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1  |  INTRODUC TION

Mechanical stress refers to internal forces between various parts of 
an object that resist external effects when an external stimuli (such 
as temperature, humidity, and physical force) act on the object and 
cause the object to deform.1 Integrins are a class of transmembrane 
receptors that are ubiquitously present on the surface of verte-
brate cells; these receptors mainly mediate the mutual recognition 
and adhesion between multiple cells and between cells and the 

extracellular matrix (ECM) and link the external and internal struc-
tures of cells.2 Integrins affinity for extracellular ligands is regulated 
through cytoplasmic proteins, and these receptors aggregate upon 
ligand binding,3 resulting in increased mechanical linkages between 
cells and the ECM, the rearrangement of the cellular framework (CF), 
and further signalling transduction.4 Bone metabolism is a dynamic 
process maintained by osteoblasts and osteoclasts and is regulated 
by mechanical stress, chemical/hormonal molecular signals and 
bone tissue damage.5 An increasing number of studies have shown 
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Abstract
Mechanical stress is an internal force between various parts of an object that resists 
external factors and effects that cause an object to deform, and mechanical stress 
is essential for various tissues that are constantly subjected to mechanical loads to 
function normally. Integrins are a class of transmembrane heterodimeric glycoprotein 
receptors that are important target proteins for the action of mechanical stress stimuli 
on cells and can convert extracellular physical and mechanical signals into intracellular 
bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a 
bidirectional regulatory role in bone metabolism. In this paper, relevant literature pub-
lished in recent years is reviewed and summarized. The characteristics of integrins and 
mechanical stress are introduced, as well as the mechanisms underlying responses 
of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated 
mechanical stress in different cells involved in bone metabolism and its associated 
signalling mechanisms. The purpose of this review is to provide a theoretical basis 
for the application of integrin-mediated mechanical stress to the field of bone tissue 
repair and regeneration.
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that mechanical stress is crucial in regulating bone tissue function 
and an indispensable element in bone tissue engineering. Bone tis-
sue can be damaged to varying degrees by developmental defects, 
trauma or infectious diseases; thus, effectively and stably restoring 
the original local tissue morphology and organ function has become 
a popular topic in bone tissue engineering research in recent years.

Wolff's law6 links the strain induced by mechanical stress with 
bone metabolism at a theoretical level. In recent years, scholars 
have found that integrin-mediated mechanical stress plays an im-
portant role in the regulation of bone metabolism.7–9 When external 
mechanical stimuli act on cells, integrins located on the cell surface 
can sense the stimuli and bind to ligands in the ECM, thereby con-
verting external mechanical stimuli into bioelectrical cell stimula-
tion. Integrins also play important roles in tissue development and 
homeostasis, and integrin dysregulation is often associated with 
diseases.10,11 The mechanism by which mechanical stress-mediated 
stimulation regulates bone metabolism involves promoting the pro-
liferation and differentiation of osteoblasts,12 inhibiting osteoclasto-
genesis13 and promoting angiogenesis.14

Bone metabolism involves the formation and resorption of bone 
tissue. Osteoblasts and osteoclasts are the main cells involved, and 
bone marrow mesenchymal stem cells (MSCs), osteocytes and chon-
drocytes also regulate the growth of osteoblasts and osteoclasts. 
Many studies have shown that when various cells involved in the 
regulation of bone metabolism (such as osteoblasts, osteoclasts, 
chondrocytes and MSCs) are exposed to external mechanical stim-
uli, the cells can convert external mechanical stimuli into intracellu-
lar bioelectrical stimuli through integrins on their surfaces8,15,16 and 
activate related intracellular signalling pathways, thereby regulating 
the formation and degradation of bone tissue.

This paper reviews progress of research on integrin-mediated 
mechanical stress in bone metabolism; introduces the characteris-
tics of integrins and mechanical stress and the mechanisms under-
lying responses to integrin-mediated mechanical stress; and focuses 
on the signal transduction mechanism underlying integrin-mediated 
mechanical stress in different cells involved in bone metabolism. 
Based on the above discussions, the research and development 
trends of integrin-mediated mechanical stress in the field of bone 
tissue regeneration and possible future development directions are 
discussed. The overall aim is, to provide a theoretical basis for the 
application of integrin-mediated mechanical stress to the field of 
bone tissue engineering repair and regeneration (Figure 1).

2  |  CONCLUSION

2.1  |  The mechanical microenvironment 
encompassing the cells engaged in bone metabolism

Bone metabolism mainly depends on the activity of osteoblasts and 
osteoclasts. Osteoblasts are responsible for the formation of new 
bone tissue, and osteoclasts are responsible for the degradation and 
absorption of old or damaged bone tissue. When the two processes 
are synergetic, bone resorption and deposition can occur in re-
sponse to mechanical stress stimuli.17 In addition to osteoblasts and 
osteoclasts, the relevant cells involved in bone metabolism include 
MSCs, osteocytes, chondrocytes and other cells, such as fibroblasts, 
macrophages and bone lining cells. MSCs are a type of pluripotent 
stem cells, which characteristics common to stem cells, that is, the 
ability to perform self-renewal and pluripotent differentiation.18 

F I G U R E  1 Summary of related 
pathways involved in integrin-mediated 
mechanical stress regulation of bone 
metabolism. Figure was created with 
Biore​nder.​com.
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Osteocytes are structure cells that support bone, are found in bone 
lacunae and can simultaneously regulate the activity of osteoblasts 
and osteoclasts.19 Interstitial fluid flow is the main stress-related 
factor that transmits mechanical stimuli to bone cells. Studies20 
have indicated that osteocytes are subjected to hydrostatic pres-
sure even in the absence of macroscopic strain, when considering 
physiologically relevant levels and frequencies, whether it is applied 
unidirectionally or as a feature of fluid statics (the pressure exerted 
by a stationary fluid). The intensity of this pressure has been proven 
to be significantly potent in activating various biological cells, osteo-
cytes included.

Chondrocytes are the main type of chondrocytes in the cartilage 
stroma and cartilage defects.21 Bone lining cells are resting osteo-
blasts. When the mechanical microenvironment in bone changes, 
some factors in the extracellular microenvironment, such as insulin 
growth factor-1 (IGF-1) and tumour necrosis factor-α(TNF-α), are re-
leased and can activate these cells. At the same time, as an import-
ant source of RANKL, the cells can cause preosteoclasts to fuse and 
differentiate into multinucleated osteoclasts by increasing RANK/ 
RANKL interaction, which provide the main driving force for tooth 
movement and osteoclastogenesis.22 Macrophages are common 
precursors of osteoclasts and bone marrow resident macrophages 
in bone tissue, and research has shown that macrophages regulate 
bone regeneration through interacting with MSCs.23 All these cell 
types in the bone microenvironment are closely related to bone ho-
meostasis and bone diseases.

