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Abstract

Generators of space-time dynamics in bioimaging have become essential to build ground truth datasets for image
processing algorithm evaluation such as biomolecule detectors and trackers, aswell as to generate training datasets for
deep learning algorithms. In this contribution, we leverage a stochastic model, called birth-death-move (BDM) point
process, in order to generate joint dynamics of biomolecules in cells. This particle-based stochastic simulationmethod
is very flexible and can be seen as a generalization of well-established standard particle-based generators. In
comparison, our approach allows us: (1) to model a system of particles in motion, possibly in interaction, that can
each possibly switch from a motion regime (e.g., Brownian) to another (e.g., a directed motion); (2) to take into
account finely the appearance over time of new trajectories and their disappearance, these events possibly depending
on the cell regions but also on the current spatial configuration of all existing particles. This flexibility enables to
generate more realistic dynamics than standard particle-based simulation procedures, by for example accounting for
the colocalization phenomena often observed between intracellular vesicles. We explain how to specify all charac-
teristics of a BDM model, with many practical examples that are relevant for bioimaging applications. As an
illustration, based on real fluorescence microscopy datasets, we finally calibrate our model to mimic the joint
dynamics of Langerin and Rab11 proteins near the plasma membrane, including the well-known colocalization
occurrence between these two types of vesicles. We show that the resulting synthetic sequences exhibit comparable
features as those observed in real microscopy image sequences.

Impact Statement
The paper presents agenerator of spatio-temporal dynamic for bio-imaging, called the birth-death-move (BDM)
model. This stochastic model simulates particle dynamics, accounting for interactions and colocalization. We
illustrate the high flexibility of this model by presenting results on real-word image series. Model calibration
from real fluorescencemicroscopy data shows that it faithfully reproduces the joint dynamics of the Langerin and
Rab11 proteins.

1. Introduction

A long-term goal in fundamental biology is to decipher the spatiotemporal dynamic coordination and
organization of interacting molecules within molecular complexes at the single cell-level. This includes
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the characterization of intracellular dynamics, which is essential to a better understanding of fundamental
mechanisms like membrane transport. To that end, dedicated image analysis methods have been
developed to process challenging temporal series of 2D–3D images acquired by fluorescence micros-
copy.(1)

In this context, mathematical and biophysical models are indispensable to decode and synthesize the
traffic flows of biomolecules. They constitute crucial prior models in most particle tracking procedures
and they are needed to carry out simulations in order to evaluate the performance of image analysis
algorithms and to facilitate the data augmentation step for the training of complex models like deep neural
networks. Among them, particle-based stochastic models form the main class of tracking models(2–5) and
they are often at the basis of single molecule localization microscopy (SMLM) simulators.(6–10) Popular
softwares providing particle-based stochastic simulations include Virtual Cell,(11) MCell,(12) and
Smoldyn,(13) but they are mainly dedicated to reaction-diffusion dynamics for specific biophysics
applications. In particular, as mentioned in the review paper,(14) they are “also known as Brownian
motion simulators” and as such they hardly represent the diversity of particle motions observed in some
applications.

The aim of particle-based models, as those exploited in the above references, is to represent the
collective motion of particles and global biomolecule trafficking. The latter should ideally account for the
stochastic displacement of all individual particles, but also for a possible regime switching of each
trajectory, the time of appearance of new biomolecules and their lifetime. Moreover, interactions between
biomolecules should be possible, for instance between different types of proteins, giving rise to the
colocalization phenomena observed in several applications.(15–18)

Beyond the aforementioned popular softwares, there is already a vast variety of stochastic models
introduced in the literature to represent the individual trajectories, allowing for instance for Brownian,
confined, anomalous, or directed motions with variable velocities within the cell,(7,8,19–26) or even
supported along a cytoskeleton network.(20,27,28) However, these dynamics are rarely prone to regime
switching, though this feature is often observed in real applications.(22) They also generally assume
independence between particles. Regarding the time and location of appearance of new particles, the
existing models (including those provided by the popular softwares) are unsophisticated if not ignoring
this feature. A constant rate of birth is generally assumed and no interaction with the existing particles is
considered for the location of appearance, ruling out any colocalized dynamics. The same restriction
occurs for the dynamics of disappearance of particles. Consequently, there is still an avenue to improve the
existing particle-based models in order to take into account this lack of features.

We propose in this contribution to leverage a tailored stochastic model introduced in Ref. (29), which is
flexible enough to include all aforementioned features in an unified and theoretically well-grounded
framework. In agreement with our objective, this so-called birth-death-move (BDM) spatial point process
is a model for the dynamics of a system of particles, that move over time, while some new particles may
appear in the cell and some existing particles may disappear. Moreover, each particle may be marked by a
given label, for example, among different possible labeled proteins and/or different types of motion
regimes, and this mark may change over time, for example, a particle may switch from one regime (e.g.,
Brownian) to another (e.g., directedmotion). This switch of amark is sometimes called a “mutation” in the
literature, but we prefer here to use the term “transformation” to avoid misunderstanding with a genuine
biological mutation. The trajectories can be driven by any continuous Markov diffusion model, that
includes most models for individual trajectories previously considered in the literature, and some
interactions may be introduced so that colocalization phenomena can be generated. The intensity of
births, that govern the waiting time before the next appearance of a new particle, may depend on the
current configuration of particles, and similarly for the intensity of deaths. For instance, we may design
that the more biomolecules in the cell there are, the higher the death intensity is, implying a rapid
disappearance. Some spatial effects may also be taken into account, in order to create distinct motion
regimes in some regions of the cell, or to encourage some spatial regions for the appearance of a new
particle, for example, nearby some existing particles due to colocalization.
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In a nutshell, compared to existing particle-based stochastic models and softwares, our approach
enables to simulate a vast variety of Markov trajectories for the system of particles, including interactions
between them during their displacements, as well as in the dynamics of births and deaths, thus accounting
for possible colocalization effects. Additionally, it allows for regime-switching within each individual
trajectory.

