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Dynamic duo: Kir6 and SUR in KATP channel structure and function
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ABSTRACT
KATP channels are ligand-gated potassium channels that couple cellular energetics with mem
brane potential to regulate cell activity. Each channel is an eight subunit complex comprising four 
central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four reg
ulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic 
control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks 
membrane transport activity but is essential for KATP expression and function. For more than four 
decades, understanding the structure-function relationship of Kir6 and SUR has remained a central 
objective of clinical significance. Here, we review progress in correlating the wealth of functional 
data in the literature with recent KATP cryoEM structures.
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Introduction

Metabolism is a defining feature of life. Fitness and 
survival require an ability to tune physiological func
tions to changing metabolic environment. ATP- 
sensitive potassium (KATP) channels are ligand-gated 
potassium channels that regulate K+ efflux in response 
to changes in intracellular ATP and ADP concentra
tions. They are molecular sensors of cellular metabo
lism that endow those cells in which they are 
expressed with a homeostatic mechanism that modi
fies cellular activities controlled by membrane excit
ability in accord with the energetic state of the cell. 
The KATP channel current was originally identified 
four decades ago in cardiac myocytes [1]. Soon after, 
pancreatic β-cells and then many other cell types were 
reported to possess K+ channels with similar proper
ties [2]. Extensive studies now show KATP channels 
are widely expressed among electrically excitable cells 
and regulate processes ranging from hormone secre
tion, vascular tone, learning and memory, to cardiac 
and neuronal protection against ischemic events [3,4]. 
Pharmacologically, direct regulation of KATP channel 
activity is a principal mechanism of action for anti- 
diabetic sulfonylurea drugs, and vasodilators diazox
ide, minoxidil and pinacidil [5].

Discovery that sulfonylureas promote insulin 
secretion by inhibiting the KATP channel in pancreatic 
β-cells [6,7] facilitated cloning of the KATP genes in 
the mid-90s [2,8,9]. This revealed that KATP channels 
include as subunits both an inward rectifier potassium 
channel (Kir) family homolog, and an ATP Binding 
Cassette (ABC) transporter family protein. The K+ 

conduction unit is formed by one of two Kir6 gene 
products (Kir6.1 or Kir6.2). While Kir channels are 
named for their reduced activity at positive mem
brane potentials [10], due to block by intracellular 
Mg2+ and polyamines [11], Kir6 isoforms exhibit 
only mild inward rectification and thus KATP channel 
activity in cells has little voltage-dependence [10]. The 
expression and gating of Kir6 in the KATP channel 
complex requires co-expression of the sulfonylurea 
receptor (SUR), named for its binding sulfonylureas 
[12]. Evolved from the ABC transporter family, SUR 
retains active nucleotide binding functional domains, 
but does not itself possess transporting activity. Its 
sole known function is to regulate Kir6 activity. 
Single-particle EM structures discussed below show 
that the SUR central cavity, rather than accept trans
membrane cargo, is a regulated binding site for the 
Kir6 N-terminal peptide.
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Mammals contain a pair of chromosomally 
linked SUR and Kir6 genes (Figure 1), which give 
rise to KATP channel isoforms with distinct activa
tion characteristics, tissue specific expression, and 
cellular functions. A first pair, located on human 

chromosome 11 (and mouse Chr 7), comprises 
ABCC8 encoding SUR1 and KCNJ11 encoding 
Kir6.2. The Kir6.2/SUR1 isoform is the predomi
nant isoform expressed by insulin-secreting β-cells 
of pancreatic islets, and by neurons in brain, and 
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Figure 1. Molecular structure of KATP channels. (a) genes encoding SUR1 and Kir6.2. (b) genes encoding SUR2 (A/B) and Kir6.1. 
(c) topology of SUR and Kir6 proteins. Note the arginine-based ER retention motif is RKR in SUR1, Kir6.1, and Kir6.2, but RKQ in 
SUR2A/SUR2B. (d) CryoEM reconstruction of the Kir6.2/SUR1 KATP channel viewed from the side (left) and from the bottom 
(intracellularly) (right). (e) structural model of the Kir6.2/SUR1 KATP channel from the cryoEM reconstruction shown in (d), viewed 
from the side (left; only two SUR1 subunits are shown for clarity) and from the top (extracellularly) (right). Panels (d) and (e) are 
adapted from Figure 2 in Martin et al. eLife, 2017 [28].
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has essential roles in hormone secretion and learn
ing and memory. A second pair of KATP genes, 
located on human chromosome 12 (and mouse 
Chr 6), includes ABCC9 encoding SUR2 and 
KCNJ8 encoding Kir6.1. The ABCC9 gene gener
ates two major splice variant proteins, SUR2A and 
SUR2B. SUR2A and Kir6.2 form the predominant 
KATP channels found in ventricle myocytes, where 
they open in response to metabolic stress to 
shorten cardiac action potentials [4,13]. The 
SUR2B and Kir6.1 combination is the predomi
nant subtype in vascular and non-vascular smooth 
muscle, and regulates blood pressure and lymph 
transport, as well as intestine contractions [3,14]. 
Mutations in KATP genes that cause gain- or loss- 
of-function characteristics in specific KATP chan
nel isoforms are linked to a series of human dis
eases (see recent reviews in [14–17]).

