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In vertebrates, DNA methyltransferase 1 (DNMT1) con-
tributes to preserving DNA methylation patterns, ensuring the
stability and heritability of epigenetic marks important for gene
expression regulation and the maintenance of cellular identity.
Previous structural studies have elucidated the catalytic
mechanism of DNMT1 and its specific recognition of hemi-
methylated DNA. Here, using solution nuclear magnetic reso-
nance spectroscopy and small-angle X-ray scattering, we
demonstrate that the N-terminal region of human DNMT1,
while flexible, encompasses a conserved globular domain with a
novel α-helical bundle-like fold. This work expands our un-
derstanding of the structure and dynamics of DNMT1 and
provides a structural framework for future functional studies in
relation with this new domain.

DNA methylation is a major epigenetic modification that
regulates chromatin structure and various biological processes
in mammals (1–4). DNA methylation is carried out by four
members of the DNA methyltransferase (DNMT) protein
family, the best characterized of which is DNMT1. DNMT1 is
a 1616-amino acid protein known to encompass a replication
foci-targeting sequence (RFTS) domain, two bromo-adjacent-
homology domains, and a C-terminal methyltransferase
domain (Fig. 1A). While absent in lower species, DNMT1 is
highly conserved in vertebrates, from Xenopus laevis to
human.

DNA methylation by DNMTs predominantly targets
palindromic CpG sites, showing a strong tendency to prefer-
entially methylate CpG sites in a hemimethylated state,
although asymmetric methylation at non-CpG sites has also
been observed (5). Recent studies have revealed that the
establishment and maintenance of DNA methylation involves
all DNMTs to varying degrees, in conjunction with DNA
demethylases, maintaining a dynamic equilibrium between
methylation gain and loss (6). Consequently, knowledge of the
DNMT structures is essential for elucidating the specific role
played by each member in DNA methylation maintenance.

In the case of DNMT1, many structures containing the
RFTS, bromo-adjacent-homology, and catalytic domains have
been determined, shedding light on the mechanisms of
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methylation (7–17). These studies have deepened our under-
standing of the modes of action of DNMT1, particularly in
relation to pathologic DNMT1 variants implicated in degen-
erative disorders of the nervous system (18–21). All structural
studies so far have exclusively focused on the segment from
residue 350 to the C terminus of DNMT1. The N-terminal
region of DNMT1 has received scant attention and has been
described as disordered (12), even though limited resistance to
proteolysis suggested that it might encompass folded segments
(22). Here, using nuclear magnetic resonance (NMR) spec-
troscopy and small-angle X-ray scattering (SAXS), we identify
a hitherto unreported folded domain within the N-terminal
region of DNMT1.

Results

Identification of a folded domain at the N terminus of DNMT1

We initiated our studies using a recombinant DNMT1
fragment encompassing residues 16 to 134, selected based on
predicted secondary structure elements (data not shown), and
identified as DNMT1NL. The 1H-15N heteronuclear single-
quantum coherence (HSQC) spectrum of DNMT1NL showed
well dispersed signals overall, with some variations in signal
intensities, indicating that there were structured as well as
disordered regions within the protein (Fig. 1B). Further in-
spection of the 1H-15N relaxation data collected on DNMT1NL

revealed that terminal segments comprising residues 16 to 21
and 94 to 134 were intrinsically disordered, with elevated R1

and decreased R2
15N relaxation rates and decreased steady-

state 15N-{1H} heteronuclear overhauser effects (NOEs),
compared to the rest of the protein (Fig. 1C). The rotational
correlation time (τc) estimated from the average R1 and R2

values for DNMT1NL was 8.1 ± 2.2 ns, indicating that
DNMT1NL is monomeric in solution. By truncating the resi-
dues in the C-terminal unstructured region, we produced a
shorter version of DNMT1 (residues 16–93), denoted as
DNMT1N (Fig. 1C). DNMT1N is also a monomer in solution
based on its τc value of 5.4 ± 0.6 ns. Compared to the 1H-15N
HSQC of DNMT1NL, the spectrum of DNMT1N showed
better separation of signals and more homogeneous signal
intensities (Fig. 1, B and D). We therefore used DNMT1N for
subsequent structural studies.

