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Abstract

The papers in this special issue of AIDS focus on the application of so-called Big Data sciences 

as applied to a variety of HIV applied research questions in the sphere of health services and 

epidemiology. Recent advances in technology means that a critical mass of HIV related health 

data with actionable intelligence is available for optimizing health outcomes and improving and 

informing surveillance. Data science will play a key but complementary role in supporting current 

efforts in prevention, diagnosis, treatment, and response needed to end the HIV epidemic. This 

collection provides a glimpse of the promise inherent in leveraging the digital age and improved 

methods in big data science to reimagine HIV treatment and prevention in a digital age.

Big Data science (BDS) in healthcare is rapidly developing due to the increased growth in 

the volume, variety, velocity, and veracity of health-related data.1–2 This growth is driven 

by advanced information and communication technologies (e.g., mobile phones, wearable 

devices, genomics), affordability of high-performance computing, and the transformative 

power of modern analytic technologies (e.g., artificial intelligence, machine learning, deep 

learning). Valuable information, insight and intelligence exist in human immunodeficiency 

virus (HIV) related data, but it remains to be unlocked efficiently using BDS. The United 

States National Institutes of Health (NIH) issued its first Strategic Plan for Data Science in 

May 2018 and suggested that the BDS approach will uniquely advance our understanding of 

disease prevention, identification, control, and treatment in the coming decades and will be a 

key to reducing the national and global health disease burden, including HIV.3 The promise 

for using BDS to identify and manage high-risk and high-cost patients is well documented.4

Studies have identified the complementary role machine learning will play in augmenting 

the work of healthcare providers,5 while others suggest predictive modeling using electronic 

health records (EHR) data6 will drive precision medicine/public health and improve 

overall healthcare quality.7 A preponderance of multimodal and multitudinal data sources 
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makes this a possibility. The existence of extensive state level enhanced HIV/AIDS 

Reporting Systems (e-HARS), Ryan White HIV/AIDS client-level data collected through 

the Services Report (RSR),8–9 linkable to EHR and other relevant data sources serve as great 

opportunities to gather intelligence on patterns of health utilization behavior. This makes 

focusing on the role big data plays in improving health outcomes for people living with HIV 

(PLWH) an important part of ending the HIV epidemic.10

In response to the increasing availability of large and complex data sets for HIV research, we 

hope this special issue offers a timely and unique avenue to report new research that apply 

Big Data (e.g., electronic health records, social media data) and innovative BDS techniques 

(e.g., machine learning, texting mining, natural language processing, deep learning). BDS 

can help identify gaps in rare, unseen, and otherwise undiscovered biomedical, behavioral, 

and social determinants that shed light on HIV acquisition, transmission, the development of 

comorbidities, and long-term viral load control across the HIV treatment continuum.

The application of BDS in HIV is limited due to the structural and methodological 

challenges associated with data acquisition, analysis, and interpretability. The challenges 

include issues around patient privacy, ethical use of data, acquisition of data, data use 

agreements, data sharing, and repurposing and misuse of big data.11–12 Benefits include the 

rich actionable insights BDS provides which range from improved clinical decision support, 

risk identification, disease prediction and clinical care.2,3,6 BDS also allows individual level 

prediction and identification of unique patient clusters compared to traditional statistical 

methods. BDS techniques like machine learning can also better address data complexities 

associated with the volume, variety, velocity, and veracity of linked HIV data to improve 

care, anticipate the needs of PLWH and their providers, achieve cost saving, and improve 

precision medicine/health services for PLWH.

As seen elsewhere in healthcare, the HIV research field has been slow to embrace and 

leverage the “sea change” in growing linkable healthcare data for improvement.13–19 The 

encounter between generating a scientific response to rapidly growing HIV data sources 

applying both traditional statistics (supervised learning) and machine learning (unsupervised 

learning), creates a unique opportunity that we must collectively and urgently adopt to gain 

new insights. While BDS is taken for granted in the “-omics” fields, it is underexploited in 

public health and clinical outcomes research.

The field of HIV has a tradition of successful research focused on understanding behaviors 

associated with surveillance, healthcare utilization, and prevention.20 Perspectives from BDS 

can only help to add more value, generate actionable insights, and focus on precision health 

for all PLWH. While the HIV research and stakeholder communities recognize the potential 

benefits inherent in the application of BDS to large, linked data sources, some doubt its 

added value. Others remain concerned about privacy and equity issues and some have 

concerns about interpretability and clinical relevance. To overcome these concerns, we need 

evidence from a strong group of BDS HIV researchers committed to help document the 

value and policy impact of this evolution in research strategy as we work towards ending 

the epidemic using larger databases for informed feedback. This collection of articles in 

AIDS, with a focus on the applicability of BDS to HIV related data, offers a glimpse into the 
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leading edge of BDS in HIV that we hope will help engage the HIV research community to 

see future value in leveraging BDS.