The biomedical importance of KATP channels as 
well as their unusual architecture has attracted 
considerable interest in understanding how two 
structurally dissimilar constituent proteins work 
in unison as a metabolic sensor. Studies occupying 
the past few decades have generated a wealth of 
inferred information on the channel’s structure- 
function relationship principally by correlating 
mutation perturbations and functional conse
quences on expression and activity. Over the past 
several years, high resolution cryoEM structures of 
KATP channels have unveiled the composition of 
structural elements and linkages that form, oper
ate, and regulate the channel complex (Figure 1). 
An expanding series of structural isoforms in var
ious apo and liganded and mutation-bearing states 
has begun to reveal the dynamic conformational 
mechanisms by which KATP channels are gated 
physiologically by ligand binding, modulated by 
drugs, and perturbed by mutations [18–21].

Here, we focus on the structural and functional 
role of SUR and Kir6 in KATP channel regulation, 
with particular attention to channel gating by 
intracellular ATP and ADP, and by membrane 
phospholipids, in particular PI(4,5)P2. Discussion 
necessarily centers on the SUR1/Kir6.2 channel, 
which is best studied to date, but includes insight 
from unique structural features of the SUR2B/ 
Kir6.1 channel, and SUR2A in isolation, that 
address KATP functional diversity. Before assimi
lating the multiple binding sites and domain 

interactions through which SUR1 and Kir6.2 arbi
trate channel activity, we briefly describe the 
macromolecular features of KATP channel struc
tures, including subunit interfaces and conforma
tional diversity, and review the antagonistic 
tension between several metabolic ligands that 
ultimately determines KATP activity.

Molecular structure of KATP channels

Biochemical and biophysical studies determined 
that the KATP channel is a hetero-octameric com
plex of four Kir6.x and four SURx subunits [22– 
24]. Unassembled or partially assembled channel 
subunits are retained in the endoplasmic reticulum 
(ER) owing to an arginine-based ER retention 
motif present in both Kir6.x and SURx (-RKR- in 
SUR1, Kir6.1, and Kir6.2; -RKQ- in SUR2A/B; see 
Figure 1) [25]. KATP high resolution structures 
derived from cryoEM single particle imaging con
firmed the 4:4 stoichiometry, showing a Kir6 tetra
mer core surrounded by four SUR proteins 
(Figure 1), including the SUR1/Kir6.2 [26–28] 
and SUR2B/Kir6.1 subtypes [29] (no SUR2A/ 
Kir6.2 full channel structure has yet been 
reported). Both Kir6 and SUR are integral mem
brane proteins. Each Kir6 contains two transmem
brane domain (TMD) helices (M1 and M2), which 
anchor a large cytosolic domain (CTD) compris
ing both N- and C-terminal chains (Figure 1), 
characteristic of Kir channels [10]. SUR bears 
two 6-helix TMDs (TMD1 and TMD2), each of 
which is followed by a cytoplasmic nucleotide 
binding domain (NBD), NBD1 and NBD2 respec
tively; these together comprise the ABC core mod
ule [30]. SUR further includes an N-terminal 
5-helix TMD, called TMD0, which is connected 
to the ABC core module via a cytoplasmic linker, 
L0 (Figure 1) [12,30].

Within the KATP complex, each Kir6 makes 
primary direct contact with one SUR through 
TMD interactions. The primary anchor between 
the two proteins includes the outer helix (M1) of 
Kir6 and the first TM helix in TMD0 of SUR 
(Figure 1), accounting for early findings that 
SUR1 TMD0 alone assembles with Kir6.2 [31,32]. 
The Kir6 TMD and SUR TMD0 are consistently 
the best resolved domains in all published struc
tures. Against this stable TMD interface, other 
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SUR and Kir6 domains exhibit dynamic position
ing. Most dramatically, the ABC modules of SUR1 
in pancreatic KATP structures [26], and of SUR2B 
in vascular KATP structures [29], are observed to 
swing, as if hinged, into distinct rotational orienta
tions relative to the Kir6/SUR-TMD0 tetrameric 
core. In top-down views, the distinct complexes 
resemble alternatively a propeller or a quatrefoil. 
In contrast, the cytoplasmic domains of the four 
Kir6 subunits associate to form a cohesive central 
unit, called the Kir6-CTD. In cryoEM structures, 
the Kir6-CTD displays a torsional flexibility rela
tive to the Kir6 TMDs, wherein the CTD rotates 
about the central KATP axis to occupy particular 
orientations that correlate with distinct functional 
states of the channel [33,34]. In addition, 
a dynamic interaction is observed between the 
cytoplasmic domains of Kir6.2 and SUR1, in 
which the N- and C-terminal domains of Kir6.2 
intertwine with cytoplasmic loops of TMD0 of 
SUR1 and with the L0 linker proximal to TMD0. 
This interface serves as a regulatory nexus between 
the two channel subunits and undergoes remodel
ing upon ligand binding and gating. Below, we 
discuss how structural observations to date inform 
the interplay between SUR and Kir6 that regulates 
ligand binding and gating of KATP channels.

Gating regulation of KATP channels

Most central to the unique function of KATP chan
nels is their ability to couple cell metabolism with 
membrane excitability via an antagonistic control 
of gating by intracellular ATP and ADP. In elec
trophysiological recordings, ATP inhibits channel 
activity whether in the presence or absence of 
Mg2+, while Mg2+-complexed ADP stimulates 
channel activity by antagonizing the inhibitory 
effect of ATP. When intracellular ATP/ADP ratios 
rise, the ATP inhibitory effect dominates; conver
sely, when ATP/ADP ratios fall, the MgADP sti
mulatory effect dominates, thus linking cellular 
metabolism with KATP activity. Aside from nucleo
tide regulation, like all Kir channels, KATP channel 
activity is stimulated by membrane phosphoinosi
tides [10,35]. Among the different phosphoinosi
tides, PI(4,5)P2 (referred to as PIP2 hereinafter) is 
the most abundant in the plasma membrane and 
its effect on KATP channels has been extensively 

studied [10,35–38]. Depletion or scavenging endo
genous PIP2 decreases channel activity, while 
increasing PIP2 in the membrane increases KATP 
channel open probability and antagonizes the inhi
bitory effect of ATP [39,40].