The differences in Cα, Cβ, N, and HN chemical shift values
between DNMT1N and DNMT1NL were mostly negligible,
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Figure 1. Identification of a folded segment at the N terminus of DNMT1. A, domain structure of human DNMT1 (hDNMT1). B, overlay of the 1H-15N
HSQC spectra of DNMT1NL (aa 16–134, red) and DNMT1N (aa 16–93, cyan). C, R1, R2 and
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with errors determined via relaxation curve fitting. For 15N-{1H} NOEs, shown are the average values ± standard deviation calculated as explained in the
Experimental procedures. D, 1H-15N resonance assignment for DNMT1N where side chain signals for asparagine and glutamine residues are indicated by
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except for the C-terminus of DNMT1N near Glu93, as ex-
pected, and regions near Ser35 and Leu46-Gln54, where small
chemical shift differences were observed in the overlaid
1H-15N HSQC spectra of DNMT1N and DNMT1NL (Fig. 1B).
Interestingly, these regions harbor negatively charged residues.
The detectable chemical shift perturbations might result from
2 J. Biol. Chem. (2024) 300(3) 105775
weak transient electrostatic interactions with the extended
disordered region of DNMT1NL (aa 94–134).

Solution NMR structure of DNMT1 N-terminal domain

The solution structure of DNMT1N was determined using
multidimensional heteronuclear NMR spectroscopy with 937
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Figure 2. Three-dimensional structure of DNMT1N. A, ensemble of the final 30 lowest-energy NMR structures of DNMT1N. B, DNMT1N structure in cartoon
representation with residues at the interfaces of α-helices 2, 3, and 4 labeled and shown in stick representation. C, DNMT1N structure in cartoon repre-
sentation with residues at the interface of α-helices 1 and 2 labeled and shown in stick representation. D, electrostatic surface potential of DNMT1N

calculated using APBS in PyMOL. DNMT1, DNA methyltransferase 1; NMR, nuclear magnetic resonance.

Table 1
NMR and refinement statistics for DNMT1 (residues 16–93)

NMR distance and dihedral constraints
Distance constraints

Total NOE 937
Intraresidue 250
Interresidue 688

Sequential (|i – j| = 1) 288
Medium range (|i – j| < 5) 305
Long range (|i – j| > 4) 94
Intermolecular

Total dihedral angle restraints 132
u 66
ψ 66

Total RDC restraints 47
Q factor 0.16

Structure statistics
Violations (mean and s.d.)

Distance constraints (Å) 0.032 ± 0.002
Dihedral angle constraints (�) 0.132 ± 0.017
Max. dihedral angle violation (�) 4.613
Max. distance constraint violation (Å) 0.470

Deviations from idealized geometry
Bond lengths (Å) 0.005 ± 0.000
Bond angles (�) 0.665 ± 0.008
Impropers (�) 0.516 ± 0.015

Average pairwise r.m.s. deviationa (Å)
Heavy 1.51 ± 0.21
Backbone 0.70 ± 0.24

Average r.m.s. deviation to mean structurea (Å)
Heavy 1.06 ± 0.13
Backbone 0.49 ± 0.18

Ramachandran plot summary from Procheck (%)
Most favored regions 96.4
Additionally allowed regions 2.4
Generously allowed regions 1.1
Disallowed regions 0.1

a DNMT1 (residues 22–90).
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NOE-based distance restraints, 132 dihedral angle restraints,
and 47 1H-15N residual dipolar coupling (RDC) restraints for
structure calculations (Fig. 2 and Table 1). The NMR struc-
tural ensemble of DNMT1N shows four α-helices (Fig. 2A).
Three of these α-helices—α-helix 2 (aa 38–52), α-helix 3 (aa
55–71), and α-helix 4 (aa 76–91)—constitute a three-helix
bundle, with each helix contacting the other two helices
(Fig. 2B). Additionally, α-helix 2 contacts helix 1 (aa 22–34)
(Fig. 2C). The plane containing α-helices 1 and 2 is almost
perpendicular to the plane formed by α-helices 3 and 4 (Fig. 2,
B and C). The structure of DNMT1N is stabilized by a hy-
drophobic core formed by the helical bundle and involves
Val42 and Leu46 from α-helix 2; Ile57, Leu61, Leu64, and
Leu68 from α-helix 3; and Tyr78, Leu79, Val82, and Leu86
from α-helix 4 (Fig. 2B). The contact surface between α-helices
1 and 2 is hydrophobic and involves Val24, Leu28, and Leu31
from α-helix 1 and Cys41, Leu48, Leu49, and Phe52 from α-
helix 2 (Fig. 2C). Furthermore, Leu20, Pro21, Val24, Leu49,
and Phe52 form another, smaller, hydrophobic cluster
(Fig. 2C). Despite numerous hydrophobic contacts, all amide
proton signals disappeared within 2 h in an NMR
spectroscopy-monitored hydrogen-deuterium exchange
experiment (data not shown). This observation suggests a low
thermodynamic stability for the domain, related to a small
unfolding free energy from the native state to the transient
fully unfolded state (23). The electrostatic surface potential of
DNMT1N (Fig. 2D) does not reveal any remarkable features
that could offer clues to the function of this domain.
J. Biol. Chem. (2024) 300(3) 105775 3
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The RDC restrains were instrumental in refining and vali-
dating the relative orientations of the different regions of
DNMT1N. Residues 55 to 90, which cover α-helices 3 and 4 in
the structure, have uniformly negative RDC values except for
the residues connecting these α-helices (Fig. 3, A and B). The
RDC values for residues 16 to 54, corresponding to α-helices 1
and 2, are less uniform, indicating that α-helices 1 and 2 have
different orientations from those of α-helices 3 and 4. There is
excellent agreement between the experimentally measured and
back-calculated RDCs (Fig. 3C).

