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The influence of cortical activity on
perception depends on behavioral state and
sensory context

Lloyd E. Russell 1, Mehmet Fişek1, Zidan Yang1, Lynn Pei Tan1,
Adam M. Packer 1, Henry W. P. Dalgleish1, Selmaan N. Chettih2,
Christopher D. Harvey2 & Michael Häusser 1

The mechanistic link between neural circuit activity and behavior remains
unclear. While manipulating cortical activity can bias certain behaviors and
elicit artificial percepts, some tasks can still be solved when cortex is silenced
or removed. Here, mice were trained to perform a visual detection task during
which we selectively targeted groups of visually responsive and co-tuned
neurons in L2/3 of primary visual cortex (V1) for two-photonphotostimulation.
The influence of photostimulation was conditional on two key factors: the
behavioral state of the animal and the contrast of the visual stimulus. The
detection of low-contrast stimuli was enhanced by photostimulation, while the
detection of high-contrast stimuli was suppressed, but crucially, only when
mice were highly engaged in the task. When mice were less engaged, our
manipulations of cortical activity had no effect on behavior. The behavioral
changes were linked to specific changes in neuronal activity. The responses of
non-photostimulated neurons in the local network were also conditional on
two factors: their functional similarity to the photostimulated neurons and the
contrast of the visual stimulus. Functionally similar neurons were increasingly
suppressed by photostimulation with increasing visual stimulus contrast,
correlating with the change in behavior. Our results show that the influence of
cortical activity on perception is not fixed, but dynamically and contextually
modulated by behavioral state, ongoing activity and the routing of informa-
tion through specific circuits.

The perception of a sensory stimulus is modulated by the behavioral
state in which it is experienced – successful detection of a stimulus can
be increased during periods of arousal or attention1,2. The neural
representation of the same sensory stimulus is also modulated by
behavioral state3–5 – stimulus-evoked responses are typically enhanced
when subjects are alert. The behavioral state of an animal is a latent
variable and can be inferred in a number of ways. Firstly, the arousal of
an animal is thought to be under control of neuromodulatory activity

primarily arising from the locus coeruleus6,7, which can influence the
dilation and constriction of the pupil8, with high mental effort and
arousal associated with larger pupil sizes9. A second manifestation of
behavioral state is the synchronizationof neural activity3,10. At opposite
extremes, sleep is associated with synchronized activity, while wake-
fulness is associated with desynchronization. The modulation of cor-
tical responses by behavioral state11–14, task outcome15, and task
demands16,17 has been extensively investigated. However, how the
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modulation of cortical activity by state or stimulus corresponds to the
influence of the cortex on behavior has largely been studied using only
correlational methods18,19. While the correlational approach has yiel-
ded important insights, the absence of cellular-level manipulations of
the activity patterns means a cause-and-effect relationship between
the observations cannot be established.

Classical experiments have shown that electrically stimulating
specific cortical areas can bias sensory perception20–26 and elicit arti-
ficial percepts27–30. Optogenetic stimulation of cortex has confirmed
and extended these findings31–33. In all of these experiments the func-
tional identity of activated neurons was largely unknown, as was the
number of activated cells. With the advent of new techniques that
enable activation of a known number of functionally characterized
cells, a view is emerging thatperception canbe initiated, or biasedby, a
small number of specific neurons34–40. However, challenging even the
basic requirement of cortical neurons to solve some tasks, reversible
silencing41–45 or permanent lesioning46–49 of cortex have produced
contradictory findings about the necessity of cortical activity for per-
ception and behavior50–52.

Consequently, we lack a clear mechanistic link between cortical
activity, how it engages local and downstream circuits, and ultimately
how and when that activity influences a behavior of interest. To
reconcile thesedisparate results andbeginbuilding a complete picture
of how and when cortical activity leads to perception, we need to
investigate the perceptual influence of specific patterns of neural
activity during the processing of different stimuli in a variety of
behavioral tasks and states.

To probe the influence of stimulus-relevant patterns of cortical
activity on local network activity and behavior, we performed two-
photon population calcium imaging of a volume of L2/3 V1 while
simultaneously using two-photon holographic optogenetics53–57 to
activate specific groups of neurons in mice performing a visual
contrast-varying detection task. We targeted groups of neurons based
on their tuning for visual stimuli to ask whether increased neural
activity in relevant neuronal ensembles leads to increased behavioral
detection. This in vivo all-optical approach58–67 also allowed us to
assess the functional influence of the stimulated cells on the local
network. Importantly, behavioral state was continuouslymonitored by
measuring pupil size and neuronal synchrony and was used to index
each behavioral session into states of higher and lower engagement,
allowing us to investigate the impact of additional cortical activity
during these different behavioral states. We found that photo-
stimulation of task-relevant cells – defined as cells that preferentially
respond to the orientation of visual stimulus selected for the detection
task – impacted the non-photostimulated local network in a way that
depended on the functional identity of the cells and the contrast of the
visual stimulus. When the visual stimulus contrast was high, responses
of neurons functionally similar to the photostimulated ensemble were
more strongly suppressed than other cells. When the contrast was low
these neurons were suppressed less than other cells. The effect of
photostimulation on the animal’s behavioral report followed a similar
pattern, whereby the detection of high contrast stimuli was sup-
pressed, but the detection of low contrast stimuli was enhanced. This
behavioral effect, and the linking of cortical activity to behavior, was
only present when mice were most engaged in the task. A gradual
decrease in task engagement transitioned mice from a state where
additional cortical activity bidirectionally influenced their behavior to
one where such activity had no reliable impact.

Results
Behavioral state and task performance
To allow all-optical interrogation in visual cortex of mice performing a
visually guided behavior, we co-expressed the calcium sensor
GCaMP6s68–70 with the excitatory, somatically-restricted opsin C1V171,72

in pyramidal cells of L2/3 V1. Mice were head-fixed and trained to

perform a visual stimulus detection task (Fig. 1a, b) where after with-
holding licks for a random interval, a water reward could be obtained
for successfully licking to report the appearance of a small drifting
grating patch of randomized orientation (Fig. 1c, d). Mice learned the
task quickly with a maximal contrast stimulus, reaching a high level of
stable performance within days (Supplementary Fig. 1). Lowering the
stimulus contrast reduced performance on the task (Fig. 1e, Supple-
mentary Fig. 1). To assess the relationship between cortical activity,
behavior and behavioral state, we recorded the animal’s pupil size and
neuronal synchrony throughout the behavioral session as ameasureof
arousal or alertness13,73,74. We observed a significant correlation
between the size of the pupil and the degree of neuronal synchrony
(Supplementary Fig. 2).We found that on threshold-stimulus trials (the
stimulus contrast at which animals detected the stimulus on approxi-
mately half the trials), successful detections (hits) were associatedwith
a more dilated pupil and lower neural synchrony in the period before
the stimulus was presented (Fig. 1f, g; pupil diameter (normalized
relative to the median of the session) on hits: +2.5 ± 10.8% vs misses:
−6.6 ± 13.7%, P =0.006Wilcoxon signed-rank test; neuronal synchrony
(average pairwise Pearson’s correlation coefficient) on hits:
0.0014 ± 0.0009 vs misses: 0.0024 ±0.0021, P <0.001, Wilcoxon
signed-rank test). Based on this, we defined two behavioral states: one
associated with a large pupil size and low neuronal synchrony, and the
other with a smaller pupil size and higher neuronal synchrony (Fig. 1h).
We split each session into these two states, indexing each trial by the
pupil size and neuronal synchrony in the period before the stimulus
appeared, and then compared the resulting psychometric curves
between the two states (Fig. 1i).We found that performancewashigher
in the state with larger pupil size and lower neuronal synchrony –

corresponding to a more-engaged state – consistent with previous
reports4,75–77 (Fig. 1i, d-prime averaged across all contrasts in the more-
engaged state vs the less-engaged state: 1.52 ± 1.13 vs 1.32 ± 1.05,
P =0.0002 Wilcoxon signed-rank test). The more engaged state was
also characterized by a greater detection sensitivity (Fig. 1j, width of
psychometric curve in the more-engaged state vs the less-engaged
state: 7.5 ± 8.3 vs 15.0 ± 15.2, P =0.012 Wilcoxon signed-rank test) and
lower stimulus contrast threshold (Fig. 1j, threshold of psychometric
function in the more-engaged state vs the less-engaged state:
3.88 ± 1.47 vs 4.59 ± 2.11, P =0.042 Wilcoxon signed-rank test) reflect-
ing greater arousal or engagement in the task75,78,79. Importantly, we
note that the less-engaged state does not correspond to a completely
disengaged state, as micewere still performing the task to a high level.
This subtle but clear distinction provides the opportunity to quanti-
tatively compare conditions under which cortical activity may or may
not play a role in shaping simple behaviors.