The discovery that truncating the C-terminus of 
Kir6.2 (Kir6.2ΔC, which removes the ER retention 
motif -RKR-) allows Kir6.2 channel expression in 
the plasma membrane in the absence of SUR1 
facilitated dissection of the respective role of 
Kir6.2 and SUR1 in channel response to nucleo
tides and PIP2 [25,41]. Comparison of Kir6.2ΔC 
channels with or without SUR1 combined with 
mutation-function correlation studies revealed 
that ATP inhibition, MgADP stimulation and 
PIP2 gating are effected through distinct binding 
sites. ATP inhibits Kir6.2 channel gating by occu
pying a site composed principally of Kir6.2 resi
dues from both N- and C-terminal cytoplasmic 
domains [42–44]. PIP2 stimulates Kir6.2 gating 
by binding to a conserved PIP2 binding site in Kir- 
family channels that also involves residues from 
both N- and C-terminal domains [37–40,45]. The 
ATP binding site was predicted to be near the 
plasma membrane inner leaflet and immediately 
adjacent to the predicted PIP2 binding site based 
on homology modeling using crystal structures of 
other Kir channels [45,46]. Moreover, many muta
tions that affect ATP inhibition also affect PIP2 
sensitivity, suggesting the two ligand binding sites 
may overlap [37,38]. Thus, ATP-inhibition of the 
KATP channel appears likely to derive from evolved 
antagonism of prior Kir-channel PIP2-activation 
mechanisms. Significantly, although Kir6.2 itself 
can be gated by ATP and PIP2, its sensitivity to 
both ligands is markedly increased by co-assembly 
with SUR1 [41], suggesting SUR1 may participate 
in ATP and PIP2 binding or hypersensitizes chan
nels to these ligands allosterically. In contrast, the 
stimulatory regulation of Kir6 channel gating in 
response to MgADP is translated from the SUR 
structural platform of paired ABC-domain NBDs, 
which preferentially bind Mg2+-complexed ade
nine nucleotides. Mg-nucleotide binding, in parti
cular MgADP binding at NBD2, alters the 
interface between the two NBDs, resulting in 
a close interaction (termed NBD dimerization) 
associated with functional activation [47]. 
A framework that emerges from the wealth of 
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structure-function correlation data is that the Kir6 
subunit serves as a basic module for PIP2 stimula
tion and ATP inhibition, and SUR modulates Kir6 
sensitivity to both ligands via physical association 
as well as the action of MgATP/MgADP on the 
NBDs of SUR.

ATP inhibition mechanism

Inhibitory ATP binding site
CryoEM structures of KATP channels resolved in 
the presence of ATP (or ADP, which can also 
bind the inhibitory site but with much lower affi
nity [48]) showed that ATP binds in the pocket 
formed by the N-terminal and C-terminal domains 
of adjacent Kir6.2 subunits (Figure 2a) [26,28,34]. 
The structures confirmed the ATP binding pocket 
proposed previously [42] and clarified residues 
directly involved in ATP/ADP binding. These 
structures additionally revealed that the SUR1-L0 
linker also participates in binding (Figure 2) 
[28,33,49]. The proximal region of L0 immediately 
C-terminal to TMD0 was previously implicated in 
ATP inhibition [50]. Stabilizing the interaction 
between SUR1-L0 and Kir6.2 N-terminal interfacial 
helix greatly increased ATP sensitivity or caused 

channel closure without ATP, whether through an 
engineered charge pairing between SUR1 amino 
acid (aa) position 203 in L0 (E203 of WT SUR1) 
and Kir6.2 aa position 52 (Q52 in WT Kir6.2), or 
alternatively engineering cysteine at these positions 
and crosslinking [50]. Conversely, ATP inhibition is 
attenuated by mutation of SUR1-K205 in the L0 
linker to alanine [50]. The cryoEM structures 
showed that the side chain of SUR1-K205 is in 
position to form electrostatic interactions with 
bound ATP directly [33,49]. A primary role of this 
SUR1 residue in ATP binding is further validated 
using a FRET based assay involving genetically 
encoded fluorescent non-canonical amino acid 
ANAP and a fluorescent ATP analog [51]. Thus, 
structural, functional and direct chemical evidence 
together buttress the hypothesis that SUR1 
enhances the ATP sensitivity of Kir6.2 by directly 
contributing to ATP binding with SUR1-L0. 
Conceptually, SUR’s enhancement of ATP inhibi
tion presents a point of gating control that, lever
aged by regulated withdrawal, could initiate channel 
activation. Several additional interactions between 
SUR and Kir6 have been implicated in further 
mediating dynamic regulation of ATP inhibition 
and gating as discussed below.
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Figure 2. ATP- and Repaglinide (RPG)-bound SUR1/Kir6.2 structure (PDB ID 7TYS; EMD-26193). (a) side and (b) bottom (cytoplasmic) 
views showing the ATP (cryoEM map shown in orange, 3 σ contour) binding site coordinated by Kir6.2 residues from the N-terminus 
of one subunit and the C-terminus of an adjacent subunit, as well as L0 of the SUR1 subunit directly in association with the Kir6.2 
subunit whose N-terminus contributes to ATP binding. Repaglinide (RPG; cryoEM map shown in purple, 1 σ contour) is bound in 
a transmembrane pocket in SUR1. The N-terminal peptide of Kir6.2 (KNtp; cryoEM density in green mesh, 1 σ contour) is inserted into 
the cavity of the two halves of the SUR1-ABC core with the very N-terminus adjacent to the bound RPG.
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The Kir6 N-terminus
Multiple early studies implicated the distal 
N-terminal domain of Kir6.2 as a critical handle 
through which SUR1 maintains control of channel 
sensitivity to ATP inhibition. In particular, trunca
tion of Kir6.2 N-terminal amino acids 2–30 
(Kir6.2ΔN) increases channel open probability 
and reduces ATP sensitivity in SUR1/Kir6.2ΔN 
channels, but not in channels composed of Kir6.2 
alone (Kir6.2ΔC) [52–55]. Applying free synthetic 
Kir6.2 N-terminal peptide (aa 1–30) to WT SUR1/ 
Kir6.2 channels mimicked the effects of Kir6.2ΔN 
[52], suggesting the synthetic peptide competes 
with the N-terminal peptide domain in Kir6.2 for 
a binding site in SUR1 to modulate channel 
activity.

