). Aside from this, we observe similar patterns for the estimator of 

cumulative baseline hazards as seen for regression coefficients. The biases from Trans-Cox 

and Cox-Tonly are comparable, while the SDs by Trans-Cox are about half of those by 

Cox-Tonly. The biases by Cox-Both are smaller and the SDs are about one fifth of those 

by Cox-Tonly. However, in Settings 3 and 4, when the risk models have different baseline 

hazards in the two cohorts, the biases of the cumulative baseline hazards at the two time 

points can be as high as ten times the biases by Trans-Cox or Cox-Tonly. In Figure 1(B), the 

results by Cox-Both (green boxes) show striking distances from the zero-bias line compared 

to the other two methods (red and blue boxes).

In Figure 2, we compare the personalized prediction accuracy using the absolute error 

between the individual predicted probability and the true survival probability (APPE1 and 

APPE2) across all subjects at time 0.6 and 1.2. Cox-Both exhibits the smallest absolute 

prediction error in the first setting, outperforming the other three methods. However, as 

expected, Cox-Both demonstrates substantially larger errors in Settings 3 and 4. Overall, 

Trans-Cox achieves the smallest errors in Settings 2, 3, and 4, and it is robust to cohort 

heterogeneity compared to the other methods. The corresponding numerical values for the 

mean biases and standard deviations are presented in Table S1 along with the restricted 

mean survival times (RMSTs) and mean squared errors (MSEs). RMST measures the 

average survival up to the specific time points (t = 0.6 and 1.2 in Table S1) for a 

fixed covariate combination (X = 0.5, 1.0, 1.0, 0.5, 0.5 ). MSE quantifies the mean squared 

estimation error of the baseline cumulative function at times 0.6 and 1.2. Trans-Cox 

generally has the smallest MSE for estimating the regression coefficients, as well as the 

smallest RMST and the smallest absolute personalized predictive error (APPE) compared to 

the other three methods when the two cohorts differ.

We perform additional simulation settings to further evaluate the impact of distribution shift, 

which is often observed in age-related data analysis. For this scenario, X3 follows normal 

distribution with mean 0 and variance 1 in the target cohort but mean 0.5 in the source 

cohort. Our findings, presented in Figure S2, demonstrate similar trends. Trans-Cox shows 

smaller estimation variance with comparable bias levels to the Cox regression with target 

data only. We provide the exact estimation biases with standard deviations for the regression 

coefficients β1, β2, and β3, cumulative baseline hazards at times 0.6 and 1.2, RMST, and MSE 

for the corresponding scenarios in Table S2.

Moreover, we visualize the estimated cumulative baseline hazard curves and the survival 

curves for our proposed method and the Cox regression using the combined cohort in Figure 

3. The shaded areas represent the 95% empirical confidence intervals, which are obtained by 

taking the 0.025 and 0.975 percentiles from the repeated experiments. The survival curve is 

evaluated at the fixed covariate combination (X = 0.5, 1.0, 1.0, 0.5, 0.5 ). We do not include 

Cox-Tonly and Cox-Str on these figures. This is because the lines almost overlap with the 

Trans-Cox inference while having consistently wider confidence intervals. We show that the 

cumulative baseline hazards and the survival curves estimated by the Trans-Cox method are 

close to the true curves in all four settings. Cox-Both leads to substantial biases in Settings 
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3 and 4 where the true baseline cumulative hazards are different in the two cohorts. Similar 

observations can be found in the setting with a normal distribution shift in the two cohorts 

(Figure S3).

For the bootstrap-based variance estimation in Trans-Cox, Table S3 shows reasonable 

standard error estimations and coverage probability. As expected, the coverage probabilities 

generally are closer to the nominal value in the settings when the coefficients are the 

same in the two cohorts (Settings 1 and 3). Larger sample sizes do not offer a substantial 

improvement in the performance, indicating the need to tailor the standard bootstrapping 

method for more accurate inference in future research.

Lastly, we present the estimation sparsity of the parameters (η, ξ) in Figure S5 and evaluate 

the computational cost of Trans-Cox in various settings in Figure S9. As expected, there 

are more zero or close-to-zero estimations in ξ than η due to the high dimension of the 

event time points in the target cohort. Our implementation offers superior computational 

performance, with the functions implemented in R and a core solver invoked from Python. 

