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Abstract 
Background: Many observational studies support light-to-moderate alcohol intake as potentially protective against premature death. We used 
a genetic approach to evaluate the linear and nonlinear relationships between alcohol consumption and mortality from different underly-
ing causes.
Methods: We used data from 278 093 white-British UK Biobank participants, aged 37–73 years at recruitment and with data on alcohol intake, 
genetic variants, and mortality. Habitual alcohol consumption was instrumented by 94 variants. Linear Mendelian randomization (MR) analyses 
were conducted using five complementary approaches, and nonlinear MR analyses by the doubly-ranked method.
Results: There were 20 834 deaths during the follow-up (median 12.6 years). In conventional analysis, the association between alcohol con-
sumption and mortality outcomes was ‘J-shaped’. In contrast, MR analyses supported a positive linear association with premature mortality, 
with no evidence for curvature (Pnonlinearity � 0.21 for all outcomes). The odds ratio [OR] for each standard unit increase in alcohol intake was 
1.27 (95% confidence interval [CI] 1.16–1.39) for all-cause mortality, 1.30 (95% CI 1.10–1.53) for cardiovascular disease, 1.20 (95% CI 1.08– 
1.33) for cancer, and 2.06 (95% CI 1.36–3.12) for digestive disease mortality. These results were consistent across pleiotropy-robust methods. 
There was no clear evidence for an association between alcohol consumption and mortality from respiratory diseases or COVID-19 (1.32, 95% 
CI 0.96–1.83 and 1.46, 95% CI 0.99–2.16, respectively; Pnonlinearity � 0.21).
Conclusion: Higher levels of genetically predicted alcohol consumption had a strong linear association with an increased risk of premature mor-
tality with no evidence for any protective benefit at modest intake levels.
Keywords: Alcohol consumption, Mendelian randomization, nonlinear analysis, doubly-ranked method, mortality. 

Introduction
The relationship between alcohol consumption and mortality 
is complex.1 Excessive alcohol intake is associated with a 
higher risk of premature death.2 However, previous observa-
tional studies suggest a ‘J-shaped’ relationship between alco-
hol consumption and mortality, where light-to-moderate 

consumption has the lowest mortality, and both high levels 
and abstaining from alcohol are associated with an increased 
risk of death and morbidity.3–6 This has led to suggestions 
that light-to-moderate alcohol consumption might offer pro-
tection against premature death and to an ongoing debate 
about safe levels of alcohol intake.

Key Messages 
� Genetically predicted alcohol intake was associated with an increased risk of premature death, including all leading underlying causes. 
� Genetic analysis did not provide evidence for a nonlinear association, failing to support observational studies suggesting benefits by 

modest alcohol intakes. 
� While the greatest mortality risks are seen with high intakes, lowering guidelines for safe alcohol consumption would benefit public 

health, as even moderate intake poses a risk. 

Received: 7 June 2023. Editorial Decision: 7 February 2024. Accepted: 5 March 2024 
# The Author(s) 2024. Published by Oxford University Press on behalf of the International Epidemiological Association.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

International Journal of Epidemiology, 2024, 53(2), dyae046 
https://doi.org/10.1093/ije/dyae046 
Original article IEA

International Epidemiological Association

https://orcid.org/0000-0001-5420-0671
https://orcid.org/0000-0001-7088-0777
https://orcid.org/0000-0001-5365-8760


Natural experiments using alcohol control policies, such as 
tax increases and availability restrictions, support a protec-
tive effect of lower alcohol intake on all-cause mortality.7

However, determining the causal link between moderate ha-
bitual alcohol consumption and mortality risk is challenging 
and while such studies have been attempted,8 we are not 
aware of any published randomized controlled trials (RCTs). 
Mendelian randomization (MR) is a statistical technique that 
uses naturally occurring genetic variation, typically single nu-
cleotide polymorphisms (SNPs), to infer a causal relationship 
between an exposure (in this case, alcohol consumption) and 
an outcome (in this case, mortality risk)9 (Supplementary 
Figure S1, available as Supplementary data at IJE online). 
This approach assumes that genetic variants are not influ-
enced by confounders and that they are randomly allocated 
at conception, thereby avoiding some of the limitations with 
traditional observational studies, such as confounding and re-
verse causality,10 and providing more robust evidence of 
causal links. There are several MR studies investigating the 
effect of alcohol intake on various health outcomes including 
cardiovascular diseases (CVD),11,12 stroke,13 and 
Alzheimer’s disease.14 These studies have typically relied on 
linear MR approaches, and, as such, could not have ascer-
tained if a modest alcohol intake indeed had a beneficial pro-
tective effect. An interesting study is that conducted by 
Millwood et al.,15 which approximated average alcohol 
intakes based on known differences in consumption patterns 
between regions, with area-stratified MR analyses and cross- 
center comparisons suggesting similar increases in cardiovas-
cular risk regardless of estimated alcohol intake. There is also 
a recent study looking at the association between alcohol in-
take and CVD outcomes which used a nonlinear MR ap-
proach in addition to conducting standard linear analyses. 
This study suggested a quadratic pattern to be the best fit for 
the associations between alcohol consumption and hyperten-
sion, coronary heart disease, and all-cause mortality.16