The Kir6 N-terminus linkage between SUR and 
the Kir6-CTD is an essential conduit for pharma
cological inhibition of KATP gating by sulfonylur
eas such as glibenclamide and glinides such as 
repaglinide, which specifically bind to SUR. 
Progressive deletions of the Kir6.2 N-terminus 
reduce binding affinity of glibenclamide and repa
glinide, and attenuate drug-dependent inhibition 
of the channel [55,56]. The observation that bind
ing affinity of sulfonylureas to SUR1 is also 
reduced by Kir6.2 N-terminal deletion, but not 
eliminated, suggested that drug and Kir6.2 
N-terminus bind cooperatively within SUR1, and 
thus pharmacological inhibition occurs primarily 
by increasing the avidity of Kir6.2 N-terminus 
binding to SUR1. CryoEM studies support this 
interpretation and specify the binding interactions 
involved.

CryoEM channel structures have resolved the 
N-terminal ~30 aa (KNtp) of Kir6.2 as an 
extended projection that inserts deeply into the 
central cleft between the two halves of the ABC 
core module of the SUR1 subunit that is in direct 
physical contact with the Kir6.2 (Figure 2) [33,57]. 
Notably, strong cryoEM density of KNtp in the 
SUR central cleft is correlated with the presence of 
pharmacological inhibitors, such as glibenclamide 
and repaglinide, which also bind within the SUR1 
ABC core in a pocket next to the very N-terminus 
of Kir6.2 (Figure 2). A weaker KNtp cryoEM den
sity in the SUR1-ABC core cleft was seen in chan
nels bound to ATP only, and the density was even 
weaker in the absence of any inhibitory ligands 

[33,57]. The results provide a striking structural 
correlate to prior biochemical and functional stu
dies that implicated a role of Kir6.2 distal 
N-terminus in drug binding and inhibitory gating 
[55,56,58]. Structure-guided crosslinking experi
ments provide direct evidence that the KNtp- 
SUR1 interface controls channel gating. 
Crosslinking of a cysteine engineered at amino 
acid position 2 in the Kir6.2 KNtp to an adjacent 
endogenous SUR1 cysteine (C1142) led to sponta
neous loss of channel activity [57], demonstrating 
that trapping KNtp in the SUR1-ABC core exerts 
ATP-independent allosteric control of Kir6.2 
activity. Accordingly, KATP cryoEM structures of 
an SUR1-Kir6.2 fusion protein having a 39 amino 
acid linker (SUR1-39aa-Kir6.2) may have been 
found to lack KNtp density in the SUR1-ABC 
core, even with bound inhibitors, because such 
a linker tethers and constrains the KNtp from 
entering the SUR1 ABC core cavity [34,49]. Of 
note, functional studies have shown fusion chan
nels have higher Po and reduced ATP sensitivity 
[24], similar to SUR1/Kir6.2ΔN channels, consis
tent with the importance of the KNtp/SUR1 inter
face in channel gating. CryoEM structures of the 
vascular KATP channel prepared with glibencla
mide and ATP also show the Kir6.1 N-terminus 
wedged in the TM cleft between the two halves of 
the SUR2B-ABC core next to the bound glibencla
mide [29], suggesting this inter-subunit regulatory 
mechanism is conserved among KATP isoforms.

PIP2 stimulation mechanism

PIP2 binding site
PIP2 opens KATP channels, and is expected to be 
present in open channel structures. However, 
initial open channel KATP structures reported by 
two separate groups have lacked clear PIP2 
cryoEM density. These include the structure of 
a human channel consisting of SUR1 and 
a mutant Kir6.2 harboring a pore mutation 
C166S known to stabilize channel opening as 
well as a G334D mutation that prevents ATP 
binding at the inhibition site (denoted by 
Kir6.2C166S, G334D), and the structure of a rodent 
SUR1-Kir6.2 fusion protein channel containing 
a Kir6.2 mutation H175K (Kir6.2H175K), which 
was incorporated to enhance PIP2 binding. 
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Recently, the cryoEM structure of a PIP2-bound 
open KATP channel was reported in a preprint by 
Driggers et al. [21]. Using a Kir6.2 variant harbor
ing the neonatal diabetes-causing mutation Q52R 
(Kir6.2Q52R), which has been shown to increase 
channel open probability and decrease channel 
sensitivity to ATP inhibition in a SUR1- 
dependent manner [59], and by pre-incubating 
membranes expressing SUR1/Kir6.2Q52R channels 
with natural long-chain PIP2, which provides more 
hydrophobic anchoring compared to synthetic 
short-chain PIP2, the authors observed, surpris
ingly, that not one but two adjacent well-resolved 
PIP2 molecules occupy intramembrane positions 
between the Kir6.2 TMDs and SUR1-TMD0 
(Figure 3(a, b)).

