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Abstract
The stepped wedge design is often used to evaluate interventions as they are rolled out across schools, health clinics, com-
munities, or other clusters. Most models used in the design and analysis of stepped wedge trials assume that the intervention 
effect is immediate and constant over time following implementation of the intervention (the “exposure time”). This is known 
as the IT (immediate treatment effect) assumption. However, recent research has shown that using methods based on the IT 
assumption when the treatment effect varies over exposure time can give extremely misleading results. In this manuscript, 
we discuss the need to carefully specify an appropriate measure of the treatment effect when the IT assumption is violated 
and we show how a stepped wedge trial can be powered when it is anticipated that the treatment effect will vary as a func-
tion of the exposure time. Specifically, we describe how to power a trial when the exposure time indicator (ETI) model of 
Kenny et al. (Statistics in Medicine, 41, 4311–4339, 2022) is used and the estimand of interest is a weighted average of the 
time-varying treatment effects. We apply these methods to the ADDRESS-BP trial, a type 3 hybrid implementation study 
designed to address racial disparities in health care by evaluating a practice-based implementation strategy to reduce hyper-
tension in African American communities.
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Introduction

In prevention research, clinical research, and implementation 
science, the stepped wedge design is often used to evaluate 
interventions as they are rolled out across schools, health 
clinics, communities, or other clusters (Hussey & Hughes, 
2007; Copas et al., 2015; Hemming et al., 2017; Hemming 
et al., 2018). In a stepped wedge design, all clusters typically 
start in a control or standard of care condition and then, at 
pre-selected intervals, the intervention is introduced in one 
or more randomly selected clusters, until all clusters receive 
the intervention. Outcome measurements are usually col-
lected in each cluster in each interval, although other designs 
are possible (Hooper & Burke, 2015; Kasza et al., 2022). A 
key motivation for the use of the stepped wedge design is to 

study alternative implementation strategies, tailored to the 
local context, for evidence-based interventions.

Most analyses of data from stepped wedge trials assume 
that the intervention effect is “instantaneous” (reaches full 
effect within the time interval in which it is introduced) and 
constant (does not vary as a function of time since introduc-
tion—the “exposure time”). Most papers on sample size cal-
culations for stepped wedge designs (Hemming & Taljaard, 
2016; Hooper et al., 2016; Xia et al., 2021) and software for 
sample size calculations for stepped wedge designs incor-
porate this instantaneous treatment (IT) effect assumption. 
Some of these programs also allow one to prespecify a tran-
sition period or pre-specified fractional treatment effects 
(Hughes et al., 2015) and some allow for a linearly increas-
ing or decreasing treatment time effects (see Ouyang et al., 
2022 for a review of packages).

More generally, however, the intervention effect may 
vary as an arbitrary function of exposure time. Importantly, 
Kenny et al. (2022) show that assuming the intervention 
effect is instantaneous and constant; when it is not can lead 
to extremely misleading estimates of the intervention effect 
(see, for example, Fig. 2 in Kenny et al. (2022)). As an 

 * James P. Hughes 
 jphughes@uw.edu

1 Department of Biostatistics, University of Washington, 
Seattle, WA 98195, USA

2 Department of Population Health, Division of Biostatistics, 
New York University, New York, NY, USA

http://orcid.org/0000-0001-5034-3157
http://crossmark.crossref.org/dialog/?doi=10.1007/s11121-023-01587-1&domain=pdf


S349Prevention Science (2024) 25 (Suppl 3):S348–S355 

alternative, Kenny et al. (2022) propose an “exposure time 
indicator” (ETI) model for analysis of stepped wedge trials. 
In this manuscript, we recap the ETI model of Kenny et al. 
(2022) and illustrate how one can do sample size calcula-
tions for various estimands under an ETI model using the R 
software package, swCRTdesign. 