However, their analyses did not address associations of alco-
hol across cause-specific mortalities, and the inference on the 
shape of the association remains uncertain as subsequent 
methodological work suggests that there have been likely 
violations of model assumptions specific to the statistical 
approach used.17

In this study, we examine the genetic evidence for a causal 
relationship between alcohol consumption and mortality 
risk, including all-cause mortality and deaths caused by 
CVD, cancer, respiratory disease, digestive disease, and 
COVID-19. Our study used data from up to 278 093 UK 
Biobank participants with information on alcohol consump-
tion, genetic variants, and mortality. The analyses were con-
ducted using multiple complementary approaches to enhance 
the robustness of the findings.

Methods
The UK Biobank is a longitudinal study that initially included 
data from more than 500 000 participants from the general 
population of the United Kingdom. Participants were 
recruited between March 2006 and July 2010, aged 37 to 
73 years.18 In this study, we restricted the study population 
to individuals of European ancestry who identified as white 
British, who were unrelated,19 and who had consistent infor-
mation about self-reported and genetic sex and complete data 
on alcohol consumption, mortality, and covariates, leaving 

278 093 participants for our analyses (Supplementary Figure 
S2, available as Supplementary data at IJE online).

We obtained mortality data from the National Health 
Service (NHS) Digital and the NHS Central Register (https:// 
www.ukbiobank.ac.uk/) until November 12, 2021. Our 
study outcomes included both all-cause mortality and cause- 
specific mortalities from CVD, cancer, digestive, respiratory, 
and COVID-19 diseases. We defined causes of death using 
the tenth revision of the International Classification of 
Diseases (ICD)20 (Supplementary Table S1, available as 
Supplementary data at IJE online). As a sensitivity analysis to 
reduce potential bias from competing causes, we also re-
stricted our analyses of all-cause mortality to deaths prior to 
the COVID-19 pandemic, including deaths until January 
1, 2020.

Alcohol consumption was reported at baseline assessment 
using a touchscreen questionnaire. Participants reported their 
intake of different types of alcoholic drinks, and we calcu-
lated the amount of alcohol consumed as grams per day, by 
adding up the average consumption of various types of bever-
ages. Intakes were reported as units of alcohol assuming the 
UK standard (1 unit¼ 8 grams of pure alcohol21

(Supplementary Methods, available as Supplementary data at 
IJE online). Information on covariates was collected through 
self-reported touchscreen questionnaires, except for the 
Townsend deprivation index (TDI) which was derived based 
on participants’ postcodes (Supplementary Methods, avail-
able as Supplementary data at IJE online).

Genetic variants were identified based on a recent genome- 
wide association (GWAS) meta-analysis on individuals of 
European ancestry.22 From the 99 SNPs associated with 
alcohol consumption, we used the 94 SNPs that had a 
directionally consistent association with alcohol intake in 
the UK Biobank (Supplementary Table S2, available as 
Supplementary data at IJE online). We extracted the SNPs 
from the UK Biobank and calculated weighted genetic risk 
scores (GRS) taking the weights from the corresponding 
SNP-alcohol consumption association estimates in the origi-
nal discovery sample (Supplementary Methods, available as 
Supplementary data at IJE online).22

Statistical analysis
We used logistic regression to investigate the association of 
reported alcohol consumption with mortality. We used frac-
tional polynomial models to determine the appropriate func-
tional form comparing model fit between the best-fitting 
fractional polynomial model and the linear model, using the 
likelihood ratio test.23 All models were adjusted for age, sex, 
education level, assessment center, TDI, body mass index 
(BMI), smoking, physical activity, and self-perceived health 
and long-term illness.