Behavioral effects of targeted photostimulation
To test the influence of activity in a stimulus-encoding population of
neurons in V1 during different behavioral states, we targeted multiple
cells for two-photon optogenetic photostimulation while recording
the resulting neuronal and behavioral changes. We first identified the
retinotopically appropriate and co-expressing field of view and then
mapped the visual stimulus-responsive and photostimulation-
responsive neurons (Fig. 2a, b). We then selected the maximum
number of photostimulation-responsive neurons that shared the same
visual stimulus orientation preference (median ~20neurons, Fig. 2c–e).
Theorientationof the visual stimulus for thedetection taskwaschosen
to match the orientation preference of this neuronal ensemble. While
the mice were performing the contrast-varying detection task, we
photostimulated these co-tuned ensembles on a random subset of
trials with and without concurrent visual stimulus presentation
(Figs. 1c, d and 2f). Intriguingly, we observed a reliable effect of pho-
tostimulation on behavior only when the animal wasmore engaged. In
this large pupil, low synchrony state, targeted photostimulation of ~20
neurons enhanced the detection of lower contrast visual stimuli, while
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the same photostimulus suppressed the detection of higher contrast
visual stimuli (Fig. 2f, h; width of psychometric curve in the less
engaged state without vs with photostimulation: 15.0 ± 15.2 vs
13.3 ± 32.5,P =0.130Wilcoxon signed-rank test.Width of psychometric
curve in the more engaged state without vs with photostimulation:
7.5 ± 8.3 vs 25.4 ± 51.6, P =0.0015Wilcoxon signed-rank test. Themore-
engaged state vs the less-engaged state, repeated measures ANOVA,

interaction of contrast and state P = 0.009). Taken together, photo-
stimulation acted to widen the psychometric function, reducing
sensitivity80 (Fig. 2g; change in width in the more-engaged state vs the
less-engaged state: 17.9 ± 49.2 vs −1.8 ± 35.8, P = 0.036 Wilcoxon
signed-rank test) without changing the threshold (change in threshold
in the more-engaged state vs the less-engaged state: −0.2 ± 1.6 vs
−0.4 ± 2.4, P =0.982 Wilcoxon signed-rank test). In other words,
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increasing the activity of stimulus responsive neuronswhen the animal
is most engaged in the task enhanced the detection of subthreshold
stimuli, but suppressed the detection of suprathreshold stimuli (see
also Supplementary Fig. 3).When the animalwas less engaged (but still
performing the task), we did not observe a reliable effect of cortical
stimulation on behavior. Thus, behavioral state gates the effect of
photostimulation, and photostimulation has a bidirectional effect
depending on the contrast of coincident visual stimulation. Taken
together, this suggests that primary visual cortex serves different roles
depending on stimulus regime and the state of the animal.

Network effects of targeted photostimulation
To explore the circuitmechanisms underlying the behavioral effects of
photostimulation, we investigated the influence of photostimulation
on downstream neurons. We used two-photon calcium imaging to
simultaneouslymeasure the activity in the local circuit during behavior
with and without photostimulation in the two behavioral states. First,
in the visual stimulus-only trials, we observed that increasing contrast
increased population activity (Fig. 3a). The population average
visually-evoked responses were larger in the more engaged state
(Fig. 3b; average response magnitude in less-engaged vs more-
engaged state: 0.029 ± 0.015 vs 0.031 ± 0.018, P < 0.0001 Wilcoxon
signed-rank test; ref. 74), similar to the response modulation during
locomotion12,14. These enhanced neural responses were strongest at
10% stimulus contrast and reflect the enhancedbehavioral detectionof
the samestimuli (Fig. 1i). This neural enhancement in the engaged state
held even when controlling for the different proportions of hit and
miss trials (and thus the related motor or reward confounds) between
the engagement states.

Does this enhanced excitability in the more engaged state
underpin the gating of behavioral effect to photostimulation? We first
analyzed how targeted photostimulation engages the local circuitry
(Fig. 3c). We looked at the responses of either the directly targeted
(Fig. 3d) or the non-targeted (background) subpopulations (Fig. 3e) on
trialswith andwithoutphotostimulation, across thedifferent contrasts
and behavioral states. As before, we observed increasing activity in
both populations as the visual stimulus contrast increased, with more
activity on average in the engaged state. When the target cells were

photostimulated, their activity was enhanced considerably as expec-
ted. In addition, a behavioral state dependence was observed: photo-
stimulation was more effective in the engaged state, with larger
photostimulation-evoked responses in the targeted cells (Fig. 3d;
change in activity in target cells on less-engaged vs more-engaged
trials: 0.68 ±0.19 vs 0.81 ± 0.22, P <0.0001Wilcoxon signed-rank test).
Conversely, the average activity of the non-targeted background cells
was suppressed by photostimulation, butwe observed nodifference in
the level of suppression between the states (Fig. 3e; activity in back-
ground cells on less-engaged vs more-engaged trials: −0.005 ±0.008
vs −0.005 ± 0.007, P =0.231 Wilcoxon signed-rank test) suggesting
that the photostimulated cells recruit similar levels of local inhibition
regardless of behavioral state. We investigated the effect of titrating
the number of stimulated cells and observed that increasing the
number of directly stimulated cells increased the amount of suppres-
sion of other cells in the network (Supplementary Fig. 5; ref. 34). In
more engaged states the excitatory/inhibitory (E/I) balance is shifted
towards excitation81 consistent with the enhanced target cell response
to direct photostimulation as observed in our data. However, the
predominant effect of background suppression, with no difference
between engagement states, confirms the dominance of inhibitory
connections in cortical circuitry82–89, revealing highly effective stabili-
zation of network activity in either state, despite the E/I balance being
shifted towards excitation.

To characterize the spatial spread of responses through the local
network caused by photostimulation we constructed a
photostimulation-triggered spatial average of the change in activity in
all cells across all photostimulation trials aligned to the nearest target
stimulation site. This analysis positions thedirectly targeted cells at the
center of the map and the other cells in the local network relative to
them (Fig. 3f). The activity-enhanced cells were localized in a narrow
zone around each target site, corresponding to direct photostimula-
tion, as well as potential synaptic recruitment of other cells (Supple-
mentary Fig. 8). We observed a pronounced annulus of suppressed
cells around the directly targeted cells (Fig. 3f) producing a center-
surround motif of enhancement and suppression. No difference in
spatial profile of the network influence of photostimulation was seen
between behavioral states.

Fig. 1 | Visual stimulus detection ismodulatedbybehavioral state. a Experiment
schematic. Mice coexpress GCaMP6s and C1V1-Kv2.1 in excitatory neurons of L2/3
V1 enabling simultaneous two-photon calcium imaging and two-photon holo-
graphic stimulation. Mice are head-fixed and trained to perform a visual stimulus
detection task. Pupil size is recorded with a camera. b Timeline of animal pre-
paration, training, and experiment. c Behavioral trial structure. After withholding
licks for a randomized interval (4 ± 3 s) a stimulus (visual and/or optogenetic) is
presented to themouse. When a visual stimulus is presented themouse has 1.5 s to
lick the lickometer in order to receive a water reward. Neural analysis is performed
in the 1 s immediately following stimulus offset (to avoid photostimulation artifact)
using the 1 s immediately prior to the stimulus as baseline. The state of the animal is
measured in the 4 s preceding the delivery of the stimulus. d Behavioral session
structure. 12 different trial types are presented to the mouse in a pseudorandom
blocked structure. Visual-only trials (40%of session) of varying contrast (1%, 2%, 5%,
10% and 100%) are interleavedwith Visual+Photostimulation trials (40% of session)
where a 1 s 20Hz photostimulation is delivered coincident with the visual stimulus.
Catch trials (20% of session) with and without photostimulation are delivered to
assess chance licking probabilities. Any trial with a visual stimulus is rewarded if the
mouse responds during the response window. e Example lick raster plot. Trials
were deliveredpseudorandomizedbut are shown sortedby stimulus contrast. Gray
dots indicate lick responses, with the first lick (reaction time) highlighted in black.
Right: the simultaneously recorded pre-trial pupil size, neuronal synchrony and
running speed are shown for each trial.Orange indicates large values, blue indicates
small values. f Pupillometry is performed throughout the behavioral session. Large
and small pupil sizes are seen (left) reflecting different behavioral states. Stimulus
triggered average pupil traces are averaged across all hit or miss trials of threshold
stimuli, and then averaged across sessions (middle). On visual-only threshold trials