The remainder of the article is organized as follows. In Section 2, we give the precise definition of our
stochastic process, and we in particular list all ingredients needed to fully specify the model. An iterative
construction is presented in Section 2.2, clarifying how the dynamics proceeds, and an effective
simulation algorithm is formally detailed in the Appendix and made available online. In Section 2.3,
we provide numerous examples for the specifications of the model, that we think are relevant for many
real biomolecules dynamics. In Section 3,we demonstrate the potential of our approach by focusing on the
joint dynamics of Langerin and Rab11 proteins being involved in membrane trafficking. We start by the
inspection of a real dataset in order to calibrate judiciously the different parameters of the BDMmodel to
be in agreement with this example. The dataset consists of a sequence of images acquired by 3D multi-
angle TIRF (total internal reflection fluorescence) microscopy technique,(30) depicting the locations of
Langerin andRab11 proteins close to the plasmamembrane of the cell, specifically over a distance of 1 μm
in the z-axis. After some post-processing, the sequence shows a set of trajectories for both type of proteins,
that follow different motion regimes, are spatially distributed within the cell in a specific way, and occur at
different periods during the sequence, which is in perfect line with the dynamics of a BDM process. The
observed trajectories for the Langerin channel are depicted on the leftmost plot of Figure 1.We compute a
set of descriptors from this dataset in order to calibrate the parameters of our stochastic process, but also to
create some benchmark features for the assessment of our synthetic sequences. Finally, in Section 3.2, we
generate several simulated sequences and show that they exhibit comparable features as those observed in
the real sequence. An example of generated trajectories is displayed in the rightmost plot of Figure 1. For
this illustration, although the individual trajectories exhibit basic dynamics (they are independent,
homogeneous in space and either follow Brownian, confined, or directed motions), the advantage of
our approach lies in its ability to incorporate regime switching within these trajectories and to account for
the colocalization phenomenon when new particles appear.

Figure 1. Left: set of all trajectories detected and tracked over a real-image sequence of Langerin
proteins, colored by their estimated motion regime (Brownian in blue, directed motion in red, and

confined motion in green). Right: result from a synthetic sequence generated by our stochastic model.
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Supplementary materials, including the Python code for simulation, the raw data, and some further
simulated sequences, are available in our online GitHub repository at https://github.com/balsollier-lisa/
BDM-generator-for-bioimaging.

2. The mathematical model

2.1. Heuristic and notations

In order to mimic the dynamics of biomolecules, we consider a multitype BDM process with mutations,
denoted by Xtð Þt≥ 0. This process is a generalization of BDM processes, as introduced in Ref. (29). In the
following, to avoid misunderstanding we rather use the term “transformation” instead of “mutation,” as
explained in Section 1. This section describes the spatiotemporal dynamics of Xtð Þt≥ 0 and introduces
some notation.

At each time t,Xt is a collection of particles located in a bounded setΛofℝd. Each particle is assigned a
mark that represents a certain feature.We denote byM the collection of possible marks. Through time, the
particles move (possibly depending on their associated mark and in interaction with each other) and three
sudden changes may occur, that we call “jumps”:

1. a “birth”: a new particle, assigned with a mark, may appear;
2. a “death”: an existing particle may disappear;
3. a “transformation”: the mark of an existing particle may change.

Example: In our biological application treated in Section 3,Λrepresents a cell in dimension d¼ 2or d¼ 3.
We observe inside this cell two types of particles, associated to Langerin and Rab11 proteins, and each of
them moves according to three different possible regimes: Brownian, directed, or confined motion.
For this example, each particle is therefore marked out of six possibilities, whether it is associated
to Langerin (L) or Rab11 (R), and depending on its motion regime (1 to 3), so that
M= L,1ð Þ, Lð ,2Þ, Lð ,3Þ, Rð ,1Þ, Rð ,2Þ, Rð ,3Þf g. Through time, each particle moves independently of the
others according to its motion regime and eventually a new particle may appear, an existing one may
disappear, and the motion regime of some particles may change.

We denote by n Xtð Þ the number of particles at time t . Each particle xi ∈Xt , for i¼ 1,…,n Xtð Þ, is
decomposed as xi¼ zi,mið Þwhere zi ∈Λstands for its positionwhilemi ∈Mdenotes its mark.Accordingly
we have Xt ∈ Λ ×Mð Þn Xtð Þ. (Strictly speaking the ordering of particles in Xt does not matter, because any
permutation of particles leads to the same collection of particles. We choose in this article to bypass this
nuance and use the same notation as ifXtwas a vector a particles, even it is actually a set of particles.) Since
the number of particles changes over time, the stochastic process Xtð Þt≥ 0 takes its values in the space

E¼ ⋃
n∈ℕ

Λ ×Mð Þn:

To stress the fact thatXt is not a simple value but encodes the positions and marks of a system of particles,
we will say that this system at time t is in configuration Xt.

To fully specify the dynamics of Xtð Þt≥ 0, we need the following ingredients:

1. A system of equations Moveð Þ that rules the way each particle of Xt moves continuously between
two jumps. We will typically consider a system of stochastic differential equations acting on the
position of each particle, possibly depending on their associated mark and in interaction with the
other particles;

2. Three continuous bounded functions β , δ , and τ from E to 0,∞½ Þ, called birth, death and
transformation intensity functions respectively, that govern the waiting times before a new birth,
a new death, and a new transformation. At each time t, we may interpret β Xtð Þdt as the probability
that a birth occurs in the interval t, tþdt½ �, given that the system of particles is in the configuration
Xt, and similarly for δ and τ.
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3. Three transition probability functions that indicate how each jump occurs:
• pβ z,mð Þjxð Þ: probability density function that the birth occurs at the position zwith the mark m,
given that there is a birth and that the system of particles is in configuration x at the birth time;

• pδ xijxð Þ, for xi ∈ x: probability that the death concerns the particle xi in x, given that there is a
death and that the system of particles is in configuration x at the death time;

• pτ zi,mið Þ,mjxð Þ, for zi,mið Þ∈ x: probability that the particle xi¼ zi,mið Þ in x changes its mark
and that this transformation leads to the newmarkm ≠mi, given that there is a transformation and
that the system of particles is in configuration x at the transformation time.

We provide in Section 2.3 some examples for the choice of these characteristics. Finally, wewill denote
by T 1,T2,… the jump times of the process and we agree that T0¼ 0.