The first PIP2 binding site occupies the predicted 
Kir6-specific pocket based on homologous structures 
for Kir2 and Kir3 bound to PIP2 [45,46,60]. The lipid 
chains interact closely with Kir6.2 TMD1 and TMD2, 
and the head group phosphates are closely coordi
nated by Kir6.2 residues mostly conserved in Kir2 and 
Kir3 channels. The second, adjacent PIP2 binding site 
is formed by the transmembrane interface between 
the Kir6.2 TMDs and SUR1-TMD0, and is unique to 
the KATP channel. Perturbation of either binding site 
by mutating key residues coordinating PIP2 binding 
based on the structure markedly reduced channel 
open probability in electrophysiological studies 
under ambient membrane PIP2 conditions [21], indi
cating both PIP2 binding sites are functionally impor
tant for regulating KATP channel activity in native 
membranes. The direct involvement of SUR1 in 
PIP2 binding accounts for the previously observed 
increase in PIP2 sensitivity conferred by SUR1 on 
Kir6.2 [36,39,40].

The PIP2-bound open SUR1/Kir6.2Q52R struc
ture also revealed a cation-π bonding between 
Kir6.2-Q52R and SUR1-W51. Disrupting this 
interaction by mutating SUR1-W51 to cysteine 
compromised the ability of Kir6.2-Q52R to 
increase channel open probability and reduce 
channel sensitivity to ATP inhibition [21]. These 
observations indicate that cation-π interaction 
between Kir6.2-Q52R and SUR1-W51 stabilizes 
the channel in an open conformation, providing 
a molecular explanation for how Kir6.2-Q52R 
causes gain-of-function channel defect in a SUR1- 
dependent manner [59].

Structural basis of PIP2 and ATP antagonism
PIP2 and ATP functionally compete to open and 
close KATP channels, respectively [36,61]. 
Comparison of the PIP2-bound open structure and 
the ATP-bound closed structure reveals that PIP2 
binding disrupts ATP binding at two levels, first by 
directly competing for shared binding residues 
and second by causing a conformational change 
that disfavors ATP binding [21] (Figure 3c). 
Specifically, Kir6.2-K39, which stabilizes ATP bind
ing, is also involved in PIP2 binding at the novel site 
(Figure 3b). Additionally, the conformational change 
associated with channel opening by PIP2 results in 
SUR1-L0, including ATP coordinating residue 
SUR1-K205, moving away from the ATP binding 
site and an enlargement of the ATP binding pocket 
such that ATP can no longer bind tightly (see control 
of Kir6.2 close-open transition below). Occupation 
of PIP2 binding sites thereby destabilizes inhibitory 
ATP binding and increases channel open state prob
ability. While SUR1-TMD0 directly supports PIP2 
binding, favoring channel activation, SUR1-L0 also 
directly supports ATP binding toward inhibition. 
The direct involvement of SUR1 in regulating the 
binding of both ATP and PIP2 mirrors that of Kir6.2, 
whose antagonistic binding of ATP and PIP2 hinges 
on directly interacting sites. Thus, SUR1 appears to 
function as an amplifier of the intrinsic Kir6.2 ATP 
versus PIP2 gating switch, leveraged by a direct par
ticipation in binding both ATP and PIP2 that 
increases the sensitivity of Kir6.2 to inhibition as 
well as activation.

Control of Kir6.2 close-open transition

The structural and functional evidence cited above 
indicates SUR1 regulates Kir6.2 Po and ATP sensi
tivity by directly contributing to PIP2 and ATP bind
ing, and by allosteric control via regulation of 
Kir6.2-CTD dynamics. How then are these influ
ences translated to gating of the Kir6.2 channel 
pore? By comparing KATP channel structures having 
closed (including those bound to inhibitory ATP/ 
ADP and/or pharmacological inhibitors [26– 
28,33,34,49,62]) and open channel pores (including 
SUR1-NBD dimerized open human SUR1/ 
Kir6.2C166S, G334D channel, SUR1-NBD dimerized 
pre-open rodent SUR1-Kir6.2H175K fusion channel, 
and rodent PIP2 bound open SUR1/Kir6.2Q52R 
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channel [21,63,64]), an alignment of the transmem
brane domains reveals that the open channel state, 
regardless of SUR1-NBD dimerization or PIP2 bind
ing status, is accompanied by a clockwise rotation of 