hits (mice lickedwithin responsewindow) are associatedwith a larger pupil prior to
the stimulus delivery (right). Error bars show mean± SEM across sessions,
n = 28 sessions, 12 mice. g Neuronal synchrony in the pre-trial period is computed
as the average pairwise correlation between all pairs of cells’ deconvolved activity
traces. Periods of low and high synchrony are seen (left) reflecting different
behavioral states. Stimulus triggered average correlation traces are averagedacross
all hit or miss threshold trials, and then averaged across sessions. Note the traces
aremadewith a 4 s sliding window hence the synchrony appears to increase before
the stimulus is delivered (middle). On threshold contrast visual-only trials hits are
associated with a lower level of synchrony prior to the stimulus delivery (right).
Error bars show mean ± SEM across sessions, n = 28 sessions, 12 mice. h Each ses-
sion is median-split into two collections of interspersed trials, based on pupil size
(normalized relative to the median size in the session) and network synchrony
(average pairwise Pearson’s correlation coefficient between all recorded neurons)
on each trial preceding stimulus delivery. The more engaged state contains trials
with the largest pupil sizes and lowest neuronal synchrony. The less engaged state
contains trials with the smallest pupil sizes and highest neuronal synchrony. Each
dot represents the average pupil size and synchrony for that state of a given ses-
sion. Gray lines connect the two states in a given session (n = 28 sessions, 12 mice).
i The behavior of the mice differs in the two states. The “more engaged” state, the
state with large pupil size and low neuronal synchrony, is associated with higher
stimulus detection rates, as expressed by higher d-prime values. Error bars show
mean ± SEM across sessions. j The psychometric function is steeper (left) andmore
sensitive (right) when the animal is engaged. Error bars show mean± SEM across
sessions, n = 28 sessions, 12 mice. The insets above the plots illustrate the mea-
surement of psychometric curve width (left) and threshold (right).

Article https://doi.org/10.1038/s41467-024-46484-5

Nature Communications |         (2024) 15:2456 4



These findings suggest that the contrast-dependent behavioral
effect of stimulating L2/3 V1 neurons (Fig. 2f–h) cannot be explained
simply by the influence stimulated neurons have on the overall activity
level of the local circuit, because the change in overall activity (pooled
over target and background populations) across contrasts and states
remains relatively constant (Supplementary Fig. 6).

Functional similarity defines the network effects of targeted
photostimulation
It is known that functionally similar neurons are more highly
interconnected72,88,90,91, forming subnetworks which may facilitate
computations to enhance the detection or discrimination of sensory
stimuli92. To ask if different subnetworks of neurons respond differ-
ently across contrasts, we characterized the functional similarity of
each recorded neuron relative to the photostimulated cell population.
Wedefined similarity as the correlationof a neurons’ contrast response
curve with the average contrast response curve of all target neurons.
This contrast response curve describes how neurons respond to the
behaviorally relevant visual stimulus of increasing contrasts of a fixed
drifting orientation (discrimination of orientation of the stimulus
being behaviorally irrelevant in our task). The contrast-response curve
of a given neuron is linked to the visual stimulus responsivity of each

cell and implicitly linked to the orientation preference (neurons pre-
ferring the displayed orientation will respond more strongly). Using
the similarity of contrast curves between a background cell and the
target neurons, we found that background cells which aremore similar
to target neurons in terms of their contrast response curves are also
more similar to target neurons in terms of their visual response mag-
nitude, trial-by-trial correlation and their orientation tuning curves
(Supplementary Fig. 7A–D). We therefore refer to the contrast curve
correlation between background and target cells, which captures
intrinsic contrast responses as well as potential indirect network
interactions, as our measure of behaviorally relevant functional
similarity.

The functional similarity of background cells determines their
response to target cell photostimulation. Using our measure of func-
tional similarity we binned cells into groups of increasing similarity to
the target population.We then plotted the response of each group as a
function of visual contrast for visual-stimulation-only trials (Fig. 3g,
left), for visual-and-photostimulation trials (Fig. 3g, middle) and the
difference between the two (Fig. 3g right). Importantly, to cross-vali-
date, we measured functional similarity using one half of all trials and
measured visual and photostimulation responses using the other half.
Sorting cells in this way again reveals increasing neural response
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magnitude as the stimulus contrast increases (Fig. 3g, left), with cells
functionally similar to the target cells responding positively to the
visual stimuli and functionally dissimilar cells responding negatively.
However, when looking at the change in activity caused by photo-
stimulation – which was suppression on average across the whole
background population – we observed a strong stimulus contrast
dependence to the suppression of the most functionally similar neu-
rons. Neurons that aremost similar to the targeted neurons, which are
more responsive to the behaviorally relevant visual stimulus, were
increasingly more suppressed by photostimulation as visual contrast
increased, whereas functionally dissimilar neurons were not (Fig. 3g
right, h). As a result, in addition to a significant effect of contrast on the
photostimulation response, there was also a statistically significant
interaction between visual contrast and functional similarity (2-way
ANOVA grouped by contrast and similarity: effect of contrast
F(4) = 11.9, P <0.001; effect of similarity F(19) = 2.9, P <0.001; interac-
tion of contrast and similarity F(76) = 2.5, P <0.001). To summarize
these effects, we next measured the slope of photostimulation
induced change in activity as a function of contrast and plotted it
against normalized similarity (Fig. 3i. Linear fit R2 = 0.94, P <0.001).
This analysis showed that photostimulation induces a change in
activity that depends systematically on how similar a neuron is to the
targeted population. Themore similar the responding neuron is to the
targeted population, the more effective photostimulation is in sup-
pressing it at high contrast. We observed similar contrast and
functional-identity dependent patterns of influence when the similar-
ity metric is contrast response similarity as above, orientation tuning
curve similarity or the magnitude of visual responses (Supplementary
Fig. 7E–J).

Linking network activity to behavior
To relate the pattern of photostimulation-mediated changes in net-
work activity (Fig. 3g, h) to thebehavioral changes (Fig. 2h), we focused

on the threshold and threshold-adjacent contrast levels (reasoning
that performance on the lowest contrast was unaffected by photo-
stimulation because it is far below the detection limit, and that per-
formance on the maximum contrast was unchanged because it is
saturated). Since we showed that the effect of photostimulation on
network activity depended on the functional identity of the cells in the
network, we reasoned that any relationship between the network
effects and behavioral effects of photostimulation must also depend
on functional identity. We therefore examined each group of neurons
characterized by their functional similarity individually (Fig. 4a, left).
For example, we collected across all sessions the group of neurons
most functionally similar to the targeted neurons and plotted the
effect of photostimulation on their activity against the effect of pho-
tostimulation on behavior from those sessions (Fig. 4a, top right). We
thenmeasured the correlation of these network effects and behavioral
effects, and refer to this measurement as the neural-behavioral cou-
pling. We then repeated this analysis for each functional similarity
group and plotted the neural-behavioral couplings as a function of
similarity (Fig. 4a, bottom right; Fig. 4b, orange data). We performed
the same analysis for data obtained in the disengaged state (Fig. 4b,
blue data). We found that the neural-behavioral coupling of a given
population of neurons was systematically related to the functional
similarity of thoseneuronswith the photostimulated neurons, with the
coupling between neural and behavioral effects increasing as the
functional similarity to the target neurons increases (mean correlation
coefficient across resamples r = 0.19, P < 0.001 with respect to the
shuffled distribution). Importantly, the same was not true of data
obtained during the disengaged state (mean correlation coefficient
across resamples r = −0.04, P = 0.279 with respect to the shuffled dis-
tribution). This indicates that the network effects of exogenous cor-
tical activation can explain behavioral effects only when activation is
performed during engaged states, and only when one interrogates the
appropriate task-relevant neurons.