Our motivating example is the ADDRESS-BP trial, a type 
3 hybrid implementation study. The ADDRESS-BP study 
addresses a critical health issue: Black adults have the high-
est rate of hypertension in the USA, nearly twice the risk of 
fatal stroke (Egan et al., 2010; Centers for Disease Control 
and Prevention, 2000), and a 50% higher rate of cardiovas-
cular disease mortality (Giles et al., 1995; Klag et al., 1997; 
Pavlik et al., 1997; Singh et al., 1996) compared to the gen-
eral population (Gyamfi et al., 2022). Barriers to hyperten-
sion control exist at multiple levels, including the patient 
(e.g., poor adherence and lack of patient engagement), the 
physician (e.g., clinical inertia), and the health system (e.g., 
poor integration of clinical decision support tools into care). 
ADDRESS-BP is designed to evaluate a novel implementa-
tion strategy to reduce hypertension in African Americans 
and address racial disparities in cardiovascular and pulmo-
nary health, disease, and disease risk factors in high-burden 
communities in the USA.

The ADDRESS-BP study uses a stepped-wedge design 
(see Fig. 1) with five sequences and 14 periods to evalu-
ate PATCH, a tailored practice facilitation, and community 
health worker implementation strategy designed to promote 
adoption of an evidence-based intervention (Practice support 
and Community Engagement—PACE) for the treatment of 
uncontrolled hypertension. PACE is delivered to patients by 
nurse case managers and community health workers, who 
address patients’ social risk factors (described as “specific  

adverse social conditions that are associated with poor 
health”) for management of chronic conditions, including 
hypertension. The PATCH implementation strategy will be 
compared to a training-as-usual (TAU) implementation strat-
egy; key outcomes are facility adoption of PATCH and blood  
pressure control by individuals treated at these facilities.

In this manuscript we first review the statistical methodol-
ogy necessary to conduct power and sample size evaluation 
for stepped-wedge designs similar to ADDRESS-BP. We then 
illustrate the use of the developed tools using the ADDRESS-
BP design with a goal of facilitating the use of these methods 
for future prevention and intervention studies.

Methodology

Let Yijk represent the outcome measurement for person k (k = 
1 ,…, mij) in cluster i (i = 1 ,…, I) at time period j (j = 1 ,…, J) 
(Table 1 summarizes the notation used in this section). Mixed 
effects models are convenient for sample size calculations in 
stepped-wedge trials as they allow one to explicitly specify a 
correlation structure for the observations (Xia et al., 2021). 
Therefore, we use the following general model for analysis of 
stepped wedge design trials:

where �ijk is the mean of Yijk , g is a link function, and Xij 
is a design matrix for the fixed effects, � = (Γ, �)T , which 
are partitioned into a vector of parameters capturing the 
underlying trend in study time ( Γ ) and a scalar or vector 
of parameters capturing the intervention effect ( � ) (more 
on this below). Finally, we use Zij (a design matrix) and 

g
(
�ijk|bij

)
= Xij� + Zijbij

Study period (year/month)

Year 1 Year 2 Year 3 Year 4

Sequence 3 6 9 12 3 6 9 12 3 6 9 12 3 6

1 OP/TAU TAU TAU TAU P1 P2 P3 P4 F5 F6 F7 F8 F9 F10

2 OP/TAU TAU TAU TAU P1 P2 P3 P4 F5 F6 F7 F8 F9

3 OP/TAU TAU TAU TAU P1 P2 P3 P4 F5 F6 F7 F8

4 OP/TAU TAU TAU TAU P1 P2 P3 P4 F5 F6 F7

5 OP/TAU TAU TAU TAU P1 P2 P3 P4 F5 F6

Fig. 1  ADDRESS-BP trial design. Each row corresponds to a 
sequence and there are five health care facilities per sequence. No 
data are collected in empty cells. In each sequence there are 4 “con-
trol” periods (OP, on-boarding period; TAU, training as usual) and 
up to 10 “exposed” periods (i.e., up to 10 exposure times). Exposure 

to the PATCH implementation strategy begins at exposure time P1 
and there is scientific interest in assessing both the short-term (P#, 
PATCH implementation strategy at exposure time #) and long-term 
(F#, follow-up periods at exposure time #) effects of the strategy
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bi∙ ∼ N(0,D) (a vector of random effects) to quantify the 
correlation among observations in cluster i. Random effects 
commonly included in the analysis of stepped-wedge trials 
include cluster, cluster by time, cluster by treatment, and, for 
cohort designs, an individual random effect (Hooper et al., 
2016). Decaying auto-correlation structures have also been 
proposed, although these cannot be represented with random 
effects (Kasza et al., 2017). Li et al (2021) provide a com-
prehensive overview of the mixed-effect model framework 
for stepped-wedge designs. Ouyang et al. (2023) show the 
relationship between the random effects parameterization 
given above and the correlation coefficient (i.e., intra-cluster 
correlations) parameterization for specifying dependence in 
the data.