One set of articles in this supplement leverages traditional health department data consisting 

of different combinations of reported HIV surveillance data, electronic health records and 

other patient level data sources to answer unique questions. Wang et al.21 employed a 

novel analytic approach to develop a Learning Framework of Risk Stratification for HIV 

(ALERT-HIV) in predicting adolescent HIV risk behaviors (multiple sexual partners and 

no condom use) using comprehensive longitudinal data from an implementation science 

research in the Bahamas. Machine learning techniques (support vector machine [SVM] and 

random forests [RF]) were applied to leverage comprehensive longitudinal data for robust 

HIV risk behavior prediction. This study provides a good example on how BDS can be used 

to inform precision HIV behavioral prevention so it can move beyond universal interventions 

to those tailored for high-risk individuals.

Similarly, Xiang and colleagues22 developed advanced graph-based deep learning models 

(“Graph Attention Networks” or GATs) to predict HIV infection among young men who 

have sex with men (YMSM) aged 16–29 years old from two urban cities (Houston and 

Chicago) between 2014–2016. Further, integration approaches were used to combine both 

heterogeneous networks based on multi-graph GAT methods. The authors found that the 

graph-based GAT models considerably improved the prediction of HIV infection, which 

largely benefited from its capability of identifying influential neighbors within the social 

network formed by multiple relations comprised of peers, friends, sex partners and a venue 

co-attendance network, as well as individual-level sociodemographic and sexual behavioral 

factors. Such novel methods provide a comprehensive and interpretable modeling framework 

that may lead to new approaches for HIV prevention and disease intervention.

From a treatment perspective, missed opportunities for HIV testing holds significance for 

ending the epidemic, since early diagnosis is important to the HIV treatment cascade and 

continuum. Weissman and colleagues23 used Big Data and machine learning techniques to 

identify predictors of missed opportunities for HIV testing among PLWH in South Carolina 

who visited any health care facilities within eight years before HIV diagnosis (for late 

presenters) or within three years before HIV diagnosis (for non-late presenters). The authors 

found that prediction models using machine learning techniques can identify predictors of 

“missed opportunities” for HIV diagnosis. Their study findings hold promise for improving 

more precise targeting of HIV testing/prevention efforts to improve early diagnosis.

Chen and colleagues24 applied a machine learning modeling framework to predict delayed 

linkage to care in patients newly diagnosed with HIV in Mecklenburg County, NC using 

deidentified surveillance data. The authors also aggregated linkage to care by zip codes 

to identify high-risk communities within the county. Their findings provide personalized 

recommendations for individual patients to better understand their own care continuum. 

The results also provide guidance for public health teams to identify patient clusters at 

high-risk for delayed HIV care. The methodology framework and insights can provide a 

more comprehensive understanding of challenges in HIV linkage to care in NC and similar 

regions with HIV epidemic and challenge of delayed linkage to care. Delayed linkage to 
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care holds implications for prevention and transmission of HIV for at-risk communities and 

remains a centerpiece of the HIV treatment continuum.

Olatosi and colleagues25 applied machine learning techniques to classify the HIV medical 

care status (in-care vs not-in-care) for PLWH in SC. The authors compared multiple 

classification algorithms such as deep neural networks, automated neural networks, decision 

trees and regression and compared models by examining model classification performance 

(future case prediction, hidden input selection and complexity optimization) using standard 

machine learning measures and receiver operating curves (ROC). The authors concluded 

algorithmic applications such as Bayesian network, neural networks and other machine 

learning techniques hold significant promise for predicting future states of PLWH HIV care 

status. Their findings also highlight the benefits BDS adds to traditional statistical methods, 

and more precisely helps predict individuals most at-risk for dropping out of care in the 

future. Retention in HIV medical care has long been recognized as an important factor for 

ending the HIV epidemic.26–27 The costs of finding and reengaging PLWH back into care 

makes improving retention important.

Yang and colleagues28 used two machine learning approaches (LASSO regression and 

classification and regression tree [CART] analysis) to understand predictors of comorbidity 

among PLWH in SC. Thirty-five risk predictors were used to predict the severity 

of comorbidity based on a standard Charlson Comorbidity Index (CCI). The authors 

concluded that the machine learning methods could help identify the most important 

predictors of future comorbidity among PLWH with high accuracy. Results may enhance 

the understanding of comorbidity and provide the data-based evidence for future care 

management of PLWH. This is of significance for HIV as PLWH age and live longer. The 

ability to use existing Big Data from the EHR will help plan for the management of an aging 

PLWH population.

Location plays an important role in access to healthcare. Social determinants of health 

are directly correlated with individual residence. Using the enhanced HIV/AIDS reporting 

system combined with publicly available data sources, Zeng et al.29 examined the geospatial 

variations in retention in care among PLWH in SC as well as the social and environmental 

predictors of such geospatial variation based on a sociological framework of health using 

the LASSO regression and random forest analysis. The study showed that both models 

demonstrated good predictive accuracy and could identify important contextual predictors of 

county-level retention-in-care status such as poverty proportion, education levels, proportion 

of health insurance coverage, and unemployment rates. Their findings call for structural 

level intervention that improves HIV treatment and care for PLWH and highlight the 

importance of location of patient residence.