Fig. 2 | Targeted photostimulation of stimulus coding neurons in L2/3 V1
bidirectionally modulates stimulus detection when mice are engaged in
the task. a From left to right, first panel: One-photon widefield imaging is per-
formed while presenting drifting bars to themouse to locate primary visual cortex.
The two-photon FOV is positioned in a region with good GCaMP and opsin
expression. The task visual stimuli are positioned in the retinotopically appropriate
location. Scale bar represents 1mm. Second panel: Example FOV (one plane from a
4-plane volume) showing construct expression inL2/3mouseprimary visual cortex.
GCaMP6s is expressed transgenically and C1V1-Kv2.1 is expressed virally through
injection. Third panel: Visual stimulus orientation preference map. 4 different
orientations of drifting gratings are presented to the mouse. Pixel intensity is dic-
tated by the stimulus triggered average response magnitude. Hue corresponds to
preferred stimulus orientation. Fourth panel: Photostimulation responsivity of the
FOV to clustered randomized photostimulation. The majority of recorded cells
were grouped into 76 different clusters of 50 cells each (distributed across 4
planes) and targeted for sequential photostimulation to confirm responsivity prior
to the experiment. Pixel intensity indicates the change in fluorescence caused by
photostimulation. Color corresponds to the photostimulation clusterwhich caused
the largest change in activity. White circles indicate example targets within this
plane ultimately selected for targeted photostimulationof a co-tuned ensemble. All
scale bars 100μm. Examples shown are from one representative experiment but
were repeated for each experiment in this study (n = 28 sessions, 12 mice). b Left:
Example traces from the visual responsemapping blockof the experiment (prior to
the behavioral task). Vertical lines indicate stimulus onsets with color indicating
orientation (dashed lines for orientations over 135 degrees). Right: Example traces
from the photostimulation responsemapping block. Vertical lines indicate clusters
of cells stimulated as a group. Cells are sorted by photostimulation cluster (in this
experiment clusters were determined by orientation preference). c Example co-
tuned stimulation ensemble. In this experiment 28 neurons were selected based on
their responsivity to visual and optogenetic stimuli in b. Left: average responses to
the drifting gratings of various orientations. Single lines represent individual

neurons, thick black line indicates ensemble average. This ensemble shares a pre-
ference for 90 and 270 degree stimuli. Black triangle indicates the orientation of
visual stimulus chosen for the remainder of this session. Middle: The ensemble
response to photostimulation. Right: The spatial configuration of the neurons
selected for stimulation. d Pixel-wise stimulus-triggered average (STA) showing the
response of the FOV to the stimulation pattern from c. Red circles indicate target
neurons on that imaging plane. Fade circles show all targets collapsed across
planes. Scale bar represents 100μm. eBoxplots showing the number and co-tuning
of the photostimulatedneurons across all experiments. Box shows the interquartile
range (IQR), the plus sign shows the mean, solid line the median, and the whiskers
denote 1.5 times the IQR (n = 28 sessions, 12 mice). f Photostimulation of co-tuned
ensembles was paired with visual stimuli. Sessions are split into two states as in Fig.
1, here renamed to a ‘less engaged’ and a ‘more engaged’ state. Black lines indicate
performance on visual-only trials. Red lines indicate performance on visual+pho-
tostimulation trials. Inset: Width of fitted psychometric curve. Error bars and
shading show mean± SEM across sessions, n = 28 sessions, 12 mice. Statistical test
was two-sided Wilcoxon sign rank test, ** denotes P <0.01. g The effect of photo-
stimulation manifests as an increase in the width of fitted psychometric curves
(n = 28 sessions, 12 mice). There was no change to the threshold of the psycho-
metric functions. Error bars showmean± SEM across sessions. Statistical tests were
two-sided Wilcoxon sign rank, ** denotes P <0.01, * denotes P <0.05.
h Photostimulation has a consistent effect on the detectability of visual stimuli in
the ‘more engaged’ state and not in the ‘less engaged’ state. Photostimulation
enhances detection of low (2%) contrast stimuli and suppressed the detection of
higher (10%) contrast stimuli. Significance across each full curve indicates results of
a one-way ANOVA within state. Significance across the two curves indicates the
results of a repeated measures ANOVA. Significance above individual curve points
indicates results of two-sidedWilcoxon signed-rank tests with Bonferroni (number
of contrasts) correction. Error bars show mean± SEM across sessions,
n = 28 sessions, 12 mice. We use * to denote a P-value < 0.05, ** for P <0.01 and ***
for P <0.001.
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Discussion
We demonstrate that the causal influence of augmenting task-related
activity in L2/3 of mouse V1 depends on behavioral state: exogenous
stimulation only translates into an effect on behavior when the animal
is highly engaged in the task at hand. When the animal is less engaged,
the additional cortical activity has no consistent influence, perhaps

suggesting a different population of neurons are relied upon to solve
the task in this state. We also show that the artificially generated pat-
terns of cortical activity can either help or impair detection of the
visual stimulus, depending on the strength of the visual stimulus the
perturbation is delivered coincident with. In other words, the activity
patterns evoked by photostimulation are altered by interaction with
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Fig. 3 | Targeted photostimulation elicits a suppressive network response that
scales with the strength of coincident sensory stimuli and the functional
identity of neurons. a Example STA traces to visual only trials across contrasts in
one experiment. Neurons are sorted by their average response across all contrasts.
Black line indicates visual stimulus presentation. b The neural responses across the
whole population in the more engaged state are significantly larger than in the less
engaged state (n = 28 sessions, 12 mice). The ratio of hits and misses within each
contrast have been matched across states. The line and shading represents the
mean ± SEM. Individual points across the two curves were tested with two-sided
Wilcoxon sign rank test with multiple comparison (Bonferroni) correction for
number of contrasts. The average pooled responses were compared with a two-
sidedWilcoxon sign rank test. *** denotes P <0.001 and ** P <0.01. c Top: example
experimental volume. ROIs are colored by the change in activity caused by pho-
tostimulation during spontaneous gray screen periods. Vertical red lines indicate
the directly stimulated cells. Bottom: example types of responses seen when the
visual stimulus is paired with photostimulation. d Target cell responses. Left:
responses to visual only trials across contrasts. Middle: responses to paired visual
and photostimulation. Right: the change in activity caused by photostimulation.
Target cells are strongly activated by photostimulation. The level of activation is
significantly higher in the engaged state. The ratio of hits and misses within each
contrast have been matched across states. The line and shading represents the
mean ± SEM (n = 28 sessions, 12 mice). Comparisons were made with a two-sided
Wilcoxon sign rank test. *** denotes P <0.001. e Background cell responses. Left:
The responses of all background neurons to visual only trials.Middle: The response
of background neurons to paired visual and photo-stimulation. Right: The change
in activity of background cells caused by photostimulation. The background cells
are suppressed on average, across all contrasts. No difference is seen in the level of
suppression between behavioral states. The line and shading represents the
mean ± SEM (n = 28 sessions, 12 mice). Comparisons were made with a two-sided
Wilcoxon sign rank test. ** denotes P <0.01. f Top: the 2D spatial profile of pho-
tostimulation influence. All neurons are aligned relative to their nearest target spot
(at 0,0), collapsed across z-planes. Spatially binned (5 ×5 µm), and Gaussian filtered