Hughes et al. (2015) discuss approaches to eliciting vari-
ances of the random effects for the purposes of power cal-
culations. For binomial or Poisson endpoints, these vari-
ance components are typically expressed on the proportion 
or count scale, respectively, but may be transformed to the 
scale corresponding to the link function g using the delta 
method1.

Let Var
(
�̂
)
= Σ . Note that Σ is a function of the study 

design and the variances of the random effects, quantities 
that must be specified during the design of the study to deter-
mine power. Following Xia et al. (2021), Σ may be expressed 
as

where

And W  is  a  diagonal  matr ix with entr ies 
wi = �ai�

(
�i

)[
g�
(
�i

)]2 (see Table 2). For a normal distri-
bution, wi = �2. Σ may be partitioned as

As noted in the introduction, most models for analysis 
and sample size calculations assume that the intervention 
effect,� , is a scalar and that the corresponding element of Xij 
is a simple 0/1 measure, indicating whether the intervention 
is turned off or on in cluster i at time j (this is the IT model 
mentioned above). Alternatively, Kenny et al. (2022) assume 
that � = (�1,… , �S) , where �s is the effect of the interven-
tion after a cluster has been exposed to the intervention for 
s time units (exposure time = s) (the ETI model) and S is 

Σ =
(
XTV−1X

)−1

V = W + ZDZT
.

Σ =

(
ΣΓΓ ΣΓ�

ΣT
Γ�

Σ��

)
.

Table 1  Notation

Notation Description

Yijk outcome measurement for person k (k = 1 ,…, mij) in cluster i (i = 1 ,…, I) at time j (j = 1 ,…, J)
�ijk mean of Yijk
g( ) link function in the generalized linear models framework
Xij design matrix for the fixed effects �
Zij design matrix for the random effects bi∙
� = (Γ, �)T � is a vector of parameters composed of a vector of parameters that capture the underlying 

trend in study time ( Γ ) and a scalar ( � ) or vector ( � = (�1,… , �S) ) of parameters capturing the 
intervention effect over S exposure times

bi∙ Vector of random effects
H =

(
h1, h2,… , hS

)
Weighting vector (with constraint 

∑
hi = 1) used with � to form the estimand Ψ

Ψ =
∑S

s=1
hs�s Summary intervention effect of interest

Σ Variance of �̂

Var0

(
Ψ̂
)
,Vara

(
Ψ̂
)

Variance of Ψ̂ under the null and alternative hypotheses, respectively

Table 2  Variance function values for selected distributions with 
canonical links

Distribution (link) ϕ a �(�) g(�) g�(�)

Normal (identity) �2 1 1 � 1
Bernoulli (logit) 1 1 �(1 − �) log

(
�

1−�

)
1

�(1−�)

Poisson (log) 1 1

m
� log(�) 1

�

Binomial (logit) 1 1

m
�(1 − �) log

(
�

1−�

)
1

�(1−�)

1 Specifically, Varg(x) = Varxg�(x)
2 . For example, for a binomial end-

point on the logit scale, we would apply the transformation 
Varlogit(p) =

Varp

p2(1−p)2
 to random effect variances expressed on the pro-

portion scale.
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the maximum exposure time (note that S = J − 1 in a classic 
stepped wedge design where J = the number of sequences 
+ 1).

Under the ETI model, the entire vector δ may be of inter-
est, or the investigator may define a function of δ as a sum-
mary of the intervention effect. For example, Kenny et al. 
(2022) define the time-averaged treatment effect over an 
exposure interval s1 to s2 as

Alternatively, interest may lie in the treatment effect at a 
specific time s (point treatment effect):

More generally, most summary estimands of interest can 
be written as a linear combination of the �s:

for known constants hs. Letting H =
(
h1, h2,… , hS

)
 (with 

constraint 
∑

hi = 1) , δ̂ = (�̂1, �̂2,… , �̂S) , and Σδδ = Var(δ̂) 
we can write the variance of the estimated intervention 
effect, Ψ̂ , as

Therefore, given a hypothesized intervention effect (ψ), 
weighting vector (H), pre-specified study design, and vari-
ance components, and assuming a two-sided type-1 error 
rate of α, the power of the study can be computed as

where Φ is the normal cumulative distribution function and 
Var0

(
Ψ̂
)
 and Vara

(
Ψ̂
)
 are the variances under the null and 

alternative hypotheses, respectively. For the normal distribu-
tion with identity link, power depends only on Ψ and not the 
individual �s (and Var0

(
Ψ̂
)
 and Vara

(
Ψ̂
)
 are equal in this 

case). For non-identity links, power will depend on the indi-
vidual �s through Vara

(
Ψ̂
)
.