2.2. Algorithmic construction

Assume we are given the characteristics of the process Xtð Þt≥ 0 as introduced in the previous section, that
are the system of equations Moveð Þ, the intensity functions β, δ, τ, and the transition probability functions
pβ, pδ, and pτ. Then, starting from an initial configuration X0 at time T0¼ 0, we construct iteratively the
process in the time interval 0,T½ � as follows. Here we set α¼ βþδþ τ to be the total intensity of jumps.

1. Generate n X0ð Þ continuous trajectories as solutions of Moveð Þ in the interval 0,T �T 0½ �, given the
initial conditions X0. Denote Ytð Þt∈ 0,T�T0½ � these trajectories.

2. By flipping a coin, test whether the jump time T1 occurs after T (this is with probability p) or before
T (this is with probability 1�p), where

p¼ exp �
Z T�T0

0
α Yuð Þdu

� �
:

• If T1 > T , then Xt ¼Yt�T0 for all t∈ T0,T½ �, which completes the simulation.
• Otherwise, we continue by generating T1 in T0,T½ � and the associated jump as in the following.

3. Generate T1�T0, given that T1 < T , according to the probability distribution

ℙ T1�T0 < tjT1 < Tð Þ¼ 1
1�p

1� exp �
Z t

0
α Yuð Þdu

� �� �
, 0< t < T�T0:

The process until the time T 1 is then given by the generated trajectories, that is,

Xtð ÞT0 ≤ t < T1
¼ Yt�T0ð ÞT0 ≤ t <T1

:

4. Draw which kind of jump occurs at T1 (we denote by XT�1 the configuration of the process just before
the jump, which is YT1�T0 by continuity of Ytð Þ):

• this is a birth with probability β XT�1

� �
=α XT�1

� �
;

• this is a death with probability δ XT�1

� �
=α XT�1

� �
;

• this is a transformation with probability τ XT�1

� �
=α XT�1

� �
.

5. Generate the jump at t¼ T1 to get XT1 as follows:

• if this is a birth, generate the new particle x¼ z,mð Þ according to the probability density function
pβ z,mð ÞjXT�1

� �
. Then set XT1 ¼XT�1 ∪ z,mð Þ;

• if this is a death, draw which particle xi ∈XT�1 to delete according to the probability p
δ xijXT�1

� �
, for

i¼ 1,…,n XT�1

� �
. Then set XT1 ¼XT�1 ∖Xi;

Biological Imaging e22-5



• if this is a transformation, draw which particle xi¼ zi,mið Þ∈XT�1 is transformed and generate its
transformation according to pτ zi,mið Þ,mjXT�1

� �
, for i¼ 1,…,n XT�1

� �
. Then set XT1 ¼

XT�1 ∖ zi,mið Þ� �
∪ zi,mð Þ.

6. Back to step 1 with T 0 T 1 and X0 XT1 in order to generate the new trajectories starting from XT1

and the next jump time T2, and so on.

In the first step of the above construction, the trajectories are generated up to the final time T. It is however
very likely that the next jump occurs much before T so that it would be sufficient and computationally
more efficient to generate these trajectories on a shorter time interval. We provide in the Appendix a
formal algorithm of simulation of Xt for t∈ 0,T½ �, following the above construction and including the
latter idea. This algorithm has been implemented in Python and is available in our GitHub repository.

From a theoretical side, note that the specific exponential form of the probability distribution of the
inter-jump waiting time in step 3 is necessary to imply the interpretation of β, δ, and τ explained in the
previous section. This exponential form also implies that Xtð Þt≥ 0 is a Markov process, meaning that its
future dynamics only depends on its present configuration. We refer to Ref. (29) for more details about
these theoretical aspects.

2.3. Exemplified specifications of the model

2.3.1. The inter-jumps motion
Recall that during an inter-jump period, the process Xtð Þ has a constant cardinality n¼ n Xtð Þ and the
marks of all its particles remain constant. We denote by Ytð Þ a system of n such particles zi,t,mið Þ, for
i¼ 1,…,n, where zi,t ∈Λ represents the position of the ith particle at time t and mi ∈M is its constant
mark, that is

Yt ¼ z1,t,m1ð Þ,⋯, zn,t,mnð Þð Þ:
In agreement with the construction of the previous section, the inter-jump trajectory of each particle of
Xtð Þ will coincide with the n trajectories of Ytð Þ during this period.
As a general example, we assume that Ytð Þ follows the following system of stochastic differential

equation, starting at t¼ 0 at the configuration y0 ∈ Λ ×Mð Þn,

Moveð Þ : dzi,t ¼ vi t,Ytð Þdtþσi t,Ytð ÞdBi,t, t≥ 0, i¼ 1,…,n,

Y0¼ y0,

�
where the drift functions vi take their values in ℝd, the diffusion σi are nonnegative functions, and Bi,tð Þ,
i¼ 1,…,n, are n independent standard Brownian motions inℝd. Here, y0, vi, and σi are free parameters to
be chosen.

Some conditions on the drift and diffusion functions are necessary to ensure the existence and unicity
of the solution of Moveð Þ. This holds for instance if these functions are Lipschitz,(31) a condition met for
the following examples. In addition, since each particle is supposed to evolve in the bounded setΛofℝd,
we need in practice to force the trajectories of Moveð Þ to stay inΛ. This may be achieved by reflecting the
trajectories at the boundary of Λ.

In its general form, Moveð Þ allows the motion of each particle to depend on its mark, but also on the
position andmark of the other particles (that are part ofYt).We detail several examples below, that may be
realistic for biological applications.

Example 1 (Brownian motions): If vi t,Ytð Þ¼ 0and σi t,Ytð Þ¼ σ (for σ > 0) is constant, then each particle
follows a Brownian motion with the same diffusion coefficient σ, independently of the other particles.