Mechanical stress refers to internal forces between various 
parts of an object that resist external effects when external fac-
tors (such as temperature, humidity and physical force) act on the 
object and cause the object to deform.24 Studies have shown25 that 
main types of mechanical stimulation that act upon cells include (a) 
tension, that is, a force that causes cells to stretch in the direction 
of stimulation; (b) compression, that is, a force that decreases the 
cell size in the direction of the force; (c) shear force, that is, the 
application of mechanical stimulation parallel to the cell surface; (d) 
hydrostatic pressure (HP), that is, the uniform application of a force 
to the cell, causing its volume to decrease; (e) vibration, that is, the 
application of oscillatory stimuli to an object; and (f) fluid shear 
stress (FSS), that is, a force parallel to the fluid flow on the top of 
a cell membrane. Furthermore, oscillatory hydrostatic pressure is 
recognized as a significant biomechanical stimulus that plays a cru-
cial role in the activities of osteocytes and the process of bone re-
modelling. Pastrama et al.26 employed micro-mechanically derived 
porous-scale pressure as a regulatory factor, integrating multi-
scale poro-micromechanics of bone with the multi-scale model of 
bone cell populations involved in bone remodelling. This approach 
provided oscillatory fluid static pressure within the pore spaces 
housing bone cells (osteocytes, osteoblasts and osteoclasts). The 
results indicated that under physiologically relevant loading con-
ditions, oscillatory hydrostatic pressure might be generated within 
the microstructure of the bone, thereby influencing the activity of 
bone cells and subsequently affecting the reconstruction and re-
generation of bone tissue.

The type of force a cell is subjected to is closely related to the 
environment.27 When an external stimulus acts on tissue and is de-
livered to a cell, the cell begins the mechanotransduction process.28 
Previous studies have shown that this process is influenced by the 
following main factors: (1) cell shrinkage, leading to cytoskeleton 
rearrangement in response to applied mechanical stimuli;29(2) ECM 
properties,30 such as matrix stiffness and matrix roughness of the 
surface; and (3) the spatiotemporal characteristics of the applied 
stimulus.31,32 Previous research has indicated that mechanical load-
ing is applied and measured based on the consideration of length 
scale-related factors.33 Mechanical stress, whether defined as the 
force per unit area in a one-dimensional analysis or through the 
Cauchy stress tensor in a three-dimensional context, is highly de-
pendent on the size of the area being measured. Consequently, the 
same piece of biological material may be associated with different 
stress levels depending on the measurements and calculations per-
formed at various scales.

2.2  |  Structure, regulation, ligands and 
functions of integrins

Integrins are heterodimeric transmembrane glycoprotein receptors 
distributed on the cell surface.34 They are the most important cell 
adhesion molecules and signal transduction proteins in mammals. 
Integrins are heterodimers composed of two subunits, an α subunit 
(150 ~ 210 kD) and β subunit (90 ~ 110 kD). The family has a total of 
18 α subunits and 8 β subunits, constituting 24 different cell mem-
brane receptors through different α and β subunit combinations.35,36 
Each integrin subunit consists of three parts: a large extracellular 
domain, a small intracellular domain and a transmembrane domain.37 
The extracellular domain can interact with the ECM to regulate cell 
adhesion and communication; the intracellular domain binds to in-
tracellular regulatory proteins (such as talin and kindlin) and is re-
sponsible for signal transduction.38 The N-terminus of the integrin 
α subunit has a domain that can bind divalent oxygen ions, and the 
cytoplasmic region near the membrane has a very structurally con-
served FXGFFKR sequence39 that is mainly responsible for regu-
lating integrin activity. The extracellular part of the β subunit is a 
cysteine-rich region composed of amino acids containing internal 
disulfide bonds, and the cytoplasmic tail of some β subunits has a 
Thr-Thr-Thr (TTT) sequence, which facilitates the stable binding of 
ligands.36 In addition, the cytoplasmic tails of the β1, β2 and β3 subu-
nits contain binding sites for cytoskeleton-related proteins (such as 
actin), which connect integrins to the cytoskeleton.

Integrin-mediated signal transduction, including mechanical sig-
nal transduction, is mainly achieved through the specific binding 
of integrins to specific ligands in the ECM.40 Arg-Gly-Asp (RGD) is 
the most common and important integrin ligand41 and is composed 
of arginine, glycine and aspartic acid42; this ligand occurs in a vari-
ety of ECM proteins, including fibronectin, vitronectin, fibrinogen, 
osteopontin and laminin. In addition to RGD, Ile-Lys-Val-Ala-Val 
(IKVAV)43 and Tyr-Ile-Gly-Ser-Arg (YIGSR)44 are laminin specific, 
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and Pro-His-Ser-Arg-Asn (PHSRN) is fibronectin specific45; as a re-
sult, signal transduction can occur through integrins. As a ‘bridge’ 
between the inside and outside of cells, integrins can transmit 
transmembrane signals bidirectionally to regulate cellular function. 
Without a stimulus, most integrins are found in a low-affinity folded 
conformation. When cells receive an activation signal, intracellular 
regulatory proteins, such as talin and kindlin, bind to the intracellular 
segment of integrin β subunits and cause the intracellular domains 
of integrin α and β subunits to separate, leading to conformational 
changes in the extracellular structural domains. In this process, in-
tegrins change from a folded non-activated state (low affinity) to an 
extended activated state (high affinity), which activates integrins 
(inside-out signalling). Additionally, the extracellular domain of inte-
grins can bind to ligand proteins in the ECM, which triggers, confor-
mational changes in integrins, causes integrins on the cell membrane 
surface to cluster and, allows signals to be transmitted to the nuclear 
membrane46 by FAs composed of signalling proteins, such as FAK, 
paxillin, talin, vinculin and integrin-linked kinase (ILK); in addition, 
outside-in signalling is simultaneously activated47–49 (Figure 2).