We conducted linear and nonlinear MR analyses to exam-
ine the causal relationship between alcohol consumption and 
mortality, with the latter used to assess evidence for curvature 
(Supplementary Figure S3, available as Supplementary data 
at IJE online). In both approaches, the causal association was 
interrogated using the genetic variants associated with alco-
hol intake, adjusting for age, sex, assessment center, SNP ar-
ray, birth location, and top 40 genetic principal components. 
In the linear MR analysis, the ratio-of-coefficients method 
was used to compute causal estimates,24 which requires GRS- 
exposure and GRS-outcomes association estimates as inputs. 
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We used linear and logistic regression to obtain GRS-alcohol 
and GRS-mortality association estimates from the UK 
Biobank, respectively. In the nonlinear MR analysis, we first 
stratified the UK Biobank sample into 25 strata using the 
doubly-ranked stratification method,25 where strata are 
formed by firstly ranking participants into pre-strata based 
on their level of GRS and then by ranking participants within 
each pre-stratum according to their level of alcohol intake. 
Within each stratum, we computed stratum-specific GRS-al-
cohol and GRS-outcomes effect estimates and then applied 
the ratio-of-coefficients method (as described in the linear 
MR analysis) to calculate the localized average causal effect 
(LACE) estimate. To assemble the alcohol–mortality curve, 
we then carried out a meta-regression of LACE estimates 
against the stratum-specific mean alcohol consumption using 
a fractional polynomial function. The best-fitting fractional 
polynomial model was determined by the likelihood ratio 
test. The fractional polynomial test was reported for nonli-
nearity, which compares the best-fitting fractional polyno-
mial of degree 1 against the linear model.25 Furthermore, for 
the linear MR analysis, where estimation via summary level 
data is also possible, as sensitivity analysis we repeated the 
analysis using summary-data-based method to test the ro-
bustness of the results to horizontal pleiotropy. We included 
five summary-data-based methods, including inverse variance 
weighted (IVW), MR-Egger, weighted median, weighted 
mode, and MR-PRESSO. Different methods made varying 
assumptions about horizontal pleiotropy, and consistent 
results across different methods suggest that the causal infer-
ence was more credible.26 Further details and information on 
additional sensitivity analyses are provided in Supplementary 
Methods (available as Supplementary data at IJE online).

Analyses were conducted using STATA version 17.0 
(StataCorp LP, College Station, Texas, USA) and R (ver-
sion 4.2.0).27,28

Results
Up to 278 093 individuals were included in the analysis. The 
mean alcohol consumption was 18.20 grams per day (stan-
dard deviation [SD] 18.81). Male participants and those who 
smoked, engaged in intense physical activity, had completed 
NVQ/CSE/A-levels or a degree/professional education, or 
had the highest TDI, also had slightly higher average alcohol 
consumption compared to others. Participants who reported 
‘fair’ self-rated health and those who did not have chronic ill-
nesses consumed more alcohol compared to others (Table 1). 
The mortality rate varied across the socio-demographic, 
health, and lifestyle characteristics (Supplementary Table S3, 
available as Supplementary data at IJE online). Alcohol GRS 
was not associated with confounders except for smoking and 
TDI (Supplementary Table S4, available as Supplementary 
data at IJE online).

Figure 1 illustrates a ‘J’-shaped association between the 
reported alcohol consumption and all-cause mortality. Those 
who did not drink or drank in small amounts had a higher 
risk of premature death compared to moderate drinkers, and 
heavy drinkers had an even greater risk. The curved pattern 
was consistent across CVD, cancer, digestive, and respiratory 
mortality. A similar pattern was observed when limiting the 
analysis to deaths occurring before the onset of the COVID- 
19 pandemic (up until January 1, 2020) (Supplementary 
Figure S4 and Supplementary Table S5, available as 

Supplementary data at IJE online). There was no statistical 
association between alcohol intake and COVID-19 mortality 
(P-value¼0.66 and Pnonlinearity ¼ 0.77). Sensitivity analyses 
removing the BMI adjustment provided similar results 

Table 1. Alcohol consumption by baseline characteristics in UK Biobank

Characteristic Number of  
participants (%)

Alcohol intake  
in g/day,  

mean (SD)

Total 278 093 (100) 18.20 (18.81)
Age (years)
<65 222 626 (80.05) 18.57 (19.05)
�65 55 467 (19.95) 16.69 (17.74)
P-valuea 8.17E-189

Sex
Male 135 319 (48.66) 24.51 (22.05)
Female 142 774 (51.34) 12.21 (12.45)
P-valuea <1.0E-300