the Kir6.2-CTD to a new stable position, viewed 
from the extracellular side (Figure 4; see also 
Figure 3(c)) [33,63,64]. It has been proposed that 
SUR’s ability to envelop the KNtp within its ABC 
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Figure 3. PIP2-bound open SUR1/Kir6.2Q52R channel structure. (a) CryoEM map features of two PIP2 molecules colored in magenta 
and cyan (0.08 V, 4 σ contour), respectively. (b) structural model of the PIP2 binding pocket (red boxed region in (a)) viewed from the 
side. Residues from both Kir6.2 (adjacent subunit denoted “b”) and SUR1 (blue outline) surrounding bound PIP2 molecules are 
labeled. (c) comparison of the SUR1-Kir6.2 cytoplasm-plasma membrane interface between open PIP2 (cyan and magenta sticks)- 
bound SUR1/Kir6.2Q52R (SUR1 in teal and Kir6.2 in yellow) KATP channel and closed ATP-(orange phosphate and gray carbon sticks) 
and repaglinide (out of view)-bound SUR1/Kir6.2 (SUR1 in pink and Kir6.2 in gray) KATP channel (PDB ID 7TYS) viewed from the 
extracellular side. Reorientation of side chains of the Kir6.2 inner helix gate residue F168 and M1 residue F60 in the two 
conformations is shown. A 6.4° clockwise rotation of the Kir6.2-CTD is indicated by the magenta curved arrow (with D323 Cα in 
each structure marked as spheres). Reorientation of the side chain of W51 at the bottom of TM1 of SUR1-TMD0 is evident. SUR1-L0, 
marked by the ATP-binding residue K205 and an adjacent residue E203, moves away from the ATP binding pocket (magenta arrow) 
in the open conformation. Panels (a) and (b) are taken from Figure 2, and panel (c) from Figure 4 of bioRxiv preprint by Driggers 
et al.. (reference [21]).
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cleft is a likely mechanism to control Kir6.2-CTD 
conformation [33,34]. The resolved structures clarify 
that insertion of KNtp into the SUR1-ABC core 
cavity physically constrains the Kir6.2-CTD such 
that it is unable to adopt the rotated conformation 
associated with channel opening. Conversely, when 
KNtp is not bound within the SUR1-ABC core, 
rotation of Kir6.2-CTD to an open-associated orien
tation is unconstrained. Accordingly, pharmacologi
cal inhibitors such as glibenclamide act to stabilize 
a closed channel precisely by increasing the avidity of 
the SUR1-KNtp interaction, and thus hinder the 
Kir6-CTD rotation. Consistent with this model, 
engineering a longer KNtp by insertion of additional 
amino acids both uncouples SUR1 control of 
Kir6.2-CTD and attenuates the ability of glibencla
mide to close the channel [34].

Mobility of the Kir6-CTD is further constrained 
by occupation of the ATP inhibitory site, in which 
SUR’s L0 linker participates as described above. In 
ATP-bound closed channel structures of the pan
creatic Kir6.2/SUR1 isoform, ATP at the inhibitory 
site simultaneously bonds with residues of the 
Kir6.2-CTD (including R50 at the N-terminal 
domain, and K185 at the C-terminal domain of an 
adjacent Kir6.2 subunit) and also with SUR1-K205 
[28,33,49] (also see recent reviews [18,19]), which 
pulls the N-terminal portion of SUR-L0 in close 
proximity. Thus, ATP effectively glues Kir6.2-CTD 
to SUR1-L0, hindering Kir6.2-CTD rotation and 

stabilizing the Kir6.2 core in a closed conformation 
(Figure 4). In the absence of ATP, Kir6.2-CTD rota
tion away from the closed conformation is uncon
strained by SUR-L0 interaction. Instead, rotation of 
Kir6.2-CTD to the open position results in forma
tion of interactions with SUR1-TMD0, in particular 
the cytoplasmic loops of TMD0 [63,64], which likely 
retard spontaneous counter-rotations back to the 
closed condition (Figure 4). Interestingly, in rotating 
to the open conformation, the residues coordinating 
ATP binding become spread further apart [63,64]. 
Lengthening the bonds with ATP enlarges the bind
ing pocket, decreases the strength of tethering to 
SUR1-L0, and favors ATP dissociation.

Mechanisms of channel stimulation by MgADP/ 
MgATP

Stimulation of the KATP channel by MgADP/ 
MgATP is mediated by the SUR subunit [47]. 
SUR has two, but although both bind Mg- 
nucleotides, only NBD2 is capable of hydrolyzing 
MgATP. It is hypothesized that Mg-nucleotide 
binding at the two NBDs of SUR causes dimeriza
tion of the NBDs in a head-to-tail fashion 
[2,61,65,66], as it does in other ABC proteins 
[30], and that NBD dimerization regulates the 
Kir6 subunit to decrease ATP inhibition and 
open the channel. Whether MgATP hydrolysis is 
involved in KATP channel stimulation has been 

ATP
CTD rotationa bSUR1 L0 –

ATP bound
SUR1 L0 

without ATP

Figure 4. Molecular structure of KATP channels. (a) view of the inhibitory ATP binding site on Kir6.2 (light green) (PDB ID 6BAA) with 
ATP bound, in a closed pore conformation, with SUR1 (teal) subunits shown. (b) the same view of the pre-open Kir6.2 pore (dark 
green) (PDB ID 7W4O; pre-open SUR1-Kir6.2H175K fusion) with the inhibitory ATP pocket empty. The ATP-binding pocket is enlarged 
due to outward movement of SUR1 (blue) L0, and Kir6.2 CTD rotation. Note two other open structures: SUR1/Kir6.2C166S, G334D 

(PDB ID 7S5X) and PIP2-bound SUR1/Kir6.2Q52R (preprint in bioRxiv, reference [21]) are very similar in Kir6.2-CTD rotation and pore 
opening, the movement of SUR1-L0 away from Kir6.2, and the enlargement of the ATP binding pocket.
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investigated by several approaches. Although low 
level ATPase activity at NBD2 has been reported 
[27,66–68], analysis of single channel kinetics does 
not support the requirement of MgATP hydrolysis 
for MgADP-induced gating [69]. Instead, prefer
ential binding of MgADP at NBD2 as MgADP 
concentrations rise is thought to drive NBD 
dimerization [70]. Supporting this idea, binding 
studies show NBD1 binds MgATP preferentially, 
whereas NBD2 binds MgADP with higher affinity 
[71–73]. Moreover, cryoEM structures of KATP 
channels in which SUR NBDs are bound to Mg- 
nucleotides and dimerized show larger opening of 
the NBD2 MgADP binding site that would permit 
exchange with MgADP in solution [26,63,64]. This 
feature distinguishes SUR from other ABC trans
porters, and favors an ability of SUR to function as 
a sensor of changing MgADP levels rather than an 
ATPase.