Integrins are widely expressed in animals and plants, and at least 
one integrin type is expressed on the surface of most cells, playing 
a key role in a variety of life activities. Integrins not only mediate 
the mutual recognition and adhesion of multiple cells and cells to 
the ECM but also transmit signals through the plasma membrane, 
thereby regulating bone metabolism, inflammation and immunity as 

well as the growth and development of tissues and organs.10,50,51 
In addition, cells initiate apoptosis if integrin-mediated adhesion be-
tween cells and the ECM is impaired.52

2.3  |  Integrin-mediated mechanical stress and 
bone metabolism

Mechanical stress stimuli drive many physiological processes, in-
cluding bone metabolism,53 sensory and motor processes,54,55 and 
angiogenesis.56 As the first molecular receptor in cells to sense me-
chanical stimuli,57 integrins convert extracellular mechanical signals 
into intracellular bioelectrical signals, thereby affecting various life 
activities of cells. Integrins are activated under the action of me-
chanical stress and act as mechanoreceptors to physically connect 
with ligand proteins in the ECM and transmit extracellular signals 
to cells.55 Additionally, integrins are directly connected to the cy-
toskeleton to sense intracellular signals that alter the interaction of 
cells with the extracellular environment58 and regulate a variety of 
cellular functions, including bone metabolism, cell proliferation and 
apoptosis, angiogenesis, and ECM synthesis and degradation.59–61

Studies have shown that the response mechanism to integrin-
mediated mechanical stress in cells may be as follows. (1) When 
cells are mechanically stimulated, integrins bind to ligand proteins 
in the ECM, and then, integrin molecules cluster on the surface 

F I G U R E  2 Schematic diagram showing integrin activation. Figure was created with Biore​nder.​com.
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of the cell membrane. A variety of proteins (such as talin, kindlin 
and ILK) are recruited to form FAs.62 (2) FAs directly transmit the 
mechanical stimulation of cells to the cytoskeleton, and the defor-
mation of the cytoskeleton causes the phosphorylation of intra-
cellular chemical signalling molecules, such as mitogen-activated 
protein kinase (MAPK), phospho-inositol 3 kinase (PI3K) and ex-
tracellular signal-regulated kinase 1/2 (ERK1/2),63–65 to undergo 
phosphorylation; in addition, the corresponding signalling path-
ways are activated, resulting in intracellular signal transduction. 
Numerous studies have shown that bone metabolic activity is 
regulated by integrin-mediated mechanical stress. Studies have 
also shown that mechanical stress can lead to the redistribution 
of integrins on the surface of osteosarcoma cells (TE85 cells) and 
that pretreatment with anti-integrin function-blocking antibod-
ies can inhibit the activity of mechanosensitive ion channels.60 A 
study by YAN et al. showed that mechanical stress increased the 
proliferation rate of MC3T3-E1 cells and that the cell proliferation 
rate decreased after the specific knockout of the integrin gene.66 
Another study showed that integrins mediate osteoblast differ-
entiation and ECM formation and that mechanical tensile strain 
enhanced this differentiation and ECM formation.67

2.4  |  Mechanism of integrin-mediated mechanical 
stress in cells involved in bone metabolism

The cell types involved in the regulation of bone metabolism fa-
cilitated by integrin-mediated mechanical stimulation are still being 
explored. Cells involved in bone metabolism related to integrin-
mediated mechanical stimulation mainly include osteoblasts, os-
teoclasts, osteocytes, chondrocytes, MSCs and other cells, such as 
fibroblasts (Tables 1–3. This article summarizes the relevant litera-
ture, aiming to provide a reference for research on the precise treat-
ment of mechanical stress-related diseases and the optimization of 
bone tissue engineering under mechanical stress stimulation.

2.4.1  |  Osteoblasts

Osteoblasts express several types of integrins, including integrin β1 
(which can dimerize with α subunits, including α1, α2, α3, α4, α5, αv), 
β3 and β5, which have been shown to play important roles in os-
teogenic proliferation and differentiation.68–70 As mechanoreceptor 
cells, osteoblasts can sense and respond to a variety of mechanical 
stress stimuli. The MAPK pathway, which is an important mechani-
cal signal transduction pathway, is closely related to mechanical 
transduction. A variety of signalling molecules in this pathway, such 
as ERK 1/2, c-Jun N-terminal kinase (JNK) and p38MAPK (p38), 
have been shown to facilitate a variety of important physiological/
pathological processes, such as cell proliferation and differentiation, 
adaptation to surrounding environmental stress and inflammatory 
responses. Studies have shown that ERK1/2 is involved in the prolif-
eration, differentiation and survival of different cell types, including 

cells involved in bone metabolism. YAN et al.63 applied cyclic ten-
sile stress to MC3T3-E1 osteoblasts and found that mechanical 
stimulation upregulated intracellular ERK1/2 phosphorylation and 
cell proliferation. After the MEK 1/2 inhibitor PD98059 was used 
to selectively block Raf activation of MEK 1/2, the ERK1/2 cascade 
was blocked, which manifested as a significant decrease in cell pro-
liferation; as an upstream molecule of ERK1/2, MEK1/2 controlled 
the proliferation and differentiation of MC3T3-E1 cells through the 
MAPK signalling cascade.71 The researchers further investigated the 
role of integrins in ERK activation and proliferation of MC3T3-E1 os-
teoblasts, showing that the knockdown of integrin β1 reduced ERK 
phosphorylation levels and MC3T3-E1 cell proliferation rates; in 
contrast, knockdown of integrin β5 significantly increased ERK phos-
phorylation and cell proliferation rates. These results suggest that 
mechanical strain can convert extracellular mechanical signals into 
intracellular biological signals through the ERK signalling pathway 
and that integrin β1 and β5 may play opposite roles in this process. 
Other investigators applied cyclic stretch stress to MC3T3-E1 cells 
to clarify the relationship between β subunits of integrin in mechani-
cal tension-induced osteoblast differentiation and ECM formation; 
the results indicated that integrin β1 (but not integrin β5) mediated 
osteoblast differentiation and ECM formation upon mechanical ten-
sion stimulation. Notably, the simultaneous knockout of integrin β1 
and β5 weakened the inhibitory effect of osteoblast differentiation 
and ECM formation, suggesting that integrin β5 knockout could at-
tenuate the inhibitory effect of integrin β1 knockout on osteoblast 
differentiation and ECM formation.8 However, the exact relationship 
between the two in the biological activities of osteoblasts has not 
been elucidated, and further research is needed.