SAXS analysis of DNMT1 N-terminal domain

We used SAXS (24, 25) to examine the global fold and
oligomerization state of DNMT1N and thereby further eval-
uate the NMR-derived structure (Fig. 3D and Table S1). The
SAXS Guinier plot (26) of DNMT1N was characteristic of a
homogeneous sample (Fig. 3E). Furthermore, the Kratky and
4 J. Biol. Chem. (2024) 300(3) 105775
Porod-Debye plots (27) showed that the protein was globular
with limited flexibility in the N and C termini (Fig. 3F). We
derived a radius of gyration of �15.4 Å and a maximum
dimension Dmax of �46.7 Å for DNMT1N, consistent with a
monomeric state (Fig. 3G). The overall shape of DNMT1N

was calculated by ab initio model reconstruction using
GASBOR and DAMMIF from the ATSAS SAXS data analysis
software package (28). GASBOR reconstructs the protein
structure by a chain-like ensemble of dummy residues while
DAMMIF does the reconstruction through assembly of
densely packed spheres. Superposition of the NMR structure
with the envelopes generated from DAMMIF and GASBOR
showed good fit to both envelopes (Fig. 3H). Further evalua-
tion using FoXS (29) demonstrated high consistency of the
SAXS data with the DNMT1N NMR ensemble (Fig. 3I). The
SAXS and NMR approaches indicate that DNMT1N is a
monomer in solution.
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DNMT1N adopts a novel fold

A search using the DALI server against the Protein Data Bank
and AlphaFold-predicted human proteome (30–32) identified
an N-terminal motif in human DNMT1 that closely matches
our DNMT1N NMR structure (Fig. 4A). The root mean square
deviation (r.m.s.d.) between the lowest energy NMR structure
and the predicted model was 1.56 Å for the backbone Cα, C, and
N atoms of residues Glu22 to Leu90 (Fig. 4B). No other pre-
dicted protein structures exhibited a similar arrangement of
four α-helices. Therefore, we conclude that DNMT1N adopts a
novel fold. No other secondary structure elements were pre-
dicted beyond DNMT1N and before the RFTS domain.
RoseTTAFold (33) also produced a structure comparable to that
of DNMT1N (r.m.s.d. = 2.31 Å for the backbone Cα, C, and N
atoms of residues Glu22 to Leu90), but with a 33-residue C-
terminal helical extension to the fourth α-helix, not present in
the experimental structure (Fig. 4C).
Discussion

We discovered a new folded domain of unknown function
at the N terminus of DNMT1 (DNMT1N). Due to the chro-
matin association properties of DNMT1 (34), we investigated
the binding of DNMT1NL to the nucleosome core particle,
but no interaction was detected (data not shown). However,
there are clues that DNMT1N has regulatory roles. Notably, it
has been shown that through alternative RNA splicing of a
sex-specific exon, DNMT1 from mammalian oocytes lacks a
segment that matches DNMT1N and is sequestered in the
cytoplasm (35). Moreover, there is evidence that DNMT1N

interacts with the E-cadherin transcriptional repressor
SNAIL1, with speculation that DNMT1 promotes gene
expression by impeding the interaction of SNAIL1 with the E-
cadherin promoter (36, 37). It has also been reported that
DNMT1N interacts with DMAP1, a protein that preferentially
activates DNMT1-mediated DNA methylation at sites of
homologous recombination repair in response to DNA
double-strand breaks (38, 39). In addition, deletion of
DNMT1N in breast cancer cell lines was shown to diminish
the histone deacetylase inhibitor LBH589-induced
ubiquitylation-dependent degradation of DNMT1 and resul-
ted in genomic hypermethylation (40). Consistently, an iso-
form of DNMT1 that lacks the N-terminal domain exhibited
higher stability than full-length DNMT1 in vivo (41, 42). The
underlying mechanism is unclear but likely involves cross-
talks among several different post-translational modifications
on DNMT1, such as methylation and acetylation. Intriguingly,
Lys70 in DNMT1N was found to be methylated by protein
methyltransferase G9a (43, 44). Whether or not this modifi-
cation contributes to the regulation of DNMT1 level in cells
has not been investigated.