(SD = 10 µm) for display only. A central hotspot of activity corresponds to directly
targeted neurons. Surrounding the targeted neurons the predominant effect of
photostimulation is suppression of neighboring cells (n = 28 sessions, 12 mice).
Bottom: the 1D spatial profile of photostimulation influence. No difference is seen
between the two states. The line and shading represents the mean ± SEM
(n = 28 sessions, 12 mice). g Presenting the average network responses across all
sessions on two axes; visual stimulus contrast and similarity to the target cells
(quantified as the Pearson’s correlation of a given cell’s contrast response curve to
that of the average target neuron). The top row corresponds to the directly tar-
geted neurons. Left: responses to visual stimuli of increasing contrast alone. Note
cells positively correlated with the target cells respond positively to increasing
contrast. Middle: The responses to paired visual and photo-stimulation. Right: The
difference reveals the change inactivity causedbyphotostimulation.Note that cells
similar to the target cells are more strongly suppressed at higher contrasts
(n = 28 sessions, 12mice).hThe change in activity of background cells. Background
neurons most similar to the target neurons show the strongest levels of suppres-
sion mediated by the photostimulation (green line). The level of suppression
recruited increases as the visual contrast increases. (2-wayANOVAgroupedby state
and contrast. Effect of contrast F(4) = 11.9, P <0.001. Effect of similarity F(19) = 2.9,
P <0.001. Interaction of contrast and similarity F(76) = 2.5, P <0.001,
n = 28 sessions, 12 mice). Lines show the mean and shading shows the SEM. i The
relationship between the slope of suppression recruited by increasing visual con-
trasts, versus the functional similarity to the photostimulated neurons. Neurons
within a similarity group are pooled across experiments and the slope of sup-
pression versus contrast is computed. Error bars indicate the standard error of the
fit, obtained by resampling animals/sessions with replacement. Neurons most
similar to the target neurons are increasingly suppressed as contrast increases,
which corresponds to a negative slope. Filled individual points indicate individually
significant fits with Bonferroni multiple comparison correction. The line of best fit
indicates the relationship across functional similarity groups of all the background
cells, shading represents theCIof thefit. Thedirectly stimulatedneurons are shown
at the far right and are excluded from the fit (n = 28 sessions, 12 mice).
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Fig. 4 | The coupling between behavioral response and network response to
photostimulation depends on the functional similarity of neurons, and is
gated by brain state. a Relating the photostimulation induced change in behavior
to the photostimulation induced change in network activity within subpopulations
of functionally defined neurons. An example schematic showing how the neural-
behavioral coupling is computed. Left: example behavioral and neural data from an
example session (only the intermediate contrasts (2, 5, 10%) are considered for the
coupling analysis). Top right: All data across sessions belonging to one functional
similarity group are used to compute the linear correlation coefficient between the
change in behavior and the change in neural activity, termed the neural-behavioral
coupling. Bottom right: We collect neural-behavioral coupling measurements for

all functional similarity groups of neurons. b The neural-behavioral coupling as a
function of functional similarity (with respect to the target neurons). A relationship
between the change in activity and the change in behavior is only seen in the more
engaged state. We observe a monotonic relationship across functional similarity
groups whereby the neurons most functionally similar to the stimulated targets
show the tightest coupling with behavior. Separate data points at the far right are
the directly targeted cells and not included in the fit. The error bars around indi-
vidual datapoints are standard error (SE), the error bars around the fitted lines are
SE, both are computed by resampling with replacement. Significance indicates the
percentile of the shuffled distributed the real slopes lie in where *** refers to a
P value < 0.001. n = 28 sessions, 12 mice.
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activity patterns evoked by sensory stimulation. These findings pro-
vide new insights into how cortex can have a flexible impact on
sensory-guided behavior.

Why, and how, is the influence of cortical activity gated by beha-
vioral state? In primates, turning attention to a particular location of
visual space has two effects: enhanced sensory-evoked neural
responses, and improved behavioral performance93. However, it is
unclear whether the enhanced neural responses reflect or drive the
perceptual improvement. Our results provide causal evidence that L2/
3 ofmouse V1 determines the perception of a stimulus onlywhenmice
are in an engaged state. When the mice are less engaged (but still
performing the task) they may resort to a more reflexive, and perhaps
sub-cortical, strategy. This gating may be implemented by relative
weighting of the effect of visual cortical activity on higher cortical or
sub-cortical areas, perhaps through neuromodulatory circuits6. One
possible candidate is the superior colliculus (SC), which is involved in
processing visual information and coordinating motor output94,95. The
SC and visual cortex bidirectionally interact96, with V1 projecting pro-
minently to the SC97,modulating visually evoked responses there98 and
behaviors controlled by it99–102. Indeed, inactivation of mouse SC
impacts perceptual behavior103. Alternatively, gating may be imple-
mented by differentially weighting activity arising fromcortical or sub-
cortical sources on a common downstream target, for example the
pulvinar nuclei of the thalamus104. We observed task-related activity in
cortex in the disengaged state, but our perturbation results suggest
that this activity does not propagate as effectively or is not integrated
as strongly downstream as in the engaged state. The more synchro-
nized cortical oscillations in the less engaged state may impede the
transmission of information between areas105,106.

Interestingly, we did not observe a state-dependence of the local
network response to photostimulation – the resulting suppression of
activity was similar across the behavioral states, reflecting highly
effective synaptic recruitment of local inhibition83,84,86 which dom-
inates the network response89 despite the E/I balance being shifted
towards excitation in more engaged states81 (see also Fig. 3b). How-
ever, when the animal was more engaged in our task, neurons were
activated more strongly by the visual stimulus (consistent with results
from primates attending to a visual stimulus107–109), and the target cells
themselves were more excited by the direct photostimulation.
Therefore, in the task-engaged state, the photostimulated target cell
activity and the activity of other cells that escaped local inhibitionmust
be more effectively transmitted further downstream to unobserved
areas110. Our results should inspire future work to investigate how
activity propagates from L2/3 to the L5 output network and from there
ultimately to other cortical, and sub-cortical, areas in different beha-
vioral states.

What is the link between the network and the behavioral effects of
photostimulation? In broad terms, as the behavioral effect of photo-
stimulation became more suppressive, so did the network effects.
While the behavioral effect at low contrast was facilitating, the local
network effects were still negative on average, indicating that the
strong direct drive of target cells outweighs the suppression of local or
other unobserved downstream neurons. As the visual contrast
increases the behavioral effect of photostimulation becomes negative,
mirrored by more suppression of local neurons, suggesting that the
relative contribution of the directly stimulated target cells is over-
ridden by the greater levels of suppression in the network. Our finding
that functionally similar neurons are more strongly affected by pho-
tostimulation as contrast increases, and that their activity is most
strongly related to behavior, indicates that mapping the routing of
information through functionally specific circuits is crucial to
explaining behavior. Mechanistically, this effect may be mediated by
functionally specific inhibitory connectivity111. Our core results on the
network effects of targeted photostimulation (Fig. 3g–i) are consistent
with a previously described like-suppresses-likemotif 72. Depending on

how we divide background cells into subpopulations we see varying
degrees of facilitation of functionally similar cells at low contrasts
(Supplementary Fig. 7E–J) as in other studies where predominantly
excitatory network effects were observed37,38. Taken together our
results align with predictions made by a recent modeling study112

simulating the effect of optogenetic perturbations in a realistic model
of visual cortex with a range of stimulus contrasts. In terms of the
behavioral relevance of visual encoding, when the stimulus contrast is
high, cortex may act to reduce redundancy through like-to-like sup-
pression and ensure an efficient code111,113–118. Additional stimulation in
this condition may go beyond reducing redundancy to suppressing
behaviorally useful information, leading to a reduction in
performance.

Our results are consistent with a dynamic allocation of cortical
resources according to attention-like behavioral states119 and thus
highlight a modulatory role of cortex in a learned behavior likely also
served by subcortical pathways. This perspective helps to reconcile
apparently contradictory findings about the role of the cortex in
behavioral tasks42,43,49–51. Our results are complementary to recent
findings from lesion and silencing experiments50,120 suggesting that
some fully learned tasks are no longer cortically dependent, but go
beyond those studies in showing that the influence of cortex can
change even on very short timescales. Such short time-scale modula-
tion by internal state is reminiscent of attentional processes, which
may rely on mechanisms similar to what we study here, to modify the
influence of cortex over behavioral output. This gating of cortical
influenceon behavior by attentional or behavioral states demonstrates
that the causality of cortical activity depends on behavioral context
and reminds us that no brain region acts in isolation121–123. Accounting
for stimulation-induced suppression and state-dependent gating of
downstream effects as described here will likely be important for the
successful operation of future brain machine interfaces (BMIs).

Methods
All experimental procedures were carried out under license from the
UK Home Office in accordance with the UK Animals (Scientific Proce-
dures) Act (1986).