Compared to closed structures, SUR1 NBD- 
dimerized open structures (including open 
SUR1/Kir6.2C166S, G334D channel and pre-open 
SUR1-Kir6.2H175K fusion channel) have rearran
gements at the subunit interface involving SUR1 
TMD0-L0 and Kir6.2-CTD [63,64]. In particular, 
the L0 domain moves away from the ATP binding 
pocket, which becomes enlarged as the 
Kir6.2-CTD is rotated to the open position (see 

discussion in the previous section), and the 
TMD0 of SUR1 bends away at TM1 that directly 
contacts M1 of Kir6.2. The distancing of SUR1-L0 
away from the inhibitory ATP binding pocket has 
been proposed to account for the antagonistic 
effect of MgADP/MgATP on ATP inhibition 
that leads to channel stimulation [63].

The SUR1-NBD dimerized open and pre-open 
structures discussed above do not have discernable 
bound PIP2, yet they are very similar to the PIP2- 
bound SUR1/Kir6.2Q52R open structure without 
SUR1-NBD dimerization with regard to the Kir6.2 
conformation and Kir6.2-SUR1 interface 
(Figure 3c). In both the open and pre-open struc
tures, the SUR1-TMD0 and Kir6.2-TM interface 
would be expected to accommodate binding of two 
PIP2 molecules. Thus, it seems that PIP2 binding and 
Mg-nucleotide induced SUR1 NBD dimerization 
converge to a common structural mechanism to 
antagonize ATP inhibition and stimulate channel 
activity, as illustrated in the cartoon in Figure 5.

Regulation of MgADP/MgATP response in KATP 

subtypes

MgADP responsiveness varies among KATP subtypes 
containing different SUR isoforms [74]. Significantly, 
activation of the cardiac KATP channel comprising 

K+

ATP ADP PIP2

Mg2+
Mg2+

Kir6.2 SUR1

TMD0 TMD1/2

NBD2NBD1

L0

KNtp

Closed Open

Figure 5. Nucleotide regulation of KATP channels. Cartoon illustrating key structural differences between KATP channels bound to 
inhibitory ATP in closed conformation (left) and KATP channels in open conformation, with SUR1 NBD1/2 bound to MgATP/MgADP 
and dimerized (right). The PIP2 binding pocket in the SUR1 NBD-dimerized open conformation would accommodate the binding of 
two PIP2 molecules at the SUR1-Kir6.2 interface.

10 B. L. PATTON ET AL.



SUR2A and Kir6.2 requires a higher MgADP concen
tration than channels containing SUR1 or SUR2B and 
Kir6.2 [68,74,75]. The increased MgADP threshold 
for cardiac KATP channel activation ensures KATP 
channels open only under more intense metabolic 
stress such as exercise; opening of KATP channels 
shortens action potentials at higher heart rates and 
protects the heart from calcium loading [4,76,77]. The 
splice variants SUR2A and SUR2B differ in their 
C-terminal 42 amino acids (C42), which are encoded 
by the last exon of the SUR2 gene [8]. Interestingly, 
the sequence homology of C42 is only ~ 30% between 
SUR2B and SUR2A, but ~ 70% between SUR2B and 
SUR1. Direct functional evidence supports the sug
gestion that C42 plays a primary role in modulating 
the sensitivity of the MgADP response of KATP chan
nels [75].

R-helix regulation
A recent study of SUR2A monomer structures 
(without co-assembly with Kir6.2) in the pre
sence of the inhibitor repaglinide with different 
combinations of Mg-nucleotides identified an 
additional regulatory element that may account 

for the reduced MgADP sensitivity in SUR2A/ 
Kir6.2 channels [78]. SUR2A structures in the 
presence of repaglinide and MgATP reveal 
a helical segment interposed between the two 
NBDs of SUR2A, forming a putative dimeriza
tion regulatory element termed the R-helix 
(Figure 6a). The corresponding sequence (aa 
924–942) is part of the NBD1-TMD2 linker. 
The R-helix is not observed between the NBDs 
when SUR2A structures were imaged in condi
tions that had NBD2 occupied by MgADP, sug
gesting MgADP binding at NBD2 mobilizes the 
R-helix. Functional studies of complete SUR2A/ 
Kir6.2 channels showed that mutating certain 
residues in the R-helix that interact with NBD1 
or NBD2 enhanced the MgADP response. The 
authors propose that by wedging between the 
two NBDs, the R-helix acts as an NBD separator 
to prevent dimerization and channel activation, 
and that binding of MgADP to NBD2 at high 
ADP/ATP ratios then relieves R-helix inhibition 
to allow channel activation.

R-helix dynamics may partly account for differ
ences in MgADP sensitivity among KATP isoforms. 