Relevant studies have shown that the Wnt/β-catenin signalling 
pathway plays an important role in the process by which osteo-
blasts respond to mechanical stress.72 Mechanical stimulation can 
be mediated by integrins, thereby activating the Wnt/β-catenin 
pathway to induce bone formation. Studies have shown73 that 
stretching force can increase the expression of integrin β1 mRNA, 
phosphorylated glycogen synthase kinase-3β (GSK-3β) and β-
catenin protein in MC3T3-E1 cells and upregulate the expression of 
osteogenesis-related genes, such as Runt-associated transcription 
factor-2 (Runx-2), osteocalcin (OCN), bone morphogenetic pro-
tein-2 (BMP-2) and BMP-4, enhancing alkaline phosphatase (ALP) 
activity. In contrast, GSK-3β and β-catenin expression was sup-
pressed when integrin β1 in MC3T3-E1 osteoblasts was silenced 
with small interfering RNA, suggesting that stretching force can 
promote osteoblast differentiation through integrin β1-mediated 
β-catenin signalling. In osteoblasts isolated from the calvaria or 
long bones of C57BL/6J (B6) mice and treated with inhibitors 
of the Wnt pathway (endostatin), BMP pathway (Noggin) or ER 
pathway (ICI182780), the proliferation of osteoblast proliferation 
induced by fluid shear force was blocked; thus, osteoblast mech-
anotransduction and insulin-like growth factor-1 (IGF-1), ER, BMP 
and Wnt pathway-related genes may be upregulated. However, 
after fluid shear-stimulated mouse osteoblasts were treated with 
echistatin (integrin inhibitor) and indomethacin (Cox-2 inhibitor), 
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the expression levels of genes related to the above four pathways 
were upregulated, indicating that in the mechanotransduction 
mechanism of osteoblasts, FSS upregulated the expression of at 
least two early mechanoresponsive genes (integrin β1 and Cox-2) 
and that these four pathways may be located downstream of these 
two genes.74

Additional evidence showed that the mTOR/P70S6K (P70S6 
kinase) pathway downstream of PI3K/AKT is necessary for os-
teoblast proliferation and differentiation.64 LEE et al. applied os-
cillatory shear stress (OSS) to human osteoblast-like MG63 cells 
and confirmed that OSS can mediate FAK and Shc expression by 
activating integrin αvβ3 and integrin β1 and cooperate with P13K 
to activate downstream ERK and Akt/mTOR/P70S6K; as a result, 
MG63 cell proliferation is induced, which increases the expres-
sion levels of bone formation-related genes (c-fos, Egr-1 and Cox-
2).75 DAI et  al.70 cultured mouse MC3T36OSE2-luc osteoblasts 
(OSE-3 T3) with and without IGF-1, PI3K inhibitor (LY294002) 
and the combination of these drugs under simulated micrograv-
ity (SMG) or hypergravity (HG); the results showed that SMG and 
HG affected the expression and activity of integrin αvβ3 and the 
phosphorylation level of p85 and that integrin αvβ3 interacted 
with IGF-1. This effect was reduced under SMG conditions and in-
creased under HG conditions, manifesting as changes in the mRNA 
expression levels of ALP and type I collagen α1 chain (Col1α1); 
additionally, integrin αvβ3 mediated the synergistic effect of grav-
ity and core-binding factor α1 (CBFA1) transcriptional activity 
through the P13K signalling pathway to promote the osteogenic 
differentiation of OSE-3 T3 cells.

2.4.2  |  Osteoclasts

Osteoclasts function as a crucial regulator of bone as mechano-
sensitive cells. The differentiation of osteoclasts has been demon-
strated to be influenced by mechanical stimuli. Previous research 
suggests that integrin αvβ3 is the most pertinent molecule in the 
regulation of osteolysis, and the molecule is crucial for the pro-
liferation of osteoclast precursor cells in the formation of multi-
nucleated cells and subsequent bone resorption.76 The activated 
αvβ3 receptors can promote osteoclast formation and adhesion 
to the ECM.77In osteoclasts, integrin αvβ3 can specifically bind to 
ECM proteins through cell surface RGD sequences, resulting in de-
creased osteoclast activity and bone resorption.77 Some scholars78 
applied tension to RAW 264.7-induced osteoclasts and found that 
mechanical stimulation caused by the RANKL-NFATc1 axis could 
lead to the downregulation of osteoclast-specific gene expres-
sion and fusion-related molecules, such as dendritic cell-specific 
transmembrane proteins (DC-STAMPs) and osteoclast-stimulating 
transmembrane proteins (OC-STAMPs); additionally, the levels of 
E-cadherin, integrin αv and integrin β3 mRNA decreased. Another 
study showed that low intensity electromotive force could increase 
the expression of integrin β3, which in turn activated ERK and p38 
MAPK to regulate osteoclast differentiation, resulting in the high 

expression of osteoclastogenesis markers NFATc1, TRAP, CTSK, 
MMP9 and DC-STAMP.79Recent studies have shown that matrix 
stiffness can regulate CF alignment through integrin αvβ3, thereby 
regulating the differentiation and function of osteoclast.80WANG 
et al. further demonstrated that matrix stiffness similar to blood 
vessel stiffness could simultaneously enhance preosteoclast 
cell-mediated angiogenesis and bone repair through integrinβ3-
mediated RhoA-ROCK2-YAP and NF-κB signalling, thereby regu-
lating osteoclastogenesis.81

From a microscopic perspective, the orthodontic process is bone 
metabolism. Orthodontic force affects the bone metabolism level 
of the alveolar bone by disrupting the balance between osteoblasts 
and osteoclasts in the peri-dental bone tissue, which manifests as 
orthodontic tooth movement (OTM).82 Studies have shown that me-
chanical stimulation can influence OTM by affecting the activity of 
osteoclasts and that integrins are crucial in the process of osteo-
clast participation. ZHANG et  al.83,84 used in  situ hybridization to 
detect periodontitis-affected teeth and normal teeth in rats during 
orthodontic movement and found that integrin β1 was strongly ex-
pressed in osteoblasts at all times of applied force in the normal and 
periodontitis groups. In addition, integrin β3 was mainly expressed 
in the periodontal ligament and alveolar bone marrow cavity of nor-
mal teeth and teeth with periodontitis in the early stage of move-
ment; thus, integrin β1 in osteoclasts may be involved in the entire 
OTM process. Integrin β3 may be involved in the transformation of 
osteoclast precursor cells to osteoclasts. Previously, researchers85 
integrated echistatin and RGD peptide (a drug known to interfere 
with bone remodelling) into ethyl vinyl acetate (ELVAX) scaffolds 
and then applied the scaffolds to the maxillary molars of rats during 
tooth movement. The topical administration of integrin inhibitors 
blocks osteoclast-mediated OTM, and the main mechanism mainly 
involves disrupting the actin ring (a key marker of functional osteo-
clasts) that is specific to osteoclasts. Actin is an important protein 
component of the cytoskeleton and is closely related to cell prolifer-
ation, apoptosis and immune regulation.86