Animal preparation
We used transgenic GCaMP6s mice (Emx1-Cre;CaMKIIa-tTA;Ai9469) of
both sexes agedbetweenP49 andP67 (at timeof surgery).Doxycycline
treatment in drinking water from birth to P49 prevented interictal
activity in the Ai94 mouse line124. Animals were kept on a 12 hr light/
dark cycle at a temperature of 22 °C and 62% humidity. To prepare the
mice for all-optical experiments, we first excised the scalp and
implanted a metal headplate. We then removed the skull and dura
overlying visual cortex, injected virus encoding the opsin and
implanted a chronic cranial imaging window in place of the skull.
Sterile procedures were used throughout. Before surgery, mice were
given a subcutaneous injection of 0.3mg/mL buprenorphine hydro-
chloride (Vetergesic) and anaesthetized with isoflurane (5% for
induction, 1.5% formaintenance). The scalp above the dorsal surface of
the skull was removed and an aluminum headplate with a 7mm dia-
meter circular imaging well was fixed to the skull centered over the
right monocular primary visual cortex (2.5mm lateral and 0.5mm
anterior from lambda) using dental cement. A 4mm diameter cra-
niotomy was drilled inside the well of the headplate, and the dura was
then carefully removed. A calibrated pipette bevelled to a sharp point
(inner diameter ~15 μm) connected to a hydraulic injection system
(Harvard apparatus)wasused to inject small volumes of virus (AAV2/9-
CaMKII-C1V1(t/t)-mRuby2-Kv2.1). The virus (stock concentration: ~6.9
×1014 gc/ml) was diluted 10-fold in buffer solution (20mMTris, pH 8.0,
140mM NaCl, 0.001% Pluronic F-68). We made ~5 insertions of the
injection pipette, each site spaced by ~300 μm avoiding blood vessels.
At each site we slowly lowered the pipette to a depth of 300 µmbelow
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pia and injected 150nl of the virus solution at 50 nl/min. After each
injection the pipette was left in place for a further 3min before slowly
retracting. We then press-fit a chronic window (a 3mm coverslip
bonded to the underside of a 4mm coverslip with UV-cured optical
cement, NOR-61, Norland Optical Adhesive) into the craniotomy,
sealed with cyanoacrylate (Vetbond) and fixed in place with dental
cement (SuperBond). Following surgery, animals were monitored and
allowed to recover for at least 7 days. After recovery we began beha-
vioral training. All-optical experiments were then performed >3 weeks
post-surgery, allowing for sufficient expression levels (animals were
aged P77–P171, median = P122 at time of experiments).

Behavioral training
We used an operant conditioning protocol whereby head-fixedmice
were required to lick at a water spout positioned in front of them to
report detection of a visual stimulus. Licks were recorded elec-
trically. If themice reported the presence of the stimulus correctly, a
sugar water reward (10% w/v sucrose) was delivered through the
water spout. The behavior hardware was controlled by custom
software (PyBehaviour, https://github.com/llerussell/PyBehaviour)
interfacing with an Arduino to trigger stimuli, record licks and
deliver rewards. Mice had free access to food in their home cage, but
access to water was limited to that acquired during the task. Mice
had their weight monitored before and after daily training and were
supplemented with additional water to maintain a minimum of 80%
of their starting body weight. Before training, mice were habituated
to handling and head restraint over 2 days. Training then took place
in individual sound-dampened enclosures in which the mice were
head-fixed and allowed to run on a treadmill. While not an integral
part of the task design, we found that allowingmice to be free to run
improved their performance in the task. Trials were triggered after
mice withheld licks for 4 ± 3 s, after which a monocular visual sti-
mulus appeared in the center of themonitor. If themice licked at the
water spout at any point within 1.5 s of the stimulus appearing a
reward was delivered. In the first few days of training a reward was
delivered automatically at 800ms. Mice quickly learnt the require-
ments of the task and their reaction times preceded this automatic
reward delivery time. After a few days the automatic reward delivery
was disabled. After the stimulus and response window there was a
fixed inter-trial period of 7 s before the next ‘withhold’ period was
started. We also delivered randomly interleaved catch trials (no
visual stimulus) to record chance rate of licking and assess accuracy
in the task. Once stable performance was reached, we progressed
the mice to a psychophysical variant of the task where we intro-
duced a range of contrasts (1%, 2%, 5%, 10%, 100%) to assess their
perceptual sensitivity and threshold. We found that task perfor-
mance was insensitive to stimulus location on the monitor. For the
final experiment the trial order was pseudo randomized to ensure
that repeats of the same probe types were not immediately
consecutive.

Visual stimulation
Visual stimuli were generated using custom software (using PsychoPy,
ref. 125). 30° Gabor patches of drifting sinusoidal gratings (8 direc-
tions, 0 to 315° in 45° increments) with a spatial frequency of 0.04
cycles per degree and a temporal frequency of 2Hz were presented on
a monitor (typically 51.8 cm width, 32.4 cm height, 15 cm from the
animals left eye covering up to ± 47° of the vertical visual field and
± 60° of the horizontal visual field), with a spherical distortion applied
to correct perspective errors.

Training. During training the orientation of the stimulus was rando-
mized on every trial and the duration of the stimulus was 1 s. Rewards
were delivered if the mouse licked during the response window
regardless of the orientation of visual stimulus.

Mapping orientation preference. To map orientation preference of
single cells in a FOV with two-photon imaging, the visual stimuli were
positioned in the retinotopically appropriate location and were pre-
sented in a randomized order with a duration of 3 s, interleaved by 5 s
of mean luminance gray. If mice licked at the water spout during this
mapping block a water reward was delivered.

Experiment. During the behavioral experiments with photostimula-
tion, the visual stimuli parameters were the same as during training,
except only one orientation was presented (to match the photo-
stimulation ensemble’s preference) and the stimulus was positioned in
the retinotopically appropriate location for the imaging field of view. A
range of contrasts (1%, 2%, 5%, 10%, 100%) with equal trial proportions
were presented to the animals.

Widefield imaging
To locate primary visual cortex, and position the experimental field of
view, widefieldGCaMP imagingwas performed (usable FOV~2 × 2mm).
GCaMP6s fluorescence produced by one-photon excitation (470 nm
LED, Thorlabs) was collected through a 5x/0.1-NA air objective
(Olympus) onto a CMOS camera (Hamamatsu ORCA Flash 4.0, binned
image size of 512 × 512 pixels, 20Hz frame rate). Contrast-reversing
checkerboard bars, 10° wide were drifted vertically and horizontally
across a gray screen at a speed of 25°/s in an interleaved sequence.
Stimulus-triggered change in fluorescence for the two different stimuli
revealed areal borders and identification of primary visual cortex126.
This was repeated with two-photon imaging on the day of the
experiment to confirm the retinotopic location of the chosen field
of view.

Two-photon population imaging
Two-photon imaging was performed with a resonant scanning micro-
scope (Ultima II, Bruker Corporation) using a Chameleon Ultra II laser
(Coherent) driven by PrairieView. A 16×/0.8-NA water-immersion
objective (Nikon) was used for all experiments. An ETL (Optotune
EL-10-30-TC, Gardasoft driver) was used to perform volumetric ima-
ging, spanning a 100μmrangewith 33.3μmspacing between 4 planes.
The FOV size was 710 × 710μm at a resolution of 512 × 512 pixels. The
number of cells recorded (ROIs after curation) per experiment ranged
from 1266 to 4891 (mean = 2765 ± 995). The per-plane frame rate was
7Hz (total acquisition rate 30Hz). GCaMP6s was imaged at 920 nm
and mRuby (conjugated to C1V1-Kv2.1) was imaged at 765 nm. Power
on the samplewas 50mWat the shallowest plane (~150–200μmbelow
pia) and increased to ~85mW at the deepest plane (~250–300μm
below pia), interpolating for intermediate planes, to equalize imaging
quality across planes. Tomaximize imaging quality127 we calculated the
tilt of the sample relative to the microscope and then rotated the
objective along two axes to be perpendicular to the implanted cov-
erslip window.

Two-photon photostimulation
Two-photon photostimulation was carried out using a fiber laser at
1030nm (Satsuma, Amplitude Systèmes, 2MHz repetition rate). The
laser beamwas split via a reflective spatial light modulator (SLM) (7.68
× 7.68mm active area, 512 × 512 pixels, OverDrive Plus SLM, Mea-
dowlark Optics/Boulder Nonlinear Systems) whichwas installed in-line
of the photostimulation path (NeuraLight 3D, Bruker Corporation).
Phase masks used to generate focused beamlet patterns in the sample
were calculated via the weighted Gerchberg-Saxton algorithm. The
targets wereweighted according to their location relative to the center
of the SLM’s addressable FOV to compensate for the decrease in dif-
fraction efficiencywhendirecting beamlets to peripheral positions.We
calibrated the targeting of SLM spots in imaging space by burning
arbitrary patterns with the SLM using the photostimulation laser in a
fluorescent plastic slide before taking a volumetric stack of the sample

Article https://doi.org/10.1038/s41467-024-46484-5

Nature Communications |         (2024) 15:2456 10

https://github.com/llerussell/PyBehaviour


with the imaging laser. We manually located the burnt spots and the
corresponding affine transformation fromSLMspace to imaging space
was computed. For 3D stimulation patterns we interpolated the
transformation required from the nearest calibrated planes (Calibra-
tion code: https://github.com/llerussell/SLMTransformMaker3D). To
increase stimulation efficiency, we offset the photostimulation FOV
with the photostimulation galvanometers such that the center of SLM
space was close to the cortical/imaging-space centroid of targeted
cells. Spiral photostimulation patterns (3 rotations, 10μm diameter,
20ms duration) were generated by moving all beamlets simulta-
neously with the galvanometer mirrors. The laser power was adjusted
to maintain 6mW per target cell. Photostimulation during the beha-
vioral task was delivered at 20Hz (1 spiral every 50ms) for 1 s with the
same onset time as the visual stimulus.