BMI (kg/m2)
<18.5 1341 (0.48) 13.49 (18.74)
18.5–25 91 655 (32.96) 16.11 (16.51)
25–30 120 519 (43.34) 19.50 (19.10)
�30 63 722 (22.91) 18.88 (20.95)
Missing 856 (0.31) 14.74 (19.91)
P-valuea 9.45E-60

Smoking
Non-smokers 148 824 (53.52) 14.65 (15.36)
Ex-smokers 100 892 (36.28) 21.27 (19.66)
Smokersb 7390 (2.66) 25.27 (21.34)
Cigars/pipes 1670 (0.60) 32.12 (27.54)
�1 to 15 cigarettes/day 10 966 (3.94) 22.85 (23.97)
>15 cigarettes/day 7423 (2.67) 30.62 (33.23)
Missing 928 (0.33) 16.94 (17.07)
P-value a <1.0E-300

Physical activity
Light 81 647 (29.36) 17.21 (18.68)
Moderate 136 225 (48.99) 18.26 (17.98)
High 54 336 (19.54) 19.59 (20.35)
Missing 5885 (2.12) 17.44 (23.27)
P-valuea 4.61E-53

Education
Degree/professional 131 960 (47.45) 18.11 (17.38)
NVQ/CSE/A-levels 98 291 (35.34) 18.74 (19.73)
None of the above 45 694 (16.43) 17.42 (20.69)
Missing 2148 (0.77) 14.99 (17.18)
P-valuea 3.61E-44

Townsend index
Quartile 1 (least deprived) 70 647 (25.40) 17.75 (16.88)
Quartile 2 70 429 (25.33) 17.70 (17.44)
Quartile 3 69 692 (25.06) 18.13 (18.71)
Quartile 4 (most deprived) 66 993 (24.09) 19.27 (21.92)
Missing 332 (0.12) 17.96 (21.41)
P-valuea 2.95E-41

Self-rated health
Excellent 47 534 (17.09) 17.68 (16.01)
Good 163 846 (58.92) 18.06 (17.83)
Fair 55 063 (19.80) 19.07 (21.76)
Poor 10 770 (3.87) 18.04 (26.40)
Missing 880 (0.32) 18.85 (23.34)
P-valuea 6.79E-17

Long-term illness
No 186 033 (66.90) 18.50 (18.04)
Yes 86 100 (30.96) 17.60 (20.31)
Missing 5960 (2.14) 17.25 (19.68)
P-valuea 2.21E-88

BMI, body mass index; CSE, Certificate of Secondary Education; NVQ, 
National Vocational Qualification; SD, standard deviation.

a P values are from the linear regression test with missing category 
excluded. We included age, sex, and assessment center, for adjustment.

b Smokers without information on types of tobacco that they smoke.
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(Supplementary Table S5, available as Supplementary data at 
IJE online). We also conducted sensitivity analyses stratifying 
by age- and self-reported health which provided support for 
some influences by selection bias and reverse causality in the 
conventional observational analyses (Supplementary Table 
S6, available as Supplementary data at IJE online).

Figure 2 shows the findings from the linear MR analysis on 
genetically predicted alcohol consumption and mortality. The 
results support a positive relationship between alcohol con-
sumption and all-cause mortality (OR by 8 grams higher 
daily alcohol intake 1.27, 95% confidence interval [CI] 1.16– 
1.39), CVD mortality (1.30, 1.10–1.53), cancer mortality 
(1.20, 1.08–1.33), and digestive mortality (2.06, 1.36–3.12). 
The associations between genetically predicted alcohol con-
sumption and respiratory (1.32, 0.96–1.83) and COVID-19 
disease mortality (1.46, 0.99–2.16) were imprecise. Findings 
from analyses using the GRS-based and summary-data- 
based approaches were generally consistent for all 
outcomes (Figure 2). Adjustment for smoking and TDI did 
not affect the results (Supplementary Table S7, available as 
Supplementary data at IJE online).

Nonlinear MR analyses did not provide any evidence to 
support the J-shaped association between alcohol intake and 
mortality suggested in the conventional observational analy-
sis. In contrast, the doubly-ranked method confirmed the lin-
ear association, revealing that higher genetically predicted 
alcohol consumption was associated with increased mortality 
from all causes, including respiratory and COVID-19 dis-
eases (Figure 3). Notably, the association between alcohol in-
take and all-cause mortality remained similar when restricted 
to deaths before the COVID-19 pandemic (Supplementary 
Figure S5, available as Supplementary data at IJE online).