A run with 200 patients in the target cohort on average takes around 0.6 seconds, and with 

400 patients it takes about 1 second (Figure S9). The size of the source population has 

a minimum impact on the total computational time. The fast speed makes it feasible to 

construct a bootstrap-based variance estimation. For example, it takes about 21 minutes to 

complete 1000 bootstrap iterations in the IBC application (target cohort: 251 patients; source 

cohort: 6420 patients) of Section 4.

4 Data Application

The Morgan Welch Inflammatory Breast Cancer Clinic at MD Anderson Cancer Center 

is one of the largest breast cancer centers in the United States to treat IBC patients. As 

a rare but aggressive form of breast cancer, IBC accounts for less than 5% of breast 

cancer diagnoses with a five year survival rate of only around 40% (Van Uden et al., 

2015). Compared to the general population of IBC patients, the IBC patients treated at MD 

Anderson usually have more complicated medical conditions or more severe symptoms. 

This is because many of them were referred to MD Anderson from local hospitals, noted 

as referral bias (Carlé et al., 2013). Recent studies have shown the survival advantage of 

the recommended therapy, trimodality treatment, for IBC patient populations (Rueth et al., 

2014; Liauw et al., 2004).

To understand how trimodality, IBC stage, age, and other disease-associated factors 

impact patients’ survival when they are cared for at MD Anderson, we analyze a cohort 

(MDA cohort) consisting of MD Anderson-treated IBC patients who were diagnosed with 

nonmetastatic IBC between 1992 and 2012. After removing six patients with missing tumor 

grade information, the analysis cohort includes 251 patients with a median follow up time of 

5.19 years and a censoring rate of 57%. Because of the rarity of IBC, the MDA cohort can 

provide the estimated individualized survival risk with limited precision. This motivates us 

to transfer the information of risk assessment from other large population-level databases.
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The National Cancer Data Base (NCDB) was collected collaboratively by the American 

College of Surgeons, the American Cancer Society, and the Commission on Cancer(Raval et 

al., 2009). This database serves as a comprehensive cancer care resource and has recorded 

patient demographic, tumor, treatment, and outcome variables from approximately 70% 

of all new cancer diagnoses in the US annually. The NCDB cohort consists of 9493 

patients who underwent surgical treatment of nonmetastatic IBC from 1998 to 2010. We 

subsequently removed patients with missing grade levels, missing race information, or 

missing treatment information. The resulted non-metatasis IBC patients in NCDB cohort 

consists of 6420 patients with a median follow-up time of 7.05 years and a censoring rate 

57%.

Figure 4 presents the patients’ characteristics from the MDA and NCDB cohorts. We 

consider five prognosis factors in the Cox model: age, tumor grade (I/II or III), race (white, 

black, or other), clinical stage (IIIB or IIIC), and trimodality treatment (yes or no). A 

comparison of the distributions between the two cohorts (Figures 4A and B) demonstrates 

many differences in characteristics. MD Anderson patients tend to be younger with more 

advanced tumor grade and clinical stages, and fewer received trimodality. Additionally, a 

naïve comparison shows that the survival outcomes of the MDA patients are significantly 

worse than the NCDB cohort (Figure 4C).

Our goal is to borrow IBC patient data from NCDB (source cohort) to improve the 

individualized risk estimation of MD Anderson patients (target cohort). The observations 

from Figure 4 suggest a possible referral bias for data from large cancer cancers, such as 

MD Anderson, in which patients tend to be sicker than the general IBC patients represented 

by NCDB. Meanwhile, due to the substantial differences in mortality risk between the two 

cohorts, it is not appropriate to directly merge the two cohorts for the inference of the MDA 

cohort.

We apply both the proposed Trans-Cox algorithm and conventional Cox regression on the 

MDA and NCDB cohorts. Table 1 shows the estimated coefficients (log hazard ratios) from 

the five methods: Trans-Cox with MDA as the target cohort and NCDB as the source cohort, 

Cox model with MDA only, Cox model with NCDB only, Cox model with the combined 

data of MDA and NCDB, and Cox model stratified by the data sources. Age is standardized 

in both datasets (Figure S6). There are several interesting observations. First, the Cox model 

with the simple combined data and stratified approach has almost identical inference results 

as the Cox model with NCDB data only. This illustrates that when the sample size of the 

source cohort is much larger than the target cohort (6420 vs 251), the estimation results of 

the combined cohort are dominated by the source cohort. This observation is also confirmed 

by the estimation of cumulative baseline hazards presented in Figure S7 in which the 

estimated cumulative baseline hazards using the combined cohort are almost identical to 

those using NCDB only. Figure S8 shows the sparsity of the estimated η and ξ by TransCox. 