The R package swCRTdesign can be used to imple-
ment the methods described above for cross-sectional 
and closed cohort designs (specifically, swCRTdesign 
implements Eq. (2) which does not, in general, simplify 
to a design effect (Hooper et al., 2016)). swCRTdesign 
has two functions for computing study power, swPwr() 
and swGlmPwr(). swPwr() computes power using an 

Ψ
[
s1, s2

]
≡

1

s2 − s1 + 1

∑s2

r=s1
�r.

Ψs = �s.

(1)Ψ =
∑S

s=1
hs�s.

Var
(
Ψ̂
)
= HΣ��H

T
.

(2)Φ

⎛⎜⎜⎜⎜⎝

�Ψ� − Φ−1
�
1 − �∕2

�
∗

�
Var0

�
Ψ̂
�

�
Vara

�
Ψ̂
�

⎞⎟⎟⎟⎟⎠

identity link for data with a normal or binomial distribution. 
swGlmPwr()can compute power for binomial data with 
a logit link or Poisson data with a log link. Both functions 
can compute power for either an IT model or an ETI model 
with user-specified H vector (allowing specification of a 
time-averaged treatment effect, a point treatment effect, or 
other summaries) and both can incorporate random effects 
for cluster, cluster by time, cluster by treatment, and, for 
cohort designs, individual.

Data

In our motivating example, ADDRESS-BP, the unit of ran-
domization is the practice facility. There are 25 practice 
facilities (5 per sequence) and three treatment teams which 
consist of one practice facilitator and one community health 
worker per team; each treatment team will work with multi-
ple facilities. During an onboarding period, each facility will 
establish a closed cohort of approximately 20 individuals 
with uncontrolled hypertension. Facilities will then provide 
training as usual (TAU) for the PACE intervention until the 
PATCH implementation strategy is introduced, as illustrated 
in Fig. 1.

In this paper we focus on the clinical outcome of blood 
pressure control (yes/no) in the individual patient. Dur-
ing the TAU periods we expect 40% of participants will 
achieve blood pressure control. We expect the PATCH 
implementation strategy may take up to 6 months (2 time 
periods—each time period is 3 months) to achieve full 
effect so we propose to evaluate PATCH 6 to 12 months 
following introduction (exposure times P3 and P4 in 
Fig. 1). We believe PATCH will improve blood pressure 
control to 60% during this period. To evaluate the sus-
tainability of this implementation strategy, we will also 
estimate the proportion of patients achieving/maintaining 
blood pressure control in exposure times 5–10 following 
PATCH introduction (the follow-up period—F5–F10 in 
Fig. 1).

Preliminary data are available from another NYU study, 
Advancing Medication Adherence for Latinos with Hyperten-
sion through a Team-based Care Approach, that also utilized a 
stepped-wedge cluster randomized design and practice facili-
tation to improve blood pressure control (Schoenthaler et al., 
2021); these data enabled estimation of variance components 
for practice facility, practice facility by time, and individual. 
As noted above, each treatment team will serve multiple facili-
ties and may represent an additional source of variation. How-
ever, due to software limitations, we were unable to include  
that source of variation in our power calculations.
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Results

The R package swCRTdesign was used to compute 
power for the ADDRESS-BP study. Table 3 lists param-
eter values for the power calculations. R code for each 
result given below is included in the Appendix and ref-
erenced below as R# (e.g., R1, R2, etc.). Note that all the 
results from swGlmPwr (R1–R5) have been verified by 
simulation.