2.4.3  |  Osteocytes

As the most abundant cells in bone, osteocytes are mainly respon-
sible for regulating the balance between bone formation and bone 
resorption.19Osteocytes can produce RANKL, sclerostin (SOST), 
OPG and other biological factors, thereby regulating the balance 
between osteoclasts and osteoblasts to regulate bone homeostasis. 
Integrins β1 and β3 have been shown to be essential for bone cell 
mechanotransduction.87Integrin β1 is mainly found on the plasma 
membrane around the cell body and is among the integrin subu-
nits mainly expressed by bone cells, which can bind to the α1, α2, 
α3, α4 and α5 subunits;50 integrin β3 is mainly associated with αV. 
Immunohistochemistry showed that osteocyte protrusions have 
unique integrin αVβ3 clusters in vivo, and both can interact with the 
surrounding ECM.87,88Animal studies showed that the absence of in-
tegrin β1 in osteocytes could lead to severe bone mass reduction in 
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mice, and the application of mechanical load did not increase bone 
formation in mice, suggesting that integrin is indispensable in the 
regulation of bone homeostasis by mechanical stress stimulation.67

In addition, studies have shown that mechanical stimulation 
can activate the integrin α5β1-mediated PI3K signalling pathway in 
MLO-Y4 osteocytes to open Cx43 hemichannels89 and promote the 
release of bone anabolic molecules, such as prostaglandin-2 (PGE2), 
from MLO-Y4 osteocytes, which are essential for bone formation and 
bone regeneration.90 Integrin α5 deficiency impedes the mechanical 
stimulation-induced opening of Cx43 hemichannels. Conditional 
knockout of integrin α5 in mouse tibia cells could block the open-
ing of Cx43 hemichannels on the tibia cell surface induced by cyclic 
mechanical load; however, the production and release of PGE2 were 
decreased, resulting in the attenuated synthesis of sclerostin (SOST) 
and β-catenin, factors associated with bone catabolism.91

In primary bone cells, activation of integrin αVβ3 by mechani-
cal stretch can lead to the upregulation of c-fos, IGF-1 and Cox-
2.92Blocking integrin αvβ3 using an antagonist disrupted the 
morphology of MLO-Y4 bone cells; as a result, the spreading area 
and process retraction were reduced, the level of Cox-2 expression 
was decreased and the release of PGE2 under fluid shear stress was 
abolished.93Animal experiments showed that knocking down inte-
grin β3 under mechanical stimulation could affect the FA signalling 
pathway in bone cells; as a result, the expression levels of phosphor-
ylated focal adhesion kinase (p-FAK) and phosphorylated Talin 1 (p-
Talin) proteins related to this pathway were reduced, reducing long 
bone formation.94 Previous studies have suggested that oestrogen 
acts as a regulator to maintain bone metabolic balance,95 and en-
hance the response of bone cells to mechanical stress.96GEOGHE-
GAN et al.97 cultured oestrogen-deficient MLO-Y4 osteocytes under 
the action of laminar oscillatory fluid flow and found that oestrogen 
deficiency led to a smaller focal adhesion area and reduced αvβ3 
localization at focal adhesion sites; as a result, the RANK1/OPG ratio 
increased, which promoted osteoclastogenesis. At the same time, 
oestrogen withdrawal can inhibit the expression of RANK1/OPG 
in bone cells, thereby affecting osteoclastogenesis. These results 
suggest that osteoclastopenia caused by mechanical stimulation can 
also affect osteoclastogenesis through paracrine signals.

2.4.4  |  Chondrocytes

Integrins do not exhibit kinase activity, and they transmit me-
chanical signals as biochemical signals through integrin-related 
signal kinases, such as Src and ERK1/2.75 Activation of integrin 
β1, which is mainly located on the membrane of chondrocytes, 
can accelerate the differentiation and maturation of these cells 
by regulating ECM synthesis, thereby promoting chondrogenesis 
and remodelling.98,99 Related studies have shown that mechani-
cal stress-induced chondrocyte proliferation and matrix syn-
thesis are mainly mediated by the integrin β1-ERK1/2 signalling 
cascade. After cyclic mechanical stress was applied to rat chon-
drocytes, mechanical stress activated two signalling pathways TA

B
LE

 3
 
Su
m
m
ar
y 
of
 th
e 
re
la
te
d 
m
ec
ha
ni
sm
s 
un
de
rly
in
g 
in
te
gr
in
-m
ed
ia
te
d 
m
ec
ha
ni
ca
l s
tr
es
s 
in
 M
SC
s 
an
d 
ot
he
rs
 in
vo
lv
ed
 in
 b
on
e 
m
et
ab
ol
is
m
.

Ce
ll 

ty
pe

s
In

te
gr

in
s

M
et

ho
d 

of
 

tr
ea

tm
en

t
Bi

ol
og

ic
al

 b
eh

av
io

ur
Re

gu
la

tio
n

O
ut

co
m

e 
in

di
ca

to
r

Sp
ec

ifi
c 

m
ec

ha
ni

sm
Re

f.