Characterization of photostimulation resolution with pharma-
cological blockade
Tocharacterize the stimulation resolution,we stimulated single cells in
separate non-behavioral sessions with the same stimulation para-
meters as used in the experiments (15μm spiral, 20ms spiral duration,
repeated every 50ms (20Hz) for 1 s). We offset the stimulation spot
using the SLMby 0, 5, 10, 15, 20, 30μm laterally and −75, −50, −25, −10,
0, +10, +25, +50, +75μm axially (at 0μm lateral offset). In each animal
(n = 3 mice), we stimulated 8 single cells: one at a time every 2 s, for 10
repeats of each stimulation offset for each cell. In these experiments,
we used animals implanted with chronic windows with a small access
hole drilled in the middle, covered with a silicone plug128. By removing
the plug we gained access to the brain surface (dura removed prior to
window implantation), to which we could apply pharmacological
agents.We applied amixture of 1mMNBQX and 2mMAP5 (in IVE)129,130

to block excitatory synaptic activity to disambiguate off-target sti-
mulation from synaptic recruitment of nearby cells.

Naparm (Near automatic photoactivation response mapping)
To find photostimulation-responsive cells we semi-automatically
detected cell locations from expression images and stimulus-
triggered average or pixel-correlation images (STA Movie Maker,
https://github.com/llerussell/STAMovieMaker) fed into Cellpose131

and manually curated. These cell body coordinates were then clus-
tered into equal size groups of user-determined size (between 10
and 50) and the groups were stimulated one by one. The associated
phase mask, galvanometer positioning, and Pockels cell control
protocol were generated with custom MATLAB software (Naparm,
https://github.com/llerussell/Naparm) and executed by the photo-
stimulation modules of the microscope software (PrairieView, Bru-
ker Corporation) and the SLM control software (Blink, Meadowlark).
For photo-responsivity mapping purposes, we used a stimulation
rate of 20 Hz, for 500ms per pattern, stimulating a different pattern
every 1.5 s, and performed 8–10 trials of each pattern. These data
were then analyzed online together with the visual response map-
ping data to extract activity traces and design stimulation ensembles
(see below).

Synchronization
For subsequent synchronization during analysis, analog signals of
various trigger lines were recorded with a National Instruments DAQ
card, controlled by PackIO132. The recorded inputs included two-
photon imaging frame pulses, photostimulation triggers, galvan-
ometer command signals, triggers to and frame flip pulses from the
visual stimulus and the SLM phase mask update. Photostimulation
trials for the responsivity mapping block were triggered at a fixed rate
from an output line on the DAQ card. For the online behavior experi-
ments photostimulation and visual trials were triggered through the
behavior software and hardware.

Experimental protocol
On the day of the full experiment, the following protocol was used.
First, we located a region of cortex showing optimal coexpression of
opsin and indicator, guided by widefield retinotopy, and confirmed
the corresponding retinotopic location with two-photon imaging.
After determining where to position the visual stimulus on the
monitor we then presented drifting gratings of 8 different orienta-
tions while performing two-photon imaging to map orientation
preferences of the recorded cells. Rewards were delivered during
the visual stimuli if the mouse licked. Next, we photostimulated a
large proportion of all cells in the recorded volume to find which
ones were photostimulation-responsive. Finally, we designed pho-
tostimulation patterns for use in the behavior experiment (see
below). We then gave the mice ~10 warm up ‘easy’ (high contrast)
trials before the main behavioral experiment began. We recorded in
20min blocks, manually correcting for any drift in imaging FOV
between recordings.

Online photostimulation ensemble design
To increase the speed of data analysis immediately prior to the
experiment, we streamed the raw acquisition samples to custom
software (PrairieLink, RawDataStream, https://github.com/llerussell/
Bruker_PrairieLink). We used this raw stream to process the pixel
samples, construct imaging frames, and perform online motion cor-
rection. Processing online allowedus todirectly output to a customfile
format making the data immediately available for analysis. Motion-
corrected movies were loaded into MATLAB (MathWorks), and traces
were extracted from both the photostimulation and the visual stimu-
lation movies, using the photostimulation targets as seed points
around which circular ROIs were dilated. We subtracted a neuropil
signal from the ROI signal before determining responsivity. We
determined cells as photostimulation-responsive if their evoked
response (in a~500ms window after stimulus offset) to their direct
stimulation was >30% ΔF/F on >50% trials. We determined cells as
visually responsive by the same criteria (with response window of 2 s
during the stimulus presentation), additionally specifying their pre-
ferred orientation as the stimulus that elicited the largest average
response. The final stimulation pattern was then designed in each
experiment. After filtering for photostimulation-responsive cells, the
co-tuned group was selected, taking the largest group of
photostimulation-responsive and orientation-tuned neurons (mini-
mum number of targets: 6, maximum: 73, median: 23).

Pre-processing: Imaging frame registration, ROI segmentation
and neuropil correction
For the final analysis, the raw calcium imaging movies were pre-
processed using Suite2p133. The pipeline included image registra-
tion, segmentation of active region of interest (ROIs), and of local
surrounding neuropil signal. The final selection of ROIs was filtered
semi-automatically using anatomical criteria to include only neuro-
nal somata and discard spurious ROIs. We manually inspected all
FOVs to ensure consistent results. We subtracted a neuropil signal
from every ROI signal. The contamination of the ROI signal by the
neuropil signal depends on many factors, including expression
levels, imaging quality, and axial sectioning by the imaging plane.
We used robust linear regression to estimate the coefficient of
neuropil contamination for each ROI (Supplementary Fig. 9; ref. 68).
The slope of this fit was used to scale the neuropil signal before
subtraction from the ROI signal, such that after subtraction there
was no correlation between the ROI baseline and neuropil. Neuropil
subtraction had minimal effect on the response magnitude, and
negative responses to visual- and photo-stimulation were seen even
without subtracting the neuropil contamination (Supplementary
Figs. 9 and 10).
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ROI exclusion zones
To reduce potential off-target photostimulation artifacts, we excluded
from consideration all cells within a 30μm diameter cylinder extend-
ing through all axial planes when analyzing the network response to
photostimulation due to potential imaging and photostimulation
artifacts (see Supplementary Fig. 9). We redefined our target stimula-
tion pattern identities based on the ROIs segmented by Suite2p within
the 30μm lateral disk around eachof the SLM target locations.We also
excluded ROIs in the first 100 rowsof pixels of each imaging frame due
to an ETL artefact related to the settle time of the lens when changing
planes.

Neuronal response metric
To measure neuronal responses, we extracted the mean fluores-
cence in a ~500ms window (4 frames) starting immediately after the
photostimulation ended (and/or visual stimulus to ensure compar-
able measurements) and subtracted the mean fluorescence in the
~1 s baseline (7 frames) before the onset of photostimulation (or
visual stimulus). We divided the difference in themeans by themean
of the baseline window, resulting in trial-by-trial ΔF/F values. We
excluded all photostimulation frames because of the associated
artefact contaminating the activity traces; the slow kinetics of
GCaMP6s permit this, although the magnitude of response is
underestimated as a result.

Hit:miss ratio matching
To counteract motor and reward-related confounds of licks occurring
within the neural analysis window, we ensured that the ratio of hits to
misses (trials with licks vs trials with no licks) were equalized across
comparisons. Ensuring a 50:50 ratio of hits to misses across all trial
types in a given sessionwould result in unnecessary lossofdata in trials
where hits or misses made up the entirety of trial responses. Themore
relevant control to make is not across contrasts, but across behavioral
states (the more-engaged state versus the less-engaged state) or trial
type (with or without photostimulation). We therefore ensured that
the proportion of hits to misses at a particular stimulus contrast were
equal across a given comparison (state or photostimulation). We
determined the minimum number of hits on a given contrast across
the conditions and theminimumnumber ofmisses on a given contrast
across conditions (e.g., at 5% contrast in both states, or at 5% contrast
in the less-engaged state with and without photostimulation). We then
resampled without replacement taking the minimum common num-
ber of hits and theminimumnumber of misses from the original trials.
As the minimum number is computed across conditions, the resam-
pled collections of trials have the same proportion of hits to misses in
both conditions. We then averaged the resampled trials together and
repeated this procedure 10,000 times, storing the average result for a
given neurons response in that condition.