R-Helix

SUR2A

SUR2B

SUR1

Kir6.1 SUR2B

N1T2 linker

a b

ATP

RPG

NBD1 NBD2

TMD0

MgATP

MgATP
NBD2

NBD1

Figure 6. Structural elements implicated in MgADP regulation of KATP channels. (a) cartoon representation of the structures of either 
SUR1 (orange) (PDB ID 6JB1), SUR2A (purple) (PDB ID 7Y1J), or SUR2B (blue) (PDB ID 7Y1L) with the regulatory helix (R-Helix) shown 
as spheres (green). ATP (red spheres) and RPG (yellow spheres) are also shown. (b) overall structure of Kir6.1 (navy) plus one single 
SUR2B subunit (blue) in the quatrefoil like conformation (PDB ID 7MJO) showing the NBD1-TMD2 (N1T2) linker cryoEM density 
(green) in between SUR2B NBD2 and Kir6.1-CTD. Red boxed region is the approximate location of the ED domain.
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The peptide sequence corresponding to the R-helix 
is not conserved in SUR1, which could explain 
why no R-helix like cryoEM density was pre
viously observed in published KATP structures 
(Figure 6a) [34,49,57,62]. Regarding the SUR2B 
isoform, a structural analysis similar to SUR2A 
found that the R-helix was observed within the 
SUR2B NBD cleft under some conditions 
(Figure 6a) [78]. Interestingly, the SUR2B-NBD2 
containing the alternatively spliced C42 appeared 
to be significantly more dynamic compared to 
SUR2A-NBD2, which may result in less stable 
inhibition by the R-helix. While the SUR struc
tures reported in the study lack the Kir6.2 subunit, 
the structural variations in the different SUR iso
forms observed, when coupled with functional 
evidence, offer a refined model for the differential 
MgADP sensitivity seen in different KATP channel 
subtypes.

Role of ED domain in the NBD1-TMD2 linker
The NBD1-TMD2 linker of SUR2A/2B contains 
a stretch of 15 negatively charged amino acids 
known as the ED domain [79]. The ED domain 
has been implicated in regulating channel 
response to MgADP and the potassium channel 
opener pinacidil [79]. The ED domain has not 
been resolved in pancreatic channel structures. 
However, in structures of SUR2B/Kir6.1 vascular 
KATP channels bound to glibenclamide and ATP, 
the NBD1-TMD2 cryoEM density that includes 
the ED domain is resolved at the subunit inter
face between the cytoplasmic domain of Kir6.1 
and the NBD2 of SUR2B (Figure 6b) [33]. MD 
simulations of this interface structure show 
dynamic MgADP-dependent tripartite interac
tions between the ED domain linker, SUR2B, 
and Kir6.1. The structures captured implicate 
a progression of intermediate states between 
MgADP-free inactivated conformations and 
MgADP-bound activated conformations, 
wherein the ED-rich linker participates as 
mobile autoinhibitory domain, suggesting 
a conformational pathway toward KATP channel 
regulation [29]. Vascular KATP channels com
posed of SUR2B and Kir6.1 are not sponta
neously active and only open in the presence of 
MgATP/MgADP [80]. The autoinhibitory 
mechanism would prevent MgADP-independent 

spontaneous activity. Whether the ED domain 
plays a similar structural role in SUR2A/Kir6.2 
channels awaits further investigation.

Concluding remarks

The advent of cryoEM protein structure determina
tion has dramatically accelerated progress in under
standing how KATP channel activity is controlled by 
the relative intracellular concentrations of ADP and 
ATP, especially for the pancreatic/neuronal SUR1/ 
Kir6.2 isoform. The core four-subunit Kir6.2 chan
nel is activated by binding of the agonist PIP2, an 
ancestral feature shared with Kir-family channels. 
Uniquely, however, Kir6.2 channels have evolved 
to directly bind ATP as an inverse agonist in tension 
with PIP2 to retard channel activation by preventing 
Kir6-CTD from rotating to the open position. The 
SUR1 subunits directly amplify, strengthen and thus 
control the PIP2-ATP switch mechanism intrinsic to 
Kir6.2. SUR1 TMD0 and L0 linker domains contri
bute binding residues to both PIP2 and ATP ligand 
pockets, in the alternative open and closed states, 
which increases the alternative avidities for both 
ligands to ensure that KATP channels respond to 
these ligands with high efficiency. SUR1 further 
enforces ATP inhibition by binding Kir6.2 
N-terminus in the ABC core of SUR1, which pre
vents Kir6.2-CTD from rotating to the open 
position.

When intracellular ADP concentrations rise 
under increased metabolic demand, MgADP 
binds to SUR1 to promote NBD dimerization. 
This excludes Kir6.2 N-terminus from SUR1’s 
ABC core and simultaneously pulls SUR1-L0 
domain away from the ATP binding pocket to 
promote ATP dissociation at the inhibitory site, 
allowing Kir6.2-CTD rotation to the open posi
tion, which is stabilized by PIP2 binding. SUR1 
conformational dynamics, controlled by MgADP 
binding that simultaneously weaken one interac
tion while favoring the other allows for variable 
control of channel activation. Thus, SUR1 and 
Kir6.2 integrate interactions with MgADP, tan
dem PIP2 binding, ATP, and each other in sup
port of cellular homeostasis. Different SUR 
isoforms have additional regulatory elements 
and mechanisms, such as the R-helix and the 
ED domain to shift MgADP sensitivity. While 
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drugs such as sulfonylureas and glinides stabilize 
the interface of the KNtp and SUR-ABC core to 
mimic ATP-bound closed conformation and inhi
bit channel activity [20,57], KATP openers such as 
NN-414 and pinacidil stabilize SUR in the NBD 
dimerized conformation to stimulate channel 
activity [63,81]. Numerous KATP gene mutations 
cause disease by altering channel sensitivity to 
ATP or MgADP [14,16,17]. Improved under
standing of structural mechanisms of KATP chan
nel regulation will guide the development of 
isoform-specific KATP channel drugs to improve 
the treatment of human disease.
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