M
SC
s

β1
LI
PU
S

M
ig

ra
tio

n
Pr

om
ot

e
In

cr
ea

se
 th

e 
m

ig
ra

tio
n 

ra
te

A
ct
iv
at
io
n 
of
 th
e 
SD
F-
1/
C
XC
R4
 a
xi
s

10
6

β1
LI
PU
S

C
ho

nd
ro

ge
ne

si
s

Pr
om

ot
e

In
cr
ea
se
 in
 C
ol
 2
, a
gg
re
ca
n 
an
d 
So
x9
 e
xp
re
ss
io
n 

an
d 

de
cr

ea
se

 in
 C

ol
1

A
ct

iv
at

io
n 

of
 th

e 
in

te
gr

in
-m

TO
R 

si
gn

al
lin

g 
pa

th
w

ay

10
7

β1
LI
PU
S

O
st

eo
ge

ne
si

s
Pr

om
ot

e
In

cr
ea

se
 in

 in
te

gr
in

 β
1,

 A
LP

 a
nd

 R
un

x-
2 

ex
pr

es
si

on
/

10
8

β1
Cy

cl
ic

al
 p

re
ss

ur
e

O
st

eo
ge

ne
si

s
Pr

om
ot

e
In
cr
ea
se
 in
 O
PN
, T
G
F-
R1
, P
D
G
F-
α 
an
d 
Sm
ad
5 

ex
pr

es
si

on
/

10
9

β1
FS
S

O
st

eo
ge

ne
si

s
Pr

om
ot

e
In

cr
ea

se
 in

 A
LP

, R
un

x-
2,

 C
ol

1α
 a
nd
 O
C
N
 

ex
pr

es
si

on
A

ct
iv

at
io

n 
of

 th
e 

in
te

gr
in

-F
A

K-
ER

K1
/2

 
pa
th
w
ay
 a
nd
 th
e 
N
F-
κB

 s
ig

na
lli

ng
 p

at
hw

ay

11
0

β5
H

P
O

st
eo

ge
ne

si
s

Pr
om

ot
e

In
cr
ea
se
 in
 A
LP
, C
ol
1,
 O
C
N
 a
nd
 O
PN
 e
xp
re
ss
io
n

/
11

1

β1
FS
S

O
st

eo
ge

ne
si

s
Pr

om
ot

e
In
cr
ea
se
 in
 A
LP
, R
un
x-
2,
 O
C
N
 a
nd
 O
PN
 e
xp
re
ss
io
n

A
ct

iv
at

io
n 

of
 th

e 
in

te
gr

in
 β

1-
FA

K-
ER

K 
pa

th
w

ay

11
4

O
th

er
 c

el
ls

α5
β1

,α
Vβ

3
Cy

cl
ic

 s
tr

ai
n

C
el

l p
ro

lif
er

at
io

n
Pr

om
ot

e
U
pr
eg
ul
at
io
n 
of
 c
el
l p
ro
lif
er
at
io
n 
ra
te

A
ct

iv
at

io
n 

of
 th

e 
M

A
PK

 s
ig

na
lli

ng
 p

at
hw

ay
11
9

αv
β3

C
TS

O
st

eo
ge

ne
si

s,
 c

el
l 

pr
ol

ife
ra

tio
n

Pr
om

ot
e

In
cr

ea
se

 in
 A

LP
, R

un
x-

2 
an

d 
YA

P 
pr

ot
ei

n 
ex

pr
es

si
on

A
ct

iv
at

io
n 

of
 th

e 
in

te
gr

in
-F

A
K-

ER
K 

pa
th

w
ay

 
an

d 
th

e 
in

te
gr

in
-m

ic
ro

fil
am

en
t a

xi
s 

pa
th

w
ay

60



10 of 17  |     YANG et al.

that involved ERK1/2, that is, a Rac1-dependent pathway and a 
PLCγ1-dependent pathway, which were both dependent on Src 
activation. Integrin β1 was shown to link cyclic mechanical stress 
stimuli with Src-ERK1/2 signalling and cause, them to converge 
into a mitogenic cascade in chondrocytes, promoting chondro-
cyte proliferation and matrix synthesis.100 Notably, in that study, 
the phosphorylation levels of activated Src, PLCγ1, Rac1, ERK1/2 
and Rac1 were attenuated when chondrocytes were pretreated 
with an anti-integrin β1 function-blocking antibody. Thus, despite 
the presence of integrin β1, other integrin-related kinases and 
MAPKs could still transmit mechanical signals. The upregulation 
of integrin β1 does not affect the cellular response of or ERK1/2 
phosphorylation in chondrocytes when cultured under static con-
ditions. Cyclic mechanical stress stimulation combined with inte-
grin β1 upregulation further promotes chondrocyte proliferation 
and matrix synthesis, increases ERK1/2 phosphorylation levels in 
chondrocyte monolayer cultures and promotes the accumulation 
of glycosaminoglycans (GAGs) and type II collagen in chondrocyte 
3D cultures.7 Cyclic mechanical stress may be a key factor that 
improves the quality of chondrogenesis and the upregulation of 
integrin β1 may amplify this effect; a possible explanation is that 
the number of mechanoreceptors increases, which allows cells to 
receive more mechanical stimulation. Researchers65 have applied 
cyclic mechanical stress to chondrocytes to explore the role of 
the CaMKII-Pyk2 signalling pathway in chondrocyte proliferation 
and matrix synthesis. The results showed that mechanical stress 
stimulation significantly enhanced the phosphorylation of Pyk2 at 
Tyr402 and of CaMKII at Thr286. After researchers silenced Pyk2 
and CaMKII expression with an inhibitor or shRNA, chondrocyte 
proliferation and matrix synthesis were attenuated, suggesting 
that integrin β1 can mediate cyclic stress to promote chondro-
cyte proliferation and matrix synthesis through the CaMKII-Pyk2-
ERK1/2 signalling cascade.

Chondrocytes continuously receive external stimuli and regulate 
bone remodelling through bone metabolic homeostasis. Disruption 
of the bone metabolic balance can lead to bone metabolic diseases, 
such as osteoarthritis (OA) and osteoporosis.101,102 The effects of 
mechanical stress on chondrocyte inflammation and related cellular 
pathways have been extensively studied. Researchers11 have found 
that cilengitide (integrin receptor antagonist) inhibits the expression 
of inflammation-related genes such as IL-1β, TNF-α, MMP-3 and 
MMP-13 induced by excessive mechanical stress (10% elongation 
rate, 0.5 Hz and 3 h) and suppresses the phosphorylation levels of 
integrin downstream-related molecules such as FAK, ERK, JNK and 
p38; these results suggest that excessive mechanical stress can ac-
tivate integrins on the surface of chondrocytes and upregulate the 
expression of inflammatory-related factors through the phosphor-
ylation of FAK and MAPKs, thereby inducing cartilage inflamma-
tion. Through histological and proteomic analyses of osteoarthritic 
cartilage in a destabilized medial meniscus rat model and in  vitro 
findings, SONG et  al.103 demonstrated that excessive mechanical 
stress (15 V, 2 Hz) led to significantly increased integrin αVβ3 ex-
pression, enhanced the phosphorylation of downstream signalling 

molecules, such as FAK and ERK, and upregulated the expression 
of inflammation-related proteins, such as MMP-9, 13 and Adamts-5; 
the inhibition of integrin αVβ3 attenuated chondrocyte inflamma-
tion induced by excessive mechanical stress in vivo and in vitro.