Another set of submissions provided evidence for conducting BDS HIV research using 

social media data. Studies show social media data are valuable for identifying behavioral 

insights and predicting biomedical outcomes.30–34 Today, “digital epidemiologists” often 

complement traditional surveillance and health-related research by adding new insights 

using BDS and Big Data.35 Cheng and colleagues36 applied an interactive deep learning 

approach to identify HIV related digital social influencers using Twitter data. Out of a 
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random 1% sample of 1.15 million Twitter users’ data from March 2018 to March 2020, the 

authors extracted tweets from 1,099 Twitter users who had mentioned “HIV” or “AIDS” 

and identified two Twitter users to be “online HIV influencers” using a graph neural 

network model. Their efforts demonstrate the viability of identifying influencers based on 

conversation topics and engagement. Results suggest that iterative deep learning models 

can be used to automatically identify new and changing key HIV-related influencers across 

online big data (e.g., hundreds of millions of social media posts per day) to help promote 

HIV prevention campaigns to affected communities. Due to the transient nature of the digital 

age, key HIV-influencers will often change, but iterative deep learning models hold promise 

for identifying such changes and enhancing the real-time promotion of HIV prevention/

treatment campaigns, thereby offering enhanced health promotion and outreach approaches 

based on BDS.

Li and colleagues37 explored the feasibility of building a social media-based HIV risk 

behavior index (SRB) at the county level for informing HIV surveillance and prevention 

using Twitter data. The authors extracted and analyzed 450,000 HIV risk behavior related 

geotagged tweets from 250,000 twitter users, developed the SRB based on the content of 

their tweets, and correlated the SRB with county-level HIV incidence data from AIDSvu. 

This innovative research demonstrated that it is feasible to build a social media based SRB at 

the county level for informing HIV epidemic surveillance and prevention. The research also 

highlighted that geolocation is an important factor that needs to be considered in analyzing 

county level HIV risk behaviors to reveal spatial heterogeneity.

Due to the growth and explosion of numerous social media platforms, it is hard to reach 

key population groups like men who have sex with men (MSM)/young MSM (YMSM), 

persons who inject drugs (PWID), and commercial sex workers. As a result, digital 

strategies for HIV testing and treatment are lagging behind for key populations.38–39 Chan 

and colleagues40 examined associations among social media (Twitter) postings, in-person 

conversations about HIV issues, HIV prevention and testing, and MSM norms, indexed by 

estimated county-level MSM rates (per 1,000 adult men). This study provided moderate to 

very strong evidence that messages on social media can influence individual communicative 

behaviors and HIV prevention and testing. The results indicate that the presence of higher 

proportions of MSM in a county provide a leverage point for social media to foster dialogues 

about health and HIV. The county MSM norms also engendered the necessary level of 

county-level messaging about HIV issues on social media and thus indirectly facilitated 

prevention and testing.

While this AIDS special issue provides exciting evidence of the opportunities for using Big 

Data in addressing critical issues in HIV prevention, treatment, and care, its authors also 

suggest a host of remaining methodological challenges. First, data restrictions limit the size 

and quality of the data available for analyses which impacts predictive accuracy.41 Second, 

due to episodic nature of most healthcare data, temporality becomes a challenging issue to 

handle during data analyses. Third, interpretability in unsupervised learning approaches is 

difficult particularly for providers and stakeholders used to traditional statistical methods. 

However, there are growing options for using traditional statistical methods (e.g., principal 

component analyses/contingency tables) with unsupervised learning, engaging domain 
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experts to interpret findings. Third, patient safety, ethics, and confidentiality and privacy 

issues remain, and efforts must be made to balance the risks and benefits of using Big Data 

to improve health.42

While these challenges limited to generalizability, and sometimes validity to some extent, 

for some findings, they also provide us with opportunities to improve Big Data research 

in HIV. Consistent with milestones we have achieved thus far with HIV/AIDS by using 

research to overcome stigma and fear, improve ART and HIV testing, and understanding 

the unique sociodemographic, social, and economic drivers for different PLWH, we have 

can achieve even more using BDS. Given the advances in mobile technologies, wearables, 

electronic health records, Internet of Things, and social media, it is increasingly necessary to 

apply BDS to multimodal sources of HIV data.43–45 Focus and effort needs to be placed on 

connecting more data sources to improve predictive modeling accuracy, gain new actionable 

insights and intelligence, and leave no PLWH behind in the efforts to end the epidemic. 

This diverse collection of applied BDS represents a glimpse of what researchers can do for 

the HIV field. We sincerely hope to inspire interest towards the application of BDS and 

development of novel methods.
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