Example 2 (spatially varying diffusion coefficients): If vi t,Ytð Þ¼ 0 and σi t,Ytð Þ¼ σmi zi,tð Þ, where σmi is
a positive function defined on Λ, then each particle follows an independent diffusive motion, where the
diffusive coefficient depends on the associated mark and may vary in space. For instance, assume that
Λ¼Λ1∪Λ2 with Λ1∩Λ2¼∅ and that for m∈M,
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σm zð Þ¼ σ1,m if z∈Λ1,

σ2,m if z∈Λ2,

�
where σ1,m > 0, σ2,m > 0. Then each particle with mark m follows locally in Λ1 a Brownian motion with
diffusion coefficient σ1,m and locally inΛ2 a Brownian motion with diffusion coefficient σ2,m. Note that as
such, σm is not Lipschitz and it needs to be smooth so as to fit the theoretical setting. This may be achieved
by taking the convolution of σm by a bump function.

Example 3 (directed and confined motions): If vi t,Ytð Þ¼ vmi zi,tð Þ and σi t,Ytð Þ¼ σmi , where vmi is
defined on Λ and σmi > 0, then each particle evolves independently of each other with a drift and a
diffusion coefficient that depend on its mark. This example includes the directed motion considered in
Ref. (22) when vmi zð Þ¼ vmi is a constant drift. It also includes the Ornstein–Uhlenbeck dynamics, also
considered in Ref. (22), when vmi zi,tð Þ¼�λmi zi,t� zi,0ð Þ, where λmi > 0 can be interpreted as a force of
attraction toward the initial position zi,0, leading to a confined trajectory.

Example 4 (interacting particles): In this example, we show how we can include interactions between
the particles through a Langevin dynamics. To do so, we introduce, for m,m0 ∈M, pairwise interaction
functionsΦm,m0, as considered in statistical physics: For r > 0,Φm,m0 rð Þ represents the pairwise interaction
between a particle with markmand a particle with markm0 at a distance r apart. IfΦm,m0 rð Þ¼ 0, there is no
interaction, if Φm,m0 rð Þ> 0 there is inhibition between the two particles at distance r, and if Φm,m0 rð Þ< 0
there is attraction. Examples of inhibitive interaction functions can be found in Ref. (32). The (over-
damped) Langevin dynamics associated to these interactions reads as Moveð Þwith σi t,Ytð Þ¼ σmi, σmi > 0,
and

vi t,Ytð Þ¼�
X
j ≠ i

∇Φmi ,mj ∥zi,t� zj,t∥
� �

,

where ∇ denotes the Gradient operator. Accordingly, each particle moves in a direction that tend to
decrease the value of the pairwise interaction function with the other particles.

Example 5 (colocalized particles): Assume that some particles, say with mark m, are thought to be
colocalized with particles having the mark ~m. This means that we expect the former to be localized
nearby the latter and to follow approximately the same motion. Specifically, to let the particle iwith
mark m be colocalized with the particle j with mark ~m, we may simply define zi,t ¼ zj,tþσiBi,t , t > 0,
where Bi,t is a standard Brownian motion inℝd representing the deviation of the trajectory iaround the
trajectory j, and σi > 0 quantifies the strength of this deviation. Here zj,t may be defined as in the
previous examples, for instance as the typical trajectory of a particle with mark ~m.

2.3.2. The intensity functions
Recall that the intensity functions β , δ , and τ rule the waiting times until the next birth, death, and
transformation, respectively. Heuristically, the probability that a birth occurs in the time interval t, tþdt½ �
given that the particles are in configurationXt is β Xtð Þdt, and similarly for δand τ. As a consequence these
probabilities may evolve over time according to the configuration of particles, making for instance a death
more likely to happenwhen there aremany particles or a high concentration of them in some region, due to
competition. We provide some natural examples below. For each example, any of β, δ, or τ can be set
similarly, even if we focus only on one of them.

Example 6 (constant intensities): The simplest situation is when the intensity functions are constant, for
instance β Xtð Þ¼ β with β > 0. Then births appear at a constant rate and we can expect that in average
β × s� tð Þ new particles appear during the interval s, t½ �.
Example 7 (intensities depending on the cardinality): If δ Xtð Þ¼ δn Xtð Þ, with δ> 0, then themore particles
there are, the more deaths we observe. This is a natural situation when each particle is thought to have a
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constant death rate δ, so that the total death intensity for the system of particles at time t is just the sum of
them, that is δn Xtð Þ.
Example 8 (spatially varying intensities): Assume that the mark of a particle (say its motion regime) has
more chance to change in some region of Λ than another, then the transformation intensity τ may reflect
this dependency. Let for instance Λ¼Λ1∪Λ2 with Λ1∩Λ2¼∅ and define τ Xtð Þ¼ τ1n1 Xtð Þþ τ2n2 Xtð Þ
where τ1 < τ2 and n1 Xtð Þ (resp. n2 Xtð Þ) denotes the number of particles in Λ1 (resp. in Λ2). Then for a
given cardinality n Xtð Þ, themore proportion of particles inΛ2, themore transformations happen. Note that
in order to be rigorous, we should consider a continuous version of τ , which can be achieved by
convolution with a bump function.

Example 9 (transformation due to colocalization): Assume that some m-particles (that are the particles
with markm) can be colocalized with some ~m-particles. Assume in addition that the particles are assigned
a second mark that encodes their motion regime (e.g., diffuse, confined, or directed). Eventually, during
the dynamics of particles, a noncolocolized m -particle may become colocolized with a ~m -particle,
meaning that it becomes D-close to a ~m-particle, where D is some prescribed colocalization distance.
If so, we may expect that the motion regime of the m-particle becomes similar as the ~m-particle, so that a
transformation must occur. Let nD,m,~m Xtð Þbe the number ofD-close pairs of particles with marksmand ~m,
whose motion regimes are different. Then we may define τ Xtð Þ¼ τnD,m,~m Xtð Þ, for some τ > 0, so that a
transformation (of motion regime here) is very likely to occur when the aforementioned situation happen.
Note that if τ is large, such transformation will quickly happen as soon as nD,m,~m Xtð Þ¼ 1 , and so
nD,m,~m Xtð Þ> 1 will be unlikely to be observed. Here again, a smooth version of τ can be introduced by
convolution to ensure its continuity.

2.3.3. The transition probability functions
We detail examples for the three possible transitions, in order below: births, deaths, and transformations.

For the births, remember that pβ z,mð Þjxð Þ denotes the probability density function (pdf) that a particle
appears at the position zwith the mark m, given that the system of particles are in configuration x. To set
this probability, two approaches are possible:

1. First drawing the mark m of the new particle with respect to some probability pβ mjxð Þ, then the
position of the new particle given its mark according to some pdf pβ zjx,mð Þ . This leads to the
decomposition pβ z,mð Þjxð Þ¼ pβ mjxð Þpβ zjx,mð Þ.

2. First generating the position of the new particle with respect to some pdf pβ zjxð Þ, then its mark m
given the position with probability pβ mjx,zð Þ:This leads to the decomposition pβ z,mð Þjxð Þ¼
pβ zjxð Þpβ mjx,zð Þ.

Example 10 (uniformbirths): This is the simple examplewhere the births do not depend on the environment,
are uniform in space and the marks are drawn with respect to some prescribed probabilities pm , whereP

m∈Mpm¼ 1 . The two above approaches then coincide with pβ mjxð Þ¼ pβ mjx,zð Þ¼ pm and
pβ zjx,mð Þ¼ pβ zjxð Þ¼ 1=∣Λ∣ for z∈Λ.

Example 11 (colocalized births): We adopt here the first approach above. We first draw the marks
independently of the environment by setting pβ mjxð Þ¼ pm with

P
m∈Mpm¼ 1, as in the previous

example. Second, in order to generate the position of a new m-particle, thought to be colocalized with
the ~m-particles, we may use a mixture of isotropic normal distribution, centered at each ~m-particle,
with deviation σ > 0 . Denoting by ~n xð Þ the number of ~m -particles in x and ~zi their positions
(i¼ 1,…,~n xð Þ), this means that

pβ zjx,mð Þ¼ 1
~n xð Þ

X~n xð Þ

i¼1

1

σ
ffiffiffiffiffi
2π
p� �d exp �∥z�~zi∥2σ2

� �
: (1)
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Note that to be rigorous pβ zjx,mð Þ should be restricted to Λwith a proper normalization, otherwise some
particles might be generated outside Λ. We omit these details.

Example 12 (spatially dependent new marks): We may adopt the second approach by first generating a
uniform position for the new particle, that is, pβ zjxð Þ¼ 1=∣Λ∣ for z∈Λ, and second by drawing the mark
according to the generated position. Let for instance Λ¼Λ1∪Λ2 with Λ1∩Λ2¼∅ and set

pβ mjx,zð Þ¼ p1,m if z∈Λ1,

p2,m if z∈Λ2,

�
where

P
m∈Mp1,m¼

P
m∈Mp2,m¼ 1. Then depending on the position, the distribution of the marks may

be different.
We now focus on the death transition, namely the probability pδ xijxð Þ, for xi ∈ x, that the particle xi in x

disappears when there is a death.

Example 13 (uniform deaths): The simplest example is when a death occurs uniformly over the existing
particles, that is pδ xijxð Þ¼ 1=n xð Þ for i¼ 1,…,n xð Þ.
Example 14 (deaths due to competition): We may imagine that, due to competition, a particle is more
likely to disappear if there are too many neighbors around it. Let nD xið Þ be the number of neighboring
particles around xi within distance D > 0. To take into account the competition at distance D > 0, we may
define pδ xijxð Þ¼ nD xið Þ=

Pn xð Þ
j¼1 nD xj

� �
. Similarly, if relevant, we may count the number of neighbors of a

certain mark only.
Finally, we focus on pτ zi,mið Þ,mjxð Þ, for zi,mið Þ∈ x, which is the probability that the particle xi¼

zi,mið Þ in x changes its mark frommi tom ≠mi, when a transformation happens. Similarly, as for the birth
transition probability, it is natural to decompose this probability as

pτ zi,mið Þ,mjxð Þ¼ pτ zi,mið Þjxð Þpτ mjx, zi,mið Þð Þ,
where pτ zi,mið Þjxð Þ represents the probability to choose the particle zi,mið Þ in the configuration x, in order
to change its mark, and pτ mjx, zi,mið Þð Þ is the probability to choose the new mark m given that the
transformed particle is located at zi with mark mi.

Example 15 (transformations independent on the environment): A typical situation is when the particle
to transform is drawn uniformly over the existing particles, that is pτ zi,mið Þjxð Þ¼ 1=n xð Þ , and the
transformation is carried out independently on the environment, according to a transition matrix with
entries pm,m0 ≥ 0,m,m0 ∈M, representing the probability to be transformed frommarkm to markm0. Here,
for all m∈M , we assume pm,m¼ 0 in order to ensure a genuine transformation, and of courseP

m0 ∈Mpm,m0 ¼ 1. With this formalism, we thus have pτ mjx, zi,mið Þð Þ¼ pmi ,m.

Example 16 (spatially dependent transformations): To make the previous example spatially dependent,
introduce pm zð Þ, a pdf in Λ representing the locations in Λ where a particle with mark m is more or less
likely to be transformed. Then we may set

pτ zi,mið Þjxð Þ= ni xð Þ
n xð Þ

pmi
zið ÞPni xð Þ

j = 1
pmi

z mið Þ
j

� 	 ,

where ni xð Þ denotes the number of particles with marksmi in x and z
mið Þ
j , j¼ 1,…,ni xð Þ, their positions. In

this expression ni xð Þ=n xð Þ is a weight accounting for the prevalence of mark mi in x and the sum in the
denominator is a normalization so that the probabilities sum to 1. Note that if pm zð Þ is the uniform pdf onΛ,
then we recover the uniform distribution pτ zi,mið Þjxð Þ¼ 1=n xð Þ. Furthermore, once the particle is chosen
as above, wemay apply a spatially dependent transformation as follows. LetΛ¼Λ1∪Λ2 withΛ1∩Λ2¼∅

Biological Imaging e22-9



and let two different transition matrices with respective entries p 1ð Þ
m,m0 and p

2ð Þ
m,m0, form,m

0 ∈M. Thenwemay
set

pτ mjx, zi,mið Þð Þ¼ p 1ð Þ
mi,m if zi ∈Λ1,

p 2ð Þ
mi,m if zi ∈Λ2:

(

Accordingly, the transformation does not follow the same distribution, whether the chosen particle to be
transformed is located in Λ1 or Λ2.

Example 17 (transformationdue to colocalization): Assume thatwe are in the same situation as in Example
9 where m-particles can be colocalized to ~m-particles. We assume like in this example that a transformation
occurs if nD,m,~m Xtð Þ≥ 1, where nD,m,~m Xtð Þdenotes the number ofD-close pairs of particles withmarksmand
~m, whose motion regimes are different. Then, when a transformation happens, we may choose them-particle
to be transformed uniformly over those m-particles that are D-close to a ~m-particle with a different motion
regime. Then the transformation makes the motion regime of the selected m-particle similar as the motion
regime of its closest ~m-particle.

3. Application to the joint dynamics of Langerin/Rab11 proteins

3.1. Description of the dataset

The dataset we consider comes from the observation by a 3D multi-angle TIRF (total internal reflection
fluorescence) microscopy technique of the intracellular trafficking of YFP Langerin andm-Cherry Rab11
proteins in a RPE1 living cell,(30) specifically projected along the z-axis onto the 2D plane close to the
plasma membrane. This provides a 2D image sequence of 1199 frames, each lasting 140 ms and showing
the simultaneous locations of the two types of proteins. The two images at the top of Figure 2 depict the
first frame of the raw sequence for the Langerin fluorescent channel and the Rab11 fluorescent channel,
respectively, recorded simultaneously using a dual-view optical device. Note that the cell adheres on a
fibronectin micropattern, which constrains intracellular constituents such as cytoskeleton elements and
gives a reproducible shape, explaining the “umbrella” shape of the cell. These raw sequences are post-
processed following Refs. (33, 34), then each bright spot is represented by a single point, andwe apply the
U-track algorithm(35) to estimate particle trajectories. The bottom images of Figure 2 show the resulting
trajectories for the Langerin channel and the Rab11 channel, respectively. These trajectories have been
further analyzed by the method developed in Ref. (22) to classify them into three diffusion regimes:
Brownian, directed, and confined, which corresponds to the blue, red, and green colors, respectively, in
Figure 2.

To be more specific in the analysis of all trajectories, we fit three parametric models to each of them,
following Ref. (22), depending on their regime:

1. for a Brownian regime (in blue): a Brownian motion,
2. for a directed motion regime (in red): a Brownian motion with constant drift,
3. for a confined motion regime (in green): an Ornstein–Uhlenbeck process.

Each trajectory has its individual parameters (see Examples 1 and 3), estimated by maximum likeli-
hood.(36) Furthermore, some trajectories may change from one regime to another, which corresponds to a
“transformation” in the BDM model that will be specified in the next section.

Figure 3 summarizes different features of the obtained trajectories for the Langerin sequence (the same
characteristics have been analyzed for the Rab11 sequence, but are not detailed here). The histograms at
the bottom display the duration of all trajectories (in frames), according to their regime. We can observe
that the (blue) Brownian and (red) directed trajectories have quite a short lifetime in average, in
comparison with the confined trajectories (in green). The top-right boxplots represent the distribution
of the number of particles per frame, according to their regime: there is a majority of Brownian motions,
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followed by confined motions and a minority of directed motions. Finally, the top-left circular histogram
aims at depicting the orientation of the drift vectors for the directed (red) trajectories. Specifically, for this
plot, we have recorded the deviation of the drift angle (in degrees) with respect to the direction toward the
center of the cell. For instance, this deviation is 0∘ if the drift goes toward the center, and 180∘ if it goes in
the opposite direction. It appears from this plot that most deviation angles are around 0∘ or 180∘, meaning
that the red trajectories mainly move in a radial direction going to (or starting from) the center of the cell.

The above descriptors will be helpful to calibrate the parameters of the BDM model in the next
section and they will also serve as benchmarks to evaluate the quality of our simulations. However, it is
important to keep in mind that they come with some approximations and errors induced by imperfect
tracking algorithms. In particular, no trajectory can last less than 10 frames in the data, which is a minimal
length of detection for our tracking method. It is also clear in the bottom plots of Figure 1, that some
directed trajectories appear wrongly in blue, which can be explained by the multiple testing procedure of
Ref. (22) that aims at minimizing the number of false positives (that are bad green or bad red trajectories)
to the detriment of possibly too many false negatives (that are wrong blue trajectories).

Concerning the births and deaths of trajectories, we summarize in Table 1 their total numbers observed
in the real dataset, according to the type of proteins and motion regime. The number of regime
transformations is in turn given in Table 2 for the Langerin proteins. For the Rab11 proteins, only one
switching from a Brownian motion to a confined motion was observed during the sequence.

To address in detail these jumps dynamics, we leverage the study carried out for the same dataset in
Ref. (29), where it has been concluded that for each type of proteins andmotion regimes, the birth intensity
is constant, like in Example 6, while the death intensity is proportional to the number of existing particles,
like in Example 7. Given the small number of observed motion regime transformations, its intensity can
also be considered as constant. Concerning the transition probability functions, the deaths occur
uniformly over all existing particles, like in Example 13. As to the birth transition, there is no reason
to choose another density than the uniform distribution over the cell for the Rab11 proteins (Example 10).
But due to colocalization (as observed for this dataset in Ref. (18)), the birth density for the Langerin
positive structures can be approximated by a mixture between a uniform distribution, for 93% of the
Langerin births, and a colocalized density around the existing Rab11 vesicles, like in Example 11, for 7%
of the Langerin births. These proportions, along with the other parameters, have been estimated by
maximum likelihood, the theoretical foundations of which can be found in Refs. (37, 38) for stochastic
models that include theBDMmodel. Note however that at this step, the goal is to provide a guideline to set
the parameters of the BDM model in order to generate realistic realizations, as carried out in the next
section. For this reason, any alternative estimation method or biological expertizes to set the parameters
could be appropriate.