2.4.5  | MSCs

A number of studies have shown that a variety of mechanical stress 
stimuli can drive the proliferation and differentiation of BMSCs. FSS 
can upregulate the expression of bone markers BMP-2, BSP and 
OPN in MSCs.104 Short-term fluid flow stimulation could promote 
the expression of Cox-2, OPN and Runx-2 in early osteogenesis of 
MSCs, while long-term stimulation increased the formation of col-
lagen and matrix in the late stage.105 Several studies have shown that 
integrins play an important role in mechanical stimulation on bone 
metabolism of MSCs. Studies have shown that LIPUS not only pro-
motes BMSCs migration through integrin β1,106 but also promotes 
chondrosarcoma differentiation of BMSCs through integrin β1 and 
its downstream mTOR pathway.107 In addition, LIPUS can also en-
hance the proliferation of human periodontal ligament stem cells 
(hPDLSCs), promote the secretion of OCN, enhance the activity of 
ALP, up-regulate the expression of integrin β1 and Runx-2, and pro-
mote the formation of mineralized nodules.108

Some researchers have used DNA array technology to study the 
effect of 24 h mechanical stress cyclic loading on the gene expression 
of human bone marrow stromal cells (hBMSCs). The results showed 
that after stress stimulation, the expression levels of genes encod-
ing matrix molecules, receptors and growth factors increased, which 
significantly increased OPN, integrin β1, transforming growth factor 
receptor 1 (TGF-R1) and Smad5 expression.109 Thus, short-term me-
chanical stimulation may be involved in regulating the osteogenic dif-
ferentiation of hBMSCs through integrin β1. Another study showed 
that under FSS, integrin β1 in hBMSCs not only promoted the for-
mation of hBMSCs by activating FAK and its downstream molecules 
ERK1/2 to upregulate the expression of osteogenesis-related genes, 
such as ALP, OCN, Runx-2 and Col 1α, but also activated the NF-κB 
pathway through ERK1/2 phosphorylation feedback, thereby upreg-
ulating its own expression.110 In addition, HUANG et al. found that 
HP enhanced the cell viability of hBMSCs seeded on hydroxyapatite 
(HA) scaffolds and promoted their osteogenic differentiation, which 
increased the expression of osteogenic genes, such as OCN, OPN, 
Col1 and ALP. Furthermore, the expression of integrin β5 mRNA in-
creased in HP-stimulated hBMSCs, an effect closely related to the 
expression of OCN, Col1 and CBFA1; thus, HP may promote the 
osteogenic differentiation of hBMSCs by activating integrin β5.111

The coculture of human umbilical vein endothelial cells (HUVECs) 
and hBMSCs has been studied by many researchers. Compared with 
culturing hBMSCs, the coculture of hBMSCs and HUVECs at a 1:1 
ratio under static conditions can enhance the osteogenic differenti-
ation of hBMSCs.112 DAHLIN et al. further demonstrated that in this 
coculture system, fluid perfusion under mechanical stress enhanced 
the early osteogenesis of hBMSCs.113 JIANG et al.114 cocultured rat 
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BMSCs with HUVECs and applied FSS and found that FSS stimu-
lation upregulated the mRNA levels of ALP, Runx-2 and OCN in 
BMSCs and caused OCN and OPN protein expression to increase. 
Thus, the coculture of BMSCs and HUVECs may have synergized 
with FSS to promote the osteogenic differentiation of BMSCs, which 
was mediated through the integrin β1-FAK-ERK signalling pathway. 
Optimizing the mechanical conditions in coculture systems, select-
ing the appropriate coculture and clarifying the specific transduction 
mechanism will be important goals of future research on bone tissue 
engineering.

2.4.6  |  Other cells

Fibroblasts are a common adherent cell type in the mesenchymal 
matrix115 that have MSC markers similar to MSCs and can differ-
entiate towards osteogenesis, lipogenesis and chondrogenesis.116 
Binding of fibroblasts to proteins in the ECM is regulated by integ-
rins. The binding of fibroblasts to proteins in the ECM is regulated 
by integrins. A variety of integrins can be expressed in fibroblasts, 
such as α1, α6, α7, αv, β1 and β5.117 Studies have shown that integrin 
α5β1 has strong is highly expressed in human periodontal ligament 
fibroblasts,117 the ligand of which is fibronectin in the ECM, and the 
binding between the two plays an important role in hPDLF signal 
transduction.118 Some studies have found that 0.5% small cyclic me-
chanical stress can enhance the proliferation ability of fibroblasts 
and that different types of integrins exhibit different sensitivities 
to stress stimuli; α5β1 and αvβ3 integrins showed higher sensitivity 
to stress stimuli, and α1β1 and α2β1 integrins were less sensitive to 
mechanical stimuli,119 suggesting that integrin type is an important 
regulator of integrin mechanosensing. PENG et al.60 exposed fibro-
blasts to cyclic tensile stress (0.5 Hz, 10% strength, 2 h/d) and found 
that cyclic tensile stress promoted the osteogenic differentiation of 
fibroblasts, which leads to the upregulation of osteogenic-related 
genes, such as ALP and Runx-2; however, after the activation of 
integrin αvβ3 was inhibited with c(RGDyk), cellular microfilament 
rearrangement and ALP, Runx-2 and YAP protein expression was 
downregulated, accompanied by decreased FAK phosphorylation. 
Thus, cyclic mechanical stress can promote the osteogenic differ-
entiation of human fibroblasts through the integrin-microfilament 
axis, and the phosphorylation of FAK and YAP is also involved.

Although a large number of studies have investigated integrin-
mediated mechanical stress regulation of bone metabolism, 
many factors remain unknown, such as the application of stress. 
Determining the type, size, duration and time threshold of mechan-
ical stimulation is essential for performing effective and centralized 
mechanical treatments of bone metabolic diseases and bone tissue 
regeneration. Another unknown factor is which types of integrin 
help mediate mechanical stress to regulate bone metabolism; for ex-
ample, although studies have shown that the α1 subunit of integrin 
can mediate mechanical stress, these studies only pertain to neu-
ral tissue120,121; there are no reports of its application in the field 
of bone regeneration. Although many studies have confirmed that 

integrin α2 can mediate mechanical stimulation and participate in 
the regulation of bone metabolism, integrin α2 mainly regulates ma-
trix hardness by changing the proportion of a certain component in 
the ECM.122–125 No mechanical stress has been applied to the ECM 
around cells to stimulate integrins on the cell surface, and thereby 
regulate bone metabolism. Another issue is the selection of target 
cell types. Most related studies involved bone-derived cells, and 
only a few studies employed other cells, such as fibroblasts. Some 
cell types have been shown to be closely related to bone metabo-
lism, but no studies have involved integrin, such as bone lining cells 
and macrophages. Developing more cell types, clarifying the specific 
integrin types and regulatory mechanisms involved and applying the 
knowledge to bone tissue engineering are major challenges.