In conclusion, because the structure of DNMT1N represents
a novel fold, it cannot be used to suggest a possible function.
However, based on what has been published so far, we can
speculate that this helical domain is a protein-interaction
module. The structure of DNMT1N will be helpful for the
J. Biol. Chem. (2024) 300(3) 105775 5
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rational design of single-point mutations aimed at deciphering
the function of this domain using cell biology approaches.

Experimental procedures

Protein expression and purification

The N-terminal domain of human DNMT1 (residues
16–134), denoted as DNMT1NL, was cloned with a tobacco
etch virus protease cleavable N-terminal His6-tag in a pET15b-
derived expression system. A shorter version (residues 16–93),
denoted as DNMT1N, was made by inserting a stop codon
(TAA) after Glu93. All proteins were produced in BL21(DE3)
E. coli cells grown in M9 media prepared with 15N-labeled
NH4Cl and unlabeled or 13C-enriched glucose. The cells were
initially grown at 37 �C to an A600 of �0.5, then at 15 �C to an
A600 of �0.6 before being induced with 1 mM isopropyl β-D-1-
thiogalactopyranoside for 16 h. The harvested cells were lysed
using an EmulsiFlex C5 homogenizer (Avestin). The proteins
were initially purified by Ni2+-nitrilotriacetic acid agarose
chelation chromatography (QIAGEN) using buffers of 50 mM
sodium phosphate, pH 7.5, 300 mM NaCl with 5-, 20- and
200-mM imidazole for the binding, washing, and elution steps,
respectively. The His6-tags were cleaved by overnight incu-
bation with tobacco etch virus protease at 4 �C. The proteins
were further purified by size-exclusion chromatography using
a HiLoad 16/60 Superdex 75 column (Cytiva) and a running
buffer of 50 mM sodium phosphate, pH 7.5, 300 mM NaCl.

NMR spectroscopy

All NMR experiments were performed at 25 �C using a
Bruker Avance III 700 MHz spectrometer equipped with a
triple-resonance cryoprobe. The NMR buffer for the 15N- and
15N-/13C-labeled DNMT1N and DNMT1NL protein samples
was 20 mM MES/Bis-Tris, 50 mM NaCl, pH 6.0. The NMR
spectra were processed with NMRPipe (45) and analyzed using
SPARKY 3.115 (T. D. Goddard and D. G. Kneller, SPARKY 3,
University of California, San Francisco). For resonance as-
signments, 13C,15N-labeled DNMT1N and DNMT1NL were
used to collect a series of standard triple-resonance spectra
including HNCO, HN(CA)CO, HNCA, HN(CO)CA,
HNCACB, CBCA(CO)NH, HCCH-COSY, HCCH-TOCSY,
and HBHA(CO)NH (46–48). We were able to assign 96.6% of
the backbone and 78.3% of the sidechain carbon, proton, and
nitrogen resonances.

The 15N NMR relaxation studies were carried out on both
15N-labeled DNMT1N and DNMT1NL. Longitudinal (R1) and
transverse (R2) relaxation rates for backbone 1H-15N and 15N-
{1H} steady-state NOEs were measured on these samples and
analyzed using established methods (49–51). Ten relaxation
delays (100, 300, 500, 600, 800, 1000, 1200, 1500, 1600, and
2000 ms) were used for R1, while 11 (4, 8, 16, 20, 28, 32, 40, 60,
80, 100, and 200 ms) were used for R2. The

15N-{1H} NOE
ratios were obtained from a reference experiment without
proton irradiation and a steady-state experiment with proton
irradiation for 3 s. The standard deviations of 15N-{1H} NOEs
6 J. Biol. Chem. (2024) 300(3) 105775
were calculated based on the measured background noise
levels, as previously reported (49), using Equation 1:

σNOE

NOE
¼
 �

σIsat
Isat

�2

þ
�
σIunsat
Iunsat

�2
!1

2

(1)

where Isat and Iunsat are the measured intensities of the reso-
nances in the presence and absence of proton saturation,
respectively. σIsat and σIunsat are the standard deviations of the
noise in the spectra.