We observe that one estimated η (for “Race:Other vs White”) and several ξ estimators 

are close to zero, indicating that the coefficient information of other Race group and the 

cumulative baseline hazards at those time points are mostly borrowed from the source cohort 

by Trans-Cox.
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Second, some covariates have similar effect sizes, while others have quite different effect 

sizes on survival between the two cohorts. The Cox model based on the MDA cohort has 

similar effect sizes for age and grade, but has a much smaller effect for the race being 

Black compared to the effect size estimated using the NCDB cohort. Rueth et al. (2014) 

reported that the Black population tended to be treated not according to the IBC treatment 

guidelines compared to the White IBC patients, thus increasing the mortality risk using 

NCDB. However, breast cancer patients treated at MD Anderson generally received their 

treatment according to the guidelines regardless of their racial background (Shen et al., 

2007). As a result, racial status plays a less influential role in the MDA cohort than in the 

NCDB cohort.

Third, we observe that Trans-Cox can effectively transfer knowledge on the regression 

coefficients from the NCDB cohort to the MDA cohort for similar effects and 

simultaneously reduce information borrowing for inconsistent effects. In the upper panel 

of Table 1, the estimated standard errors of grade and trimodality are substantially reduced, 

resulting in more precise estimators compared to the Cox model using the MDA cohort 

alone. Different from other subtypes of breast cancer, all IBC started as Stage III since they 

involve the skin. The MDA analytic cohort only focuses only on Stage III IBC patients with 

a fine category of B versus C. Then the stage (Stage IIIB vs Stage IIIC) has a non-significant 

effect on overall survival by using the MDA cohort only or borrowing information from 

NCDB with Trans-Cox. The standard errors of the parameters and the 95% confidence 

intervals of the Trans-Cox method are obtained using bootstrap.

We also estimate the survival curves for patients with or without receiving trimodality and 

present the results in Figure 5. The left panel shows the estimated survival curve for Black 

patients with age 50, grade III, stage IIIC, and receiving trimodality. We find that patients 

receiving trimodality treatment at MD Anderson have better survival outcomes compared to 

IBC patients with the same baseline characteristics in NCDB even after Trans-Cox borrows 

information from NCDB. This suggests that MD Anderson may provide better care than 

the average medical institution in the United States. The right panel contains the survival 

curves for the patient with the same characteristics (Black, age 50, grade III, stage IIIC) 

but without receiving trimodality treatment. It is interesting that patients did not have any 

survival benefit even if they were treated at MD Anderson Cancer Center without using 

trimodality.

Lastly, we evaluate the prediction performance of fitted models using the concordance index 

(C-index) (Steck et al., 2007), Uno’s C-index (Uno et al., 2011), area under the receiver 

operating characteristic curve (AUC), and error of estimated personalized risk prediction 

(Uno et al., 2007). The error of estimated personalized risk prediction at time L is defined 

as ∑
i = 1

N
wi pi(L) − 1(Y i ≥ L) / ∑

i = 1

N
wi where wi = 1(Y i ≤ L)δi

G(Y i)
+ 1(Y i ≥ L)

G(L)
 and 

G is the Kaplan-Meier estimation function of the censored time Ci . We evaluate the 

personalized risk prediction at time points L = 20, 30, · · · , 110 . We use the bootstrap-

based method to evaluate the survival risk prediction for the MDA data and compare 

with the true observations (Steyerberg et al., 2001). Figure 6 shows that the Trans-Cox 
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model outperforms the Cox model using the target data only (“Cox-Tonly” in Figure 6) in 

terms of estimation precision, while both methods exhibit similar predictive performance, 

as measured by Uno’s C index. The Cox model using the combined cohort (“Cox-Both”), 

the stratified Cox model (“Cox-Stratified”), and the Cox model using the source cohort, 

NCDB, alone (“Cox-Sonly”) have similarly poor performance. Overall, the Trans-Cox and 

Cox-Tonly models have the best prediction accuracy. In comparison, the other three models 

(Cox-Sonly, Cox-Both, Cox-Stratified) have lower concordances and much higher prediction 

errors.