2.5  |  Nonintegrin-mediated mechanical stress and 
bone metabolism

With advancements in research, knowledge on the mechanism by 
which cells respond to stress and adaptive strain has increased. Cells 
can sense extracellular mechanical stress through deformation and 
sense extracellular mechanical stress through mechanosensitive ion 
channels and integrins on the cell membrane; these structures can 
transmit mechanical signals directly into the cells or convert me-
chanical signals into chemical signals and transmit them to cells. In 
addition to integrins that mediate mechanical stimuli to participate 
in the regulation of bone metabolism, many factors can mediate me-
chanical stimuli to participate in the regulation of bone metabolism, 
such as epigenetic modifications, mechanosensitive channels, cad-
herins and primary cilia (Table 4).

Epigenetic modifications126 refer to chemical modifications that 
alter chromosomes to promote gene regulation; these modifications 
only change the DNA transcription process and do not change the 
nucleotide sequence of the DNA. Common epigenetic modifications 
include DNA methylation, histone modification, noncoding RNA, 
RNA modification and chromatin remodelling. Previous studies have 
shown that mechanical stress stimulation can change the state of 
DNA methylation so that cells can produce an appropriate epigen-
etic state; as a result, osteoblasts are regulated and the cells can 
participate in osteogenic differentiation.127 By applying mechanical 
stretching to human adipose tissue multipotential stromal cells (hAT-
MSCs), VLAIKOU et  al. demonstrated that long-term mechanical 
stimulation can trigger the control of DNA methylation and osteo-
genic differentiation of hAT-MSCs.9 Another researcher used me-
chanical loading to induce osteogenesis in BMSCs and osteoblasts 
and found that miRNAs in the two changed significantly128; thus, 
miRNAs may serve as a mechanisms by which mechanical loading is 
mediated to regulate bone metabolism and promote bone formation.

Among the related reports on mechanosensitive channels in-
volved in the regulation of bone metabolism, TRP and Piezo chan-
nels have been investigated; both of these channels are permeable 
to Ca2+ and can regulate bone metabolism by altering the expression 
of downstream genes, thereby causing changes in cell morphology 
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and function.129 TRP channels are mechanosensitive channels com-
posed of six transmembrane domains and an intracellular N terminus 
and C terminus.130 A previous study found that fluid shear force can 
activate the TRPV4 channel of osteocytes, increase the intracellu-
lar Ca2+ concentration, activate CaMK II and inhibit the secretion 
of sclerostin.131 Sclerostin is a glycoprotein secreted by osteocytes, 
is an inhibitor of BMP and negatively regulates bone formation.132 
Researchers applied a low-intensity traction force to osteoblasts 
and found that intracellular and extracellular Ca2+ concentrations 
are changed through TRPM3 and TRPV4 channels, resulting in en-
hanced NF-κB, RANKL and NFATc1 activity and accelerated bone 
resorption133; thus, mechanical stress-stimulated TRP channels 
may play a key role in bone remodelling. Piezo channels are non-
selective ion channels that are expressed in a variety of cells, such 
as osteocytes, chondrocytes and MSCs, and respond to a variety 
of mechanical stress stimuli; in addition, there are two subtypes of 
these channels, Piezo1 and Piezo2.134 In an in  vitro experimental 
study, SUGIMOTO et al. found that hydrostatic pressure and Piezo1 
activator (Yoda1) promoted BMP-2 expression and the osteogenic 
differentiation of MSCs and inhibited adipose differentiation; addi-
tionally, the inhibition of Piezo1 attenuated BMP-2 expression and 
osteoblast differentiation.135

Unlike integrins, which mediate cell-to-ECM adhesion, cadherins 
mainly mediate cell-to-cell adhesion. Cadherins are a class of Ca2+ 
−dependent adhesion molecules and are divided into the following 
subtypes: E-cadherin, N-cadherin and P-cadherin.136 Cadherins can 
combine with β-catenin to form a cadherin-catenin complex.137 As 
a sensitive mechanosensor, this complex regulates intracellular sig-
nalling pathways by linking the intracellular cytoskeleton,138 thereby 
maintaining cell differentiation and ECM protein synthesis. Previous 
studies have shown that the presence of E-cadherin in the cyto-
plasm is necessary for the inhibition of Wnt/β-catenin-dependent 
gene expression.139 XU et al. found that cyclic mechanical tension 
stimulation can promote chondrocyte proliferation; in addition, this 
process was achieved by activating Wnt/β-catenin signalling and 
inhibiting the physical protein interaction between E-cadherin and 
β-catenin.140

Furthermore, primary cilia are involved in the transduction of 
mechanical signals into cells. Primary cilia can sense mechanical 
stress through different signalling pathways, such as Hedgehog, Wnt 
and TGF-β.141 A wide range of extracellular signals are transduced 
into cells to promote the regeneration of bone tissue and its sur-
rounding blood vessels.142

3  |  SUMMARY AND OUTLOOK

Tissue formation and differentiation are regulated by various sig-
nals, which are triggered by biological, chemical and physical factors. 
Increasing data suggest that mechanical stress, which is the fourth 
element in bone tissue engineering after cells, scaffolds and growth 
factors, plays an important role in regulating many cellular functions. 
Integrins are effective mechanosensors due to their unique spatial TA
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arrangement. As important transmembrane receptors, the mechani-
cal and chemical signals integrins transmit play important roles in 
cellular bone metabolism. Integrins are involved in many aspects of 
bone metabolism and exert bidirectional regulatory effects on bone 
metabolism.

Progress has been achieved in treatment of bone metabolic dis-
eases through the development of various drugs and therapies that 
target various integrins and mediate mechanical stress in the bone 
regeneration process; due to the potential therapeutic and preven-
tive value of these drugs and treatment, they will receive increasing 
attention. However, the application of integrin-mediated mechanical 
stress in bone tissue regeneration is currently limited to cell experi-
ments and in vitro animal experiments, and support from long-term 
in  vivo experimental data in large animals and clinical trial data is 
lacking; thus, further research is needed. Additionally, many prob-
lems remain in the application of mechanical stress in bone tissue 
engineering, such as the choice of stress application, the specific 
transduction mechanism of mechanical stimulation mediated by dif-
ferent integrin types, the relationship between mechanical stimula-
tion and ECM interactions, the use of stem cells and the availability 
of tissue mechanotransduction therapy.

Through a series of in-depth studies in the future, scholars will 
continue to deepen their knowledge on mechanical stress, further 
clarify the mechanisms underlying integrin-mediated mechani-
cal stress, explore the role of integrin-mediated mechanical stress 
in bone growth, development and repair in the human body, and 
provide a reference for guiding bone metabolic disease treatment 
and sports rehabilitation in the field of bone tissue regenerative 
medicine.
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