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(Effect) Size Matters
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P hase 1 clinical trials are primarily designed to
test the safety of new drugs or devices. How-
ever, increasingly, phase 1 studies are being

used as hypothesis-generating studies to help inform
endpoints for larger phase 2 studies. Traditionally, re-
searchers have relied on assessing a number of
different possible endpoints using P values as the pri-
mary way of determining the significance of their
findings. However, the use of P values in small clin-
ical studies is fraught for several reasons, not the
least of which is that if a study is underpowered to
detect a real difference (ie, low prestudy odds), then
there is <25% change that the positive research
finding is actually true and is, therefore, unlikely to
be replicated in phase 2 to 3 clinical trials.1,2

Effect size is a simple, albeit underutilized, method
for assessing the clinical significance of research
findings in small clinical trials that are underpowered
to see statistically significant differences in trial
endpoints. Effect size is a quantitative measure of the
difference between 2 groups, and can be measured in
a number of ways, including the standardized mean
difference (SMD) for comparing the means between
2 groups, the Pearson’s r for measuring the strength
and direction of a linear relationship between
2 continuous variables, the odds ratio for comparing
the odds of an outcome occurring in 2 groups (com-
mon in case-control studies), and the relative risk for
comparing the risk of an outcome in 2 groups (com-
mon in cohort studies).

Among these different methodologies, the SMD is
perhaps the easiest method to utilize in small clinical
studies that evaluate a variety of different explor-
atory endpoints. The SMD can be calculated as
(meanstudy drug/device � mean control arm)/standard
deviation (SD). An SMD of 0 indicates that the drug/
device has equivalent effects to those observed in the
control arm, whereas a value >0 indicates that the
drug/device has a beneficial effect when compared
with control values, and a value <0 indicates that a
drug/device is worse than no intervention. The in-
clusion of the SD in the denominator of the equation
adjusts for the variability in the measurements in the
drug/device and no treatment arms, and standardizes
the comparisons of the magnitude of treatment ef-
fects, which can be useful when evaluating multiple
different exploratory endpoints. In addition to the
simplicity of calculating the SMD, there are 3 addi-
tional aspects of this methodology that are extremely
useful for interpreting the results of exploratory an-
alyses in small phase 1 clinical studies. The first is that
the use of effect sizes allows investigators to address
the question of whether the magnitude of change
between the treatment and control groups is impor-
tant and clinically meaningful. There are several
published guidelines for interpreting effect sizes, of
which Cohen’s d is the most widely known.3 Cohen
suggested a convention to interpret the magnitude of
the effect size, where d ¼ 0.2 is a small effect, d ¼ 0.5
is a moderate effect, and d ¼ 0.8 is a large effect.
Cohen originally proposed that a medium-sized effect
should represent the average effect size within the
field (ie, 50th percentile), with a small effect size
associated with the 25th percentile and a large effect
size reflecting the 75th percentile. Not surprisingly,
subsequent studies have shown that the magnitude
of small, medium, and large effects sizes varies from
field-to-field, and that Cohen’s d can overestimate or
underestimate the actual effect size distribution in
the published literature. Although a distribution of
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actual effect sizes has not been assessed for the entire
field of cardiovascular medicine, a study that re-
ported on effect sizes and primary outcomes in large
cardiovascular-related behavioral randomized clin-
ical trials revealed that effect sizes of the behavioral
and physiological outcomes were predominantly in
the small (d ¼ 0.2) to medium (d ¼ 0.5) range.4

However, it should be recognized that clinical sig-
nificance of an absolute effect size is context-
dependent. For example, a small effect size for mor-
tality can make a huge difference for society if a large
proportion of the population is affected by the con-
dition (eg, the COVID-19 pandemic). Another useful
aspect of reporting effect sizes in small clinical trials
is that one can calculate confidence intervals (CIs)
around the point estimates for the effect size, which
provides a range of plausible values for the variable
being measured. There is a close relationship between
CIs and statistical significance testing. If the 95% CI
for the point estimate of the effect size contains a
value that contains the null value of 0, the difference
will be nonsignificant if P < 0.05 is used as the cut-
point for determining statistical significance. CIs can
also be particularly useful in assessing multiple end-
points in exploratory analyses where statistical
methodology for multiplicity of testing has not been
implemented. Relevant to the present discussion, if
the CIs encompass clinically meaningful differences
for a given endpoint but the small sample size yields a
nonsignificant result, this can also be informative
insofar as it suggests that magnitude of change in the
endpoint may be clinically relevant. Last, effect sizes
can also be used to perform power calculations for
larger phase 2 to 3 clinical trials.

Despite the importance of measuring and reporting
effect sizes in small clinical trials, there are several
caveats that warrant discussion. As noted by Ioanni-
dis,5 newly discovered findings may report inflated
effect sizes when compared with the true effect sizes
if the discovery is based on crossing a threshold of
statistical significance, and the discovery study is
underpowered to observe statistically significant dif-
ferences. This is particularly important in small clin-
ical trials where multiplicity of testing can lead to
type I statistical errors. Second, selective reporting of
endpoints, which is common in smaller clinical trials
where the goal is to conduct multiple exploratory
analyses to discover something new, can be prob-
lematic if the endpoints selected for presentation are
the largest effect sizes. Last, studies have shown that
estimates for treatment effect sizes are significantly
larger in small clinical studies than in larger clinical
trials, which may be related to wider eligibility
criteria used in larger trials.6

As noted previously in these Editor’s Pages,7 early-
phase translational research studies are inherently
fragile because of the small sample sizes that are
employed. In translational studies that employ mul-
tiple exploratory analyses, it is often difficult to strike
the correct balance between discovery and replica-
bility. Despite all of the widely recognized limitations
of statistical significance testing in small clinical
studies, it is unlikely that P values are going away
anytime soon because they are so deeply embedded
in the statistical culture of how we evaluate clinical
research studies. Assessing effect size and CIs in
small clinical studies may allow translational in-
vestigators to overcome some of the inherent prob-
lems with P-hacking and multiplicity of statistical
testing that are rife in translation research studies.
However, as noted, the assessment of effect size is
not without limitations and caveats. Although these
arguments are certainly not new, they have tradi-
tionally been discussed in the context of large phase 3
clinical trials. Here, we suggest that understanding
and appropriately interpreting effect size along with
formal statistical testing is equally important for
translational scientists who are called upon to make
go/no go decisions about whether or not advance a
new drug/device into larger phase 2 to 3 clinical trials.
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