Discussion

Motivated by the challenges in borrowing information from a source cohort to improve 

the time-varying risk assessment for a target cohort, this article develops a transfer learning-

based method that adaptively determines the degree of information transferring from the 

source cohort. Previous works that combine multiple data sources often need to consider 

the covariate distribution shift between the study cohorts, e.g., when estimating marginal 

treatment effects or generalizing research findings to a larger population (Colnet et al., 2020; 

Wu and Yang, 2021). Our problem focuses on individual risk assessment and does not need 

to address such covariate distribution shifts. The proposed method can naturally address the 

heterogeneity between the two cohorts by imposing L-1 penalties. Much of the literature 

has a developed adaptive Lasso for the Cox model to allow feature selection (Tibshirani, 

1997; Zhang and Lu, 2007). Different from these methods, our Trans-Cox model imposes 

the Lasso penalty on the discrepancy in regression coefficients and baseline hazard functions 

between the two resources. Our model considers the penalties from both sides in a unified 

framework to allow simultaneous control of the information sharing for the covariate effects 

and time-varying baseline hazards under the Cox model.

Bayesian methods may appear to be a natural modeling strategy to borrowing information 

from the source cohort to improve the estimation in the target cohort. However, there are 

several challenges to solve the current problem using a standard Bayesian approach. First, 

when the ratio of sample sizes of the two cohorts is large, the posterior distribution would 

be dominated by the source cohort if directly fitting the two cohorts with Bayesian methods, 

although the risk estimation for the target cohort is the purpose. To solve this, a few tuning 

parameters may need to be involved and carefully selected to balance the sample sizes 

and heterogeneity between the two cohorts. Second, besides the non-parametric component 

under the Cox model, the dimension of η and ξ increases with the sample size as well, which 

also increases the computational cost for a Bayesian approach.

A fundamental assumption of many previous works that borrow information from the source 

population is the comparability between the two cohorts (Chatterjee et al., 2016; Li et 

al., 2022). Our method relaxes this assumption by accommodating situations when the 

two cohorts can be heterogeneous. Such heterogeneity commonly exists in practice due 

to various types of selection biases, demographic differences, regulatory restrictions, etc. 

As shown in our results, when the risk models of the two cohorts are different, directly 

combining the two datasets can result in biased findings. This estimation bias can be 

substantial when the sample size of the source cohort is much larger than the target cohort. 
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In contrast, Trans-Cox demonstrates robust estimations even when there are high levels 

of cohort heterogeneity. This highlights the significance of our research question and the 

proposed methodology.

Moreover, many recent studies have discussed the challenges of sharing individual-level data 

in multi-site studies due to feasibility, privacy, and other concerns (Maro et al., 2009; Li 

et al., 2019; Toh et al., 2011). The existing transfer learning and information borrowing 

methods usually adapt their proposals to incorporate the summary statistics from the source 

cohort in the analysis, replacing the need of individual-level data for the source population 

(Chatterjee et al., 2016; Li et al., 2022). But none of the work is directly applicable 

to time-to-event data or allows time varying differences in baseline hazards of the two 

cohorts. We also recognize the importance of this issue and allow Trans-Cox to directly 

incorporate summary statistics of estimated coefficients and cumulative baseline hazards as 

the information from the source cohort. This advantage facilitates the use of information 

from additional sources with the guarantee of protecting patient privacy.

It is worth noting that the primary purpose of using the L-1 penalty in our method is not to 

control sparsity, but to regulate the amount of information borrowed from the source cohort 

to the target cohort. The L-1 penalty has been successfully used in the literature to control 

information discrepancy (Ding et al., 2023; Chen et al., 2021). We employ the L-1 penalty 

to control the distance in the cumulative baseline hazard component (ξ) due to the high 

dimension of the failure time points. We also apply it to the covariate coefficient component 

(η) for consistency, although other types of penalty could also be used for such a purpose. 

When high-dimensional covariates are present, feature selection must be incorporated into 

our proposed method. One simple solution is to add an additional L-1 penalty component on 

β, but the implementation details are beyond the scope of this work.

The proposed method can be extended in several ways. First, the current framework only 

considers point estimators from the source cohort. When the source cohort has a large 

sample size, for example in the NCDB data, the estimation variations are negligible. 

However, the estimation uncertainties can be non-negligible when a smaller or more diverse 

source cohort is considered. Incorporating such uncertainties in the method may better 

inform the level of knowledge sharing between the cohorts and further improve accuracy.

Second, we focus on the situation where one source cohort is available. Although the current 

method can be directly extended to multiple source situations by combining all the source 

data as a single source cohort, this naive extension may over-simplify the complexity of 

this problem. For example, when there are different directions of the covariate effects and 

large variations in sample sizes among multiple sources, it is unclear how to achieve the 

balance between the estimation accuracy and the model flexibility. Li et al. (2020) discussed 

approaches to identify informative auxiliary cohorts and aggregate these cohorts to improve 

transfer learning in the high-dimensional linear regression setting. Similar approaches can be 

considered here to allow for incorporating the information from multiple source populations.