Figure 2 shows the power comparing the primary out-
come of interest, the average blood pressure control over 
exposure times 3 and 4, shown as P3 and P4 in Fig. 1, versus 
TAU based on the ETI model of Kenny et al. (2022) (R1). 
Since the maximum number of exposure time periods is 10 
(P1–F10 in Fig. 1), this comparison corresponds to simply 
averaging the responses in periods P3 and P4 (i.e., H = (0, 
0, 0.5, 0.5, 0, 0, 0, 0, 0, 0) in Eq. (1)). For the alternative of 
60% of patients achieving blood pressure control, the power 
is 82% (R2). For comparison, an IT model that compares 
all PATCH periods to TAU would have power 99.9% (R3) 
although, as noted above, this model is susceptible to sub-
stantial bias and possible loss of power if the IT assumption 
is wrong.

Note that the power analysis shown above assumes 
that no data are available for cohort members prior to the 
onboarding period (Fig. 1). An alternative would be to form 
the cohorts in all clusters at the start of the study (start of 
year 1) so that data were available from all clusters in all 
time periods. In this case, the power for comparing exposure 
times 3 and 4 to TAU would increase to 92% (R4).

Interestingly, the power for comparing the average treat-
ment effect over the follow-up period (exposure times 
F5–F10) versus TAU under the same alternative is only 
39% (R5). Even though there is more data in the follow-up 
period, power is lower because (i) there are fewer cluster 
periods at later exposure times and (ii) there are no direct 

vertical (between cluster) comparisons between treatment 
and control in exposure times 5 through 10.

The ETI model is inefficient for estimating the treat-
ment effect compared to the IT model when the treatment 
effect is constant. To recover some of the efficiency, but 
still reduce the risk of bias, one could assume a piecewise 
constant treatment effect (this is effectively a version of the 
spline approach discussed by Kenny et al. (2022)). If we 
assume piecewise constant treatment effects for exposure 
times P1–P2, exposure times P3–P4, and exposure times 
F5–F10 then the power to compare exposure times P3–P4 
versus TAU is 94% and to compare exposure times F5–F10 
to TAU is 75% (R6). Note that including data from exposure 
times P1 and P2 in the analysis improves power by contrib-
uting to estimation of the temporal trend component of the 
model, even though these periods are not part of the primary 
or secondary hypotheses.

Table 3  Parameter values 
used for power calculations for 
ADDRESS-BP trial. See Fig. 1 
for definition of TAU, P3, P4

ICC intra-cluster correlation
a ICCs are expressed on logit scale with σ2 = π2/3 ≈ 3.290 (Eldridge et al., 2009). See Ouyang et al. (2023) 
table 1 for definitions of ICCs

Parameter description Value

Number of observations per facility per time period 0 pre-onboarding;
otherwise, n = 20

Outcome percent during TAU period 40%
Outcome percent during exposure times three (P3) and 

four (P4)
60%

Time trend (on logit scale) 0.08/period
Variance (on logit scale) Intra-cluster 

 correlationa

Cluster variance/between-period ICC 0.1316 0.022
Cluster*time variance/within-period ICC 0.1974 0.054
Individual variance/within-individual ICC 2.5 0.430

Fig. 2  Power for comparing treatment exposure times 3 and 4 versus 
TAU. Assumed proportion during TAU is 0.40
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Discussion

We have presented a set of generalizable tools for design-
ing stepped-wedge studies that can be used to evaluate the 
impact of interventions during real-world implementation, 
and we have demonstrated their use in the ADDRESS-
BP study, a type 3 hybrid implementation study designed 
to address racial disparities in health care by evaluat-
ing a novel implementation strategy for a practice-based 
intervention to reduce hypertension in African American 
communities.

The ETI model of Kenny et  al. (2022) relaxes the 
assumption of an immediate and constant response to 
treatment in step-wedge studies and allows the treatment 
effect to vary as a function of exposure time. In this arti-
cle we have shown how power calculations for analysis 
of a stepped-wedge trial based on the ETI model can be 
conducted. The package, swCRTdesign, can be used to 
implement these calculations. Importantly, when the treat-
ment effect varies as a function of exposure time, careful 
scientific thought must be used to define the estimand of 
interest and this choice can strongly influence power. This 
effectively means defining the weighting vector H (and 
the intervention effect size associated with H). However, 
this is the only additional requirement needed for sample 
size calculations for the ETI model compared to the tra-
ditional IT model. An alternative approach is discussed 
by Maleyeff et al. (2022) in which they assume that the 
treatment effect varies randomly over exposure time; they 
then provide power calculations for estimating the average 
treatment effect.