For structure determination of DNMT1N, distance restraints
were obtained from the analysis of 3D 15N-edited NOESY
HSQC spectra collected in 90%/10% H2O/D2O and 13C-edited
NOESY HSQC spectra collected in 90%/10% H2O/D2O and in
100% D2O. The mixing time for these experiments was 160 ms.
In total, 937 NOE-based distance restraints were used and
categorized into seven bins with upper limits of 3.0, 3.5, 4.0, 4.5,
5.0, 5.5, and 6.0 Å. Also included in the structure calculations
were 132 backbone dihedral angle u and ψ restraints derived
from the analysis of Hα, HN,

13Cα,
13Cβ,

13C, and 15N chemical
shifts using TALOS+ (52) and 47 1H-15N RDC restraints out of
60 that were measured. The RDCs were measured in a 5%
pentaethylene glycol monododecyl ether (C12E5)/95% n-hex-
anol mixture using 2D 1H-15N IPAP HSQC experiments
(53–55). The RDC alignment tensor magnitude Da and rhom-
bicity used in the structure calculations were −11.00 and 0.61,
respectively. The structures were calculated and refined using
XPLOR-NIH by employing a simulated annealing protocol for
torsion angle dynamics (56, 57). A total of 200 structures were
initially calculated, from which 30 structures with the lowest
energies were used for further refinement.

A total of 60 measured RDCs, 47 of which were used for
structure calculations, were compared to RDCs back-
calculated from the 30 NMR structures using PALES (58),
giving a Pearson’s linear correlation coefficient of 0.97. The
quality factor Q factor (59), which evaluates the agreement
between the RDCs back-calculated from the structures and the
observed RDCs, was used as a figure of merit for the goodness
of fit of the calculated structures to the experimental data. In
Equation 2, Q is the quality factor; RMS stands for root mean
square; Dcalc and Dobs are the back-calculated and measured
residual dipolar couplings, respectively.

Q¼RMS ðDcalc−Dobs Þ
RMS ðDobsÞ (2)

All molecular representations were generated using PyMOL
(The PyMOL Molecular Graphics System, Schrödinger, LLC
— https://pymol.org/2/). The electrostatic potential was
calculated using APBS (60).

Small-angle X-ray scattering

The SAXS data were collected at the SIBYLS beamline
12.3.1, Advanced Light Source, Lawrence Berkeley National

https://pymol.org/2/
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Laboratory, on several DNMT1N samples (Table S1). For each
sample, the scattering intensities were measured at three
different protein concentrations (1, 2, and 3 mg/ml), demon-
strating the absence of concentration dependence. Three
different exposure times of 0.5, 1.0, and 5.0 s were used for
each sample, and data were monitored for radiation damage-
dependent aggregation. Scattering data were plotted as a
function of q = 4π[sin(θ/2)]/λ, where θ is the scattering angle
and λ is the X-ray wavelength, subtracting for each curve the
scattering data collected for just the buffer alone. The curves
were rescaled for the solute concentrations and extrapolated to
infinite dilution. All data analyses were performed using PRI-
MUS, version 3.0, from ATSAS 2.4.2 (28). GNOM was used to
generate the pair distance distribution function (P(r)) from
which the maximum particle dimension (Dmax) was estimated.
The radius of gyration (Rg) was estimated using the Guinier
plot (61). Divergent low-q data points exhibiting artifacts from
beam-stopper scattering and data points of q >0.25 Å−1 were
not included in Guinier and P(r) analysis. The output of
GNOM was used as input for DAMMIF to calculate the
overall shape of DNMT1N. Twenty independent runs were
conducted, and the generated models were averaged using
DAMAVER to build a consensus molecular envelope. An ab
initio envelope was also created using GASBOR as a com-
parison. SUPCOMB was used to superimpose the ab initio
envelopes and NMR structures. The various software,
including PRIMUS, GNOM, DAMMIF, DAMAVER, GAS-
BOR, and SUPCOMB, were all from the ATSAS 2.4.2 program
package (28).
AlphaFold2 and RoseTTAFold predictions

The DNMT1NL 3D structure predictions were performed
using the AlphaFold2 Colab server (https://colab.research.
google.com/github/sokrypton/ColabFold/blob/main/AlphaFol
d2.ipynb) and RoseTTAFold server (robetta.bakerlab.org).
Data availability

Coordinates for the NMR ensemble have been deposited in
the Protein Data Bank with accession number 8V9U. NMR
chemical shift assignments have been deposited in the Bio-
logical Magnetic Resonance Data Bank with accession
number 31134.
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