Contrast response similarity metric
To functionally characterize all recorded neurons relative to the
photostimulated neurons, we compared their responses to different
contrasts of the visual stimulus (only one orientation was used)
presented in the final behavioral experiments. As our functional
similarity measurement (correlation of average responses to visual
stimuli) and photostimulation mediated change metric (average
difference in responses between trials with visual stimuli and pho-
tostimulation and trials with just visual stimuli) would share the
same datapoints we cross-validated. Specifically, we randomly split
the dataset in half and used one half for the contrast similarity
measurement and the other half for the measurement of photo-
stimulation induced changes. For the contrast similarity metric in a
given session we averaged together the photostimulated population
to give a group average response curve. We then computed the
Pearson’s correlation of all single cell contrast response curves with

the photostimulated population average curve. For the photo-
stimulation mediated change in activity of a given cell we averaged
together responses in all trials of a particular contrast and stimula-
tion condition. We subtracted the visual only trial responses from
the joint visual and photostimulation trial responses. We binned all
neurons per session into 20 evenly spaced bins ranging from
maximally dissimilar to maximally similar to the target group. We
computed the average response within each similarity group. We
performed all analyses in Figs. 3h, i and 4 with these cross-validated
metrics, repeating the procedure 5000 times with different random
trial splits, computing the metric of interest within each split and
reporting the average across splits.

In Supplementary Fig. 7 we also characterize neurons based on
their orientation tuning curves (8 different orientations were pre-
sented in a short mapping session before the main photostimulation
experiment) and computed the Pearson’s correlation of those single
cell tuning curves to the photostimulated population average
tuning curve.

Neural-behavioral coupling
To obtain bootstrapped statistics of the neural-behavioral coupling we
performed the following shuffling and resampling procedures. We
split the network into functional similarity bins and compute the cross-
validated change in activity (see above). For each similarity bin we
correlate the average response within group, and pooled across ses-
sions, to the 3 intermediate contrasts (2, 5, 10%) with the change in
d-prime on the same contrasts. Each similarity group from each ses-
sion thus contributes 3 datapoints to the neural-behavioral coupling
measurements. This correlation coefficient is termed the neural-
behavioral coupling. We then performed a linear regression on the
neural-behavioral couplings as a function of functional similarity to
summarize the overall effect whereby most highly similar neurons
have the strongest coupling with behavior. We bootstrapped the
neural-behavioral coupling fit through the functional similarity groups
by resampling sessions with replacement, 5000 times. We report the
mean slope obtained through this resampling procedure. To ask
whether the resampled distribution of slopes is different from those
expected by chance given the dataset we performed a shuffling pro-
cedure to derive a null distribution against which to compare. For this,
we shuffled trial contrast identity amongst the intermediate contrasts,
mixing behavioral and neural responses across trials but maintaining
the overall statistics within sessions. We repeated this shuffle 5000
times and within each shuffle we computed cross-validated contrast
similarity and photostimulation response metrics. We averaged these
responses across shuffle to obtain the final shuffled behavioral and
neural responses. With these shuffled responses we performed the
same neural-behavioral coupling procedure to generate a null dis-
tribution of slopes expected by chance.

Behavioral session truncation
To ensure we only analyzed periods of the behavioral session where
the mice were similarly engaged and motivated, we truncated the
sessionwhen the rolling average performance (20 trial slidingwindow)
of the ‘easy’ highest contrast trials dropped below 80% of the starting
performance.

Data exclusion criteria
We excluded trials if >50% of photostimulation targets failed to
respond on that trial. We also excluded trials if the mice licked early
(within the first 150ms of the presentation of the visual stimulus).
Whole sessions were excluded if fewer than 10 trials in any trial type
remained (the median minimum number of trials per trial type (note
each session has 12 trial types) in included sessions = 31 trials (range
10–56)). Out of 32 completed sessions, 3 were excluded because of
poor photostimulation efficiency.
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Statistical procedures
No statistical methods were used to predetermine sample size.
Investigators were not blinded to allocation during experiments and
outcome assessment. Summary statistics in the text are reported as
mean ± SD unless otherwise indicated. Solid lines and shaded areas
or error bars in plots represent mean ± SEM unless otherwise indi-
cated. Statistical tests used are specified in the text and were gen-
erally paired, two-tailed and non-parametric. We use the following
convention for representing P-values in all figures: P > = 0.05 (n.s.),
P < 0.05 (*), P < 0.01 (**), P < 0.001 (***).

Pre-trial pupil size
We recorded the right pupil throughout the experiment using a Dalsa
Genie Nano-M1280 camera with a Kowa LM50JC lens. The camera
frameswere acquired at 30Hz triggered by pulses from the 2P imaging
system. The laser light used for 2P imaging, evident through the back
of the pupil, was blocked from the camera using a 900 nm shortpass
filter. The animal was illuminated with an 850nm LED. The visual sti-
mulus monitor provided ambient light. We used DeepLabCut134 to
track 11 points (6 around the circumference of the pupil, 4 around the
eye lid, 1 on the nose and 1 on the tongue (only visible when the animal
licked), the tongue point allowed for synchronizationwith the imaging
and behavioral data by cross-correlating the DeepLabCut tongue sig-
nal with the electrically recorded lickometer signal. The area bounded
by the 6 pupil points was used as the pupil size. We normalized the
pupil size by the median size across the whole session.

Pre-trial synchrony
To compute the network synchrony prior to presentation of the
visual stimulus, we used deconvolved activity traces (OASIS133,135)
smoothedwith aGaussian filter (sigma = 0.5 s).We used a 4 swindow
immediately prior to the initiation of the trial (delivery of a stimulus,
if not a catch trial) as the ‘pre-trial’ period. We then computed
pairwise Pearson’s correlations between all cells within this time
window and averaged together all pairwise correlation coefficients
across all cells (including targets) to give the total network corre-
lation or synchrony. We z-scored all network correlations within
animal and across all trial types to facilitate across animal compar-
isons. When comparing hit and miss trials, we resampled 10,000
times to match trial numbers.

Pre-trial state
We used both the pupil-size and neural synchrony to produce a com-
binedmeasureof state trial-by-trial. To compute this,we z-scored both
variables and summed them, weighting the pupil by −1 to account for
the inverse relationship between the two variables. Based on this
combined state score wemedian split each session into two equal size
subsets, corresponding to two behavioral states.

Psychometric curve fitting
We used Psignifit136 to fit a Weibull curve fixing the lambda (lapse rate)
and gamma (guess rate) parameters, while allowing the estimation of
alpha and beta (threshold and slope). The threshold of the curve is
defined as the stimulus contrast where behavioral performance is 50%.
The width of the curve is defined as the difference in stimulus units
between 5% and 95% behavioral performance.

We computed d-prime for each stimulus type to control for
chance rate of licking within a session using the catch trials without
photostimulation as the false alarm rate. We also observe the same
results when computing d-prime using the catch trials with photo-
stimulation as the false alarm rate (Supplementary Fig. 4).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Datasets supporting the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
Custom code used for data acquisition, photostimulation control,
behavioral training and analysis have been deposited online: Naparm
https://github.com/llerussell/Naparm, https://doi.org/10.5281/zenodo.
10449686, PyBehaviour https://github.com/llerussell/PyBehaviour,
https://doi.org/10.5281/zenodo.10449684, 3D SLM calibration https://
github.com/llerussell/SLMTransformMaker3D, https://doi.org/10.5281/
zenodo.10449682, STAMovieMaker https://github.com/llerussell/
STAMovieMaker, https://doi.org/10.5281/zenodo.10449680, RawData-
Stream https://github.com/llerussell/Bruker_PrairieLink, https://doi.
org/10.5281/zenodo.10449690, Objective rotation https://github.com/
llerussell/MONPangle, https://doi.org/10.5281/zenodo.10449688.
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