Third, similar to several existing methods (Dahabreh et al., 2020), we assume the interested 

covariates are available for both cohorts. This could be a limitation in practice as medical 
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institutions or clinical trials sometimes capture different covariates from the population-

level data registries (Taylor et al., 2022). Further extensions can be made to allow for 

incorporating a subset of regression coefficients to improve individualized risk assessment. 

Finally, it is generally believed that a standard bootstrap may not work well in the regression 

problem using penalization (Chatterjee and Lahiri, 2011). Although our simulation study 

demonstrates a reasonable performance for the bootstrap-based inference, the evaluation is 

restricted by the simulation settings. We acknowledge that the theoretical justification for the 

inference procedure is beyond the scope of this work and worthy of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimation biases for coefficients β1, β2, and β3 (Panel A), as well as cumulative baseline 

hazards at times 0.6 and 1.2 (Panel B) over 100 Monte Carlo simulations. H1 = H0(0.6) and 

H2 = H0(1.2). The dotted gray line shows the place where bias equals zero.
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Fig. 2. 
Boxplots for absolute personalized prediction error of Trans-Cox and other existing methods 

in different simulation settings at time 0.6 (APPE1) and 1.2 (APPE2). The results are 

summarized over 100 Monte Carlo datasets.
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Fig. 3. 
The estimated cumulative baseline hazard (Panel A) and the survival curves (Panel 

B) for Trans-Cox (green) and Cox-Both (blue) in comparison to the true curves (red) 

over 100 Monte Carlo experiments. For survival curves, the covariates are fixed at 

X = 0.5, 1, 0.1, 0.5, 0.5 .
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Fig. 4. 
Summary of the patients’ characteristics of the MDA and NCDB cohorts.
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Fig. 5. 
The estimated survival curves using different methods for patients with (left panel) or 

without (right panel) receiving trimodality treatment. Other characteristics were specified as: 

age 50 years old, grade III, Black race, and stage IIIC.

Li et al. Page 23

J Am Stat Assoc. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Evaluation of the prediction performance of four methods using C-index (Panel A), Uno’s 

C-index (B), AUC (C), and personalized risk prediction error (D).
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Table 1

Analysis results of the MDA and NCDB cohorts.

β
Trans-Cox Cox(MDA) Cox(NCDB) Cox(Combined) † Cox(Stratified)

Normalized Age 0.091 0.074 0.208 0.197 0.199

Grade:III vs I/II 0.616 0.388 0.347 0.353 0.348

Race:Black vs White 0.272 0.163 0.429 0.412 0.416

Race:Other vs White −0.128 −0.336 −0.113 −0.107 −0.130

Stage:IIIC vs IIIB −0.059 −0.243 0.386 0.368 0.357

Trimodality:Yes vs. No −0.838 −1.174 −0.589 −0.636 −0.627

SE*

Trans-Cox Cox(MDA) Cox(NCDB) Cox(Combined) Cox(Stratified)

Normalized Age 0.121 0.109 0.021 0.021 0.021

Grade:III vs I/II 0.197 0.269 0.044 0.043 0.044

Race:Black vs White 0.265 0.325 0.051 0.051 0.051

Race:Other vs White 0.261 0.295 0.118 0.109 0.109

Stage:IIIC vs IIIB 0.179 0.244 0.055 0.053 0.054

Trimodality:Yes vs No 0.207 0.230 0.069 0.065 0.065

p-value

β
Trans-Cox Cox(MDA) Cox(NCDB) Cox(Combined) Cox(Stratified)

Normalized age 0.453 0.498 <0.001 <0.001 <0.001

Grade:III vs I/II 0.002 0.150 <0.001 <0.001 <0.001

Race:Black vs White 0.305 0.616 <0.001 <0.001 <0.001

Race:Other vs White 0.623 0.295 0.118 0.109 0.19

Stage:IIIC vs IIIB 0.753 0.318 <0.001 <0.001 <0.001

Trimodality:Yes vs No <0.001 <0.001 <0.001 <0.001 <0.001

*
Boostrap-based standard error estimation with 1000 bootstrap resamplings.

†
Cox(Combined) is the Cox regression model using the combined data of MDA and NCDB.
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