It is at present unclear how often the treatment effect 
varies significantly with exposure time but Kenny et al. 
(2022) recommend that the IT model should not be used 
unless the assumption of an immediate and constant treat-
ment effect is justifiable based on contextual knowledge of 
the intervention. They also note a need to reanalyze data 
from past stepped-wedge trials to understand the preva-
lence of time-varying treatment effects.

ETI-based estimators are less efficient than estimates 
based on an IT model but are robust against the assump-
tion of a constant treatment effect, violation of which can 
lead to an extremely misleading treatment effect estimate. 
One approach to recovering some efficiency and improving 
power is to model the treatment effect using a piecewise 
constant or higher-order spline function. The piecewise 
constant approach can be particularly useful when the 
period of interest corresponds directly to one of the con-
stant pieces of the spline. However, whenever one assumes 
that the treatment is constant over multiple exposure times, 
there is a potential for the type of misleading treatment 
estimates observed by Kenny et al. (2022). In the case 

of the ADDRESS-BP trial, we believe it is unlikely that 
combining exposure times P3 and P4 would lead to any 
problems because (i) only two adjacent periods are being 
combined and (ii) those two periods have similar informa-
tion content. In contrast, there is a greater risk in assuming 
that the treatment effect is constant over the entire follow-
up period, i.e., exposure times F5–F10.

We have also seen in the ADDRESS-BP case study that, 
under the ETI model, power is greater for studying the treat-
ment effect immediately after the transition from control 
to treatment compared to treatment effects at longer expo-
sure times, consistent with Kasza and Forbes (2019). We 
also noted in the ADDRESS-BP trial that including data 
that does not directly inform the treatment effect estimate 
of interest can improve power by providing more precise 
estimation of other model parameters. More research is 
needed, however, to fully understand how other modeling 
choices (e.g., using spline-based models for the underlying 
time trend and/or the exposure time trend, extending follow-
up, etc.) affect power for testing short-term and long-term 
treatment effects.

Interestingly, because of the partial collinearity between 
study time and treatment, as well as the complex correlation 
structure in the stepped-wedge design, standard statistical 
intuition regarding power may be misleading. For example, 
in the ADDRESS-BP study power analysis, the power for 
comparing exposure times P3 and P4 to TAU is greater than 
the power for comparing exposure times F5–F10 to TAU 
even though there is quantitatively more data for the latter 
comparison. This is a result of several interacting factors: (i) 
decreasing information (and, therefore, greater variation) for 
exposure times F7 and above; (ii) the lack of a between-clus-
ter comparison between exposure times F5–F10 and TAU; 
(iii) the correlation structure of the model which affects the 
relative information provided by between-cluster versus 
within-cluster comparisons; and (iv) the need to estimate 
study time effects, which are partly collinear with treatment.

One limitation of the power analysis of the ADDRESS-
BP study presented above is that we have not accounted 
for the effect of the treatment teams, each of which will 
work across multiple facilities. Davis-Plourde et al. (2023) 
describe sample size calculations for a multi-level stepped-
wedge study with nested clusters (in this case, facilities 
nested within treatment teams) and their idea of adding 
additional random effects to account for additional levels 
of clustering could be used with both the IT and ETI mod-
els. However, due to software limitations, we are not able 
to account for multiple levels of clustering in this analysis 
although some insight is possible by including a nonzero 
eta argument in calls to swGlmPwr. eta characterizes the 
variation in the treatment effect between facilities (whereas, 
ideally, we would like to include variation in the treatment  
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effect between treatment teams—see Brown et al., 2022). 
We found that power generally declines as eta increases, 
suggesting that inclusion of a treatment team effect may 
decrease power modestly. The effect of treatment teams 
should be included in the final analysis of the ADDRESS- 
BP data.

The ADDRESS-BP trial will evaluate a multi-component 
implementation strategy leveraging practice facilitation, 
nurse case managers, and community health workers to pro-
mote implementation of home blood pressure monitoring 
and incorporation of social determinants of health to improve 
blood pressure control (Odedosu et al., 2012; Pickering et al., 
2008). The study will use the ETI model and is well powered 
to address a clinically meaningful increase in rate of blood 
pressure control at 12 months following initiation of PATCH.
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