Genetic effects on alcohol intake were stronger in strata 
with higher mean alcohol intake (Supplementary Figure S6, 
available as Supplementary data at IJE online), supporting 
the use of a doubly-ranked MR approach for the nonlinear 
analyses. Further details for instrument validation, stratum- 
specific estimates, and sensitivity analyses are provided in 
the Supplementary text pages 2–6, Supplementary Figures 
S7–S11, and Supplementary Table S8 (available as 
Supplementary data at IJE online).

Discussion
The proposed benefits of low-to-moderate alcohol intakes6,29

have been a source of long-standing debate and controversy. 
We investigated the association between alcohol intake 
and mortality using a genetic approach, confirming the risks 
associated with heavy consumption but no evidence to sup-
port any benefits for moderate intakes. Indeed, we observed 
linear increases in the risk of premature mortality across 
different contributing causes, suggesting that a reduction in 
the amount of alcohol consumed is likely to be beneficial 
regardless of the level of current intake.

Conventional observational analyses often show a 
‘J-shaped’ relationship between alcohol consumption and 
mortality,5,11 which was also observed in our analyses. 
Previous studies have focused on cause-specific mortality 
risk,11 for example, finding evidence for a lower risk of CVD 
and cancer mortality in light or moderate drinkers compared 
to non-drinkers. However, benefits have not been consis-
tently observed,30 and many have argued that the impact of 
light-to-moderate alcohol consumption on premature death 
is likely to be driven by biases such as reverse causality, 
confounding, and selection bias. Supporting this notion, a 
meta-analysis of 87 studies found that low-volume drinking 
may have protective effects, but only when selection biases 
and study quality are not taken into account.31 Here we 
demonstrate that the alcohol–mortality relationship differs 
between younger and older individuals and is strongly af-
fected by adjustment to potential confounders and indicators 
of poor health, supporting the role of selection bias and 
reverse causality. We used an MR approach which can, at 
least to some extent, address these biases. All but one of the 
previous MR studies have assumed linear effects, using an 
analytical approach that would not have been able to detect 
protective effects from modest alcohol intake, should they 
exist. In the earlier nonlinear MR study, the authors observed 
a convex association,16 but the analytical method used as-
sumed a constant association between the genetic instrument 
and alcohol intake, which we now show is strongly violated 
in this context (Supplementary Figure S6, available as 
Supplementary data at IJE online). In our analyses using the 
doubly-ranked approach,25 we can relax this assumption, and 
while we may not be able to fully discount possible nonlinear-
ity, results obtained across all our analyses are more compati-
ble with a linear effect. This was also suggested by an earlier 
study that approximated alcohol intakes based on regional lo-
cation and showed that the alcohol-related cardiovascular 
risks are similar regardless of the average level of intake.15

Multiple mechanisms may contribute to the harmful effects 
of alcohol on cells and tissues, and the mediating pathways 
may differ between different causes of death. One mechanism 
with a possible broad impact involves the impact of alcohol 
metabolism on the body's systemic oxidative and inflamma-
tory state, which generates toxic intermediates and metabolic 
stress.32–34 Additionally, alcohol exerts a direct effect on cel-
lular components, which alters their biological function.32

Consequently, alcohol intake may induce chronic inflamma-
tion and metabolic changes, which can increase the risk of 
several types of deaths. Particularly relevant for cardiovascu-
lar health, drinking alcohol can raise blood pressure,35 and if 
consumed excessively, these effects may be aggravated by 
inflammation and harm to the heart muscles.36 Contrary to 
popular belief that moderate alcohol consumption may 
enhance heart health by increasing high-density lipoprotein 

Figure 1. Nonlinear relationship between reported average daily alcohol 
consumption and all-cause mortality. The dot in the figure represents the 
reference point (8 grams per day), and the shaded region is the 95% 
confidence interval. The analyses are adjusted for sex, age, assessment 
center, birth location, educational status, Townsend deprivation index, 
body mass index, physical activity, and smoking
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(HDL) cholesterol and adiponectin levels while lowering fi-
brinogen levels,37 studies have shown that alcohol intake can 
have the opposite effect. It can raise low-density lipoprotein 

(LDL) cholesterol levels and decrease HDL cholesterol levels 
in the bloodstream.38 Furthermore, multiple MR studies and 
RCTs have found no evidence linking elevated levels of HDL 

Figure 2. Linear Mendelian randomization analyses of alcohol consumption with all-cause and cause-specific mortality. The point estimates are 
represented by squares