3.2. Simulation of synthetic sequences

3.2.1. Model parameters setting
Based on the data analysis of the previous section, we are now in position to specify all characteristics of
the BDM process with transformations presented in Section 2, so as to mimic the joint dynamics of
Langerin/Rab11 proteins within a cell. To make the connection with the theoretical notation, the region of
interestΛ represents the cell in dimension d¼ 2. Each particle inΛwill be marked by a label from the set
M= L,1ð Þ, Lð ,2Þ, Lð ,3Þ, Rð ,1Þ, Rð ,2Þ, Rð ,3Þf g, where L stands for the Langerin proteins, R for the Rab11
proteins, and the number 1,2, or 3 indicates the motion regime of the particle: Brownian, directed, or
confined, respectively.

Concerning the motion of each trajectory, it follows the regime indicated by its mark and is in
agreement with the observed trajectories from the real dataset detailed in the previous section, see also
Examples 1 and 3:

1. For a Brownianmotion, we draw the diffusion coefficient according to the empirical distribution of
the diffusion coefficients estimated from theBrownianmotions of the real dataset, for the same type
of proteins (L or R);
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2. For a directed motion, we generate a Brownian motion with constant drift, with the same strategy
for the choice of the diffusion coefficient, and where the drift vector is chosen as follows: it is by
default oriented toward the center of the cell, this orientation being subjected to a deviation drawn
from the empirical distribution depicted in the top-left circular histogram of Figure 3. In addition, its
norm is drawn from the empirical distribution of the drift norms observed from the real dataset.
Here again, each set of parameters is distinct for the Langerin and Rab11 proteins;

Figure 2. (a) First frame of the raw sequence showing in bright spots the location of Langerin proteins;
(b) same as (a) for the Rab11 proteins; (c) set of all trajectories detected and tracked over the sequence of
Langerin proteins colored by their estimated motion regime (Brownian in blue, directedmotion in red and

confined motion in green); (d) same as (c) for the Rab11 proteins.
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3. For a confined motion, we generate an Ornstein–Uhlenbeck process with diffusion coefficient 0:4
for all particles (which is the average from the real dataset), and parameter λ¼ 5:96for the Langerin
proteins, and λ¼ 7:41 for the Rab11 proteins.

In these values, the unit is pixels, and one pixel is 160 × 160 nm2 in our images.
Concerning the intensity functions, we set the birth intensity and the transformation intensity to

constant values, as concluded from the real-data analysis. In agreement with Table 1, the total birth
intensity can be estimated by β xð Þ¼ 1248=167:86¼ 7:43, whatever the configuration x of particles is,
because 1248 is the total number of observed births and 167:86 is the total time length of the sequence

Figure 3.Descriptors of the Langerin trajectories of the real-data sequence. Top-left: circular histogram
of the deviation angle (from the direction toward the center of the cell) of the drifts of the directed

trajectories. Top-right: boxplots of the number of trajectories per frame, according to their regime (blue:
Brownian, red: directedmotion, green: confinedmotion). Bottom: histograms of the lifetime (in frames) of

each trajectory according to its regime (same color label).

Table 1. Total number of births and deaths of trajectories observed in the realdataset sequence,
according to the type of proteins and the motion regime

Brownian Directed Confined Total

Births Langerin 603 78 66 747 1248
Rab11 393 24 84 501

Deaths Langerin 602 77 89 768 1282
Rab11 395 26 93 514
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(in seconds). Similarly, we set τ xð Þ¼ 16=167:86¼ 0:095 since 16 transformations have been observed in
the real sequence. For the death intensity, for each mark m∈M, we let it proportional to the number of
particles, that is δmnm xð Þ, where nm xð Þ is the number of particles with markm in the configuration xand δm
has been estimated from the real-dataset as follows: δm¼ 0:17 if m¼ L,1ð Þ , δm¼ 0:14 if m¼ L,2ð Þ ,
δm¼ 0:07 if m¼ L,3ð Þ, δm¼ 0:21 if m¼ R,1ð Þ, δm¼ 0:25 if m¼ R,2ð Þ, and δm¼ 0:08 if m¼ R,3ð Þ. The
total death intensity for the configuration x of particles is then δ xð Þ¼P

m∈Mδmnm xð Þ.
Finally, we set the transition probability functions as follows. For the death transition, the probability to

kill the particle xi¼ zi,mið Þ in the configuration x is set to

pδ zi,mið Þjxð Þ¼ δmi

δ xð Þ ,

Table 2. Total number of regime transformations observed in the realdataset sequence of Langerin
trajectories

From/To Brownian Directed Confined

Brownian 0 0 9
Directed 0 0 1
Confined 5 0 0

Figure 4. Descriptors of the Langerin trajectories of a first simulated sequence. Top-left: set of
trajectories, colored according to their motion regime (blue: Brownian, red: directed, green: confined).
Top-right: boxplots of the number of trajectories per frame, according to their regime (same color label).
Bottom: histograms of the lifetime (in frames) of each trajectory according to its regime (same color

label).
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which means that we first draw the markmwith probability δmnm xð Þ=δ xð Þand then the particle uniformly
among all existing particles with mark m. For the transformation transition, we first select the type of
proteins to transform with probability 15=16 for Langerin and 1=16 for Rab11, in line with the
transformations rates observed in the real sequence, second we choose a particle uniformly among all
existing particles of this type, and third, as in Example 15, we apply a regime transformation with respect
to the following transition matrix (from the regime in rows to the regime in columns):

1 2 3
1

2

3

0 1=4 3=4

1=2 0 1=2

1 0 0

0
BB@

1
CCA :

Figure 5. Descriptors of the Langerin trajectories of a second simulated sequence, as in Figure 4.

Table 3. Mean total number of births and deaths of trajectories per sequence, over 100 simulated
sequences

Brownian Directed Confined Total

Birth Langerin 581 85 76 742 1239
Rab11 391 22 83 496

Death Langerin 584 86 77 747 1248
Rab11 397 23 80 500
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This matrix is in agreement with Table 2 concerning the Langerin proteins, where we have added some
possible transitions from regime 1 to 2, and from regime 2 to 1, that appear to us likely to occur, even if
theywere not observed in the (quite rare) transformations in the real-sequence. The same transitionmatrix
has been set for the Rab11 proteins, since there is not enough observed transformations in the real
sequence (only one) to design a finer choice.

It remains to set the birth transition probability. First, we select which type of protein to create:
following Table 1, it is a Langerin protein with probability 747=1248and a Rab11 protein with probability
501=1248. If the selected type is Rab11, then it is generated uniformly in the cell with regime 1 with
probability 0:784, 2 with probability 0:048, and 3 with probability 0:168, which corresponds to the
relative proportion of births of each regime over all births for the real Rab11 sequence. If the selected type
is Langerin, then we flip a coin for colocalization with probability p¼ 0:07. If there is no colocalization,
then the new Langerin protein is generated uniformly in the cell with regime 1 with probability 0:807, 2
with probability 0:104, and 3 with probability 0:088 (the observed relative proportions of births). If there
is colocalization, then the new Langerin protein is generated around an existing Rab11 protein according
to the density (1) in Example 11, where by maximum likelihood estimation σ¼ 1:1. In this case, the
regime of the new Langerin protein and its drift vector for a directed motion are similar as those of its
colocalized Rab11 protein.

3.2.2. Analysis of resulting simulations
We have generated 100 sequences following the model of the previous section, during the same time
length as the real sequence of Section 3.1, that is 167:86s for 1199 frames. Some descriptors concerning
the generated Langerin trajectories coming from two simulated sequences are depicted in Figures 4 and 5,
that are to be compared with the similar outputs of the real data in Figures 2 and 3. The results for other
simulated sequences can be seen in our GitHub repository.We have also summarized the mean number of
births and deaths over the 100 simulated sequences in Table 3, to be compared with Table 1. Both
graphical and quantitative results demonstrate that our model is able to create a joint dynamics with
comparable features as those observed in the real-data sequence.

Data availability statement. The real data presented in the manuscript and replication code may be obtained from the authors and
can be found in our GitHub repository at https://github.com/balsollier-lisa/BDM-generator-for-bioimaging.
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A. Appendix

A.1. Algorithm for simulation. We provide in this appendix a formal algorithm to simulate a BDM process with
mutations (or transformations), following the construction of Section 2.2. Its implementation is available in our GitHub repository at
https://github.com/balsollier-lisa/BDM-generator-for-bioimaging. It is a refinement of the algorithm introduced in Ref. (29) for a
BDM process (without transformations). The idea is to generate the inter-jumpmove on a small time length Δ, then to test whether a
jump has occurred during this period (this is with probability pin the followingAlgorithm 1). If so, we generate the jump time and the
jump. If not, we continue the simulation of the inter-jump move on a further time length Δ, test whether a jump has occurred, and so
on. The algorithm is valid whatever Δ > 0is, but an efficient choice is to set a small value for Δ. A default recommendation is to set Δ
as the discretization step used to simulate the trajectories in theAlgo:Movealgorithm (which is an input of our algorithm, see below).

We let as in Section 2.2 α¼ βþδþ τ and T 0¼ 0. We denote in Algorithm 2XT�j the configuration just before the jump time Tj.
In order to run Algorithms 1 and 2, we need the following inputs:

1. T > 0: final time of simulation;
2. X0 ∈E: initial configuration of particles;
3. Δ> 0: small time length for piecewise simulation;
4. β, δ, τ: intensity functions of births, deaths, and transformations;
5. pβ, pδ, pτ : transition probability for a birth, a death, and a transformation;
6. Algo:Move y0,Δð Þ: algorithm that returns, for y0 ∈E and Δ> 0, n y0ð Þ (discretized) trajectories on

0,Δ½ � following the system of SDEs Moveð Þ with initial configuration y0.
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Algorithm 1. Simulation on the time interval 0,T½ �
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Algorithm 2. Simulation of the jump at t¼ Tjþ1 given XT�jþ1

A.2. Conclusion and perspectives. We have leveraged an original stochastic model, namely a multitype BDM process
with transformations, in order to simulate biomolecules dynamics within a cell. This stochastic process not only models the
individual trajectory of particles with any Markovian dynamics, but it is also able to generate the appearance (i.e., birth),
disappearance (i.e., death), and regime switching (i.e., transformation) of each trajectory over time. Importantly, interactions
between particles can be included, accounting for the possible colocalization phenomenon. The model is very flexible and is
specified thanks to three sets of parameters: (1) a system describing the set of trajectories (typically a system of stochastic differential
equations); (2) the intensity functions, ruling the waiting time before a new appearance, a disappearance or a switching; (3) the
transition probability functions, driving where a new particle appears when there is a birth, which particle disappears when there is a
death, and which particle switches its regime (and how) when there is a transformation. Numerous examples of these model
specifications have been detailed. As an illustration, we demonstrated the relevance of this approach by generating the joint
dynamics of Langerin/Rab11 proteins within a cell, based on a preliminary data-based analysis in order to finely calibrate themodel.

Since the model is very flexible, an important step is the choice of model characteristics and parameters. The calibration carried
out for our illustration is specific to the application at hand, and of course another calibration must be carried out for another
application. In our case, we used one observed sequence of Langerin/Rab11 proteins. In order to improve the choice of parameters, a
deeper empirical study based from several image sequences might help calibrating robustly the model. Once the parameters are
fitted, the simulation of a sequence is quite fast: about one minute on an regular laptop for the generation of 2000 frames containing
each about 70 trajectories in interaction. In general terms, the bottleneck is the simulation of all trajectories between two jumps: if
each particle moves independently of the others, this scales linearly with the number of particles and parallelization is easy to set
up. When complicated interactions are introduced between particles, then the simulation of all trajectories scales badly with the
number of particles. As a restriction, due to the Markovian framework ensuring the theoretical well-posedness of the model,
anomalous trajectories(19,25,39) are not allowed in theory, though the algorithmic construction in Section 2.2 does not rule out their
introduction. However, a rigorous understanding of the model in this setting remains challenging and constitutes an exciting
perspective. In an effort to generate even more realistic image sequences, we may consider to blur the system of generated particles
using the point spread function, and to add some noise and background, as carried out for instance in Ref. (8). In relation, additional
features could be computed from both the real-image sequence and the synthetic ones in order to strengthen the quality assessment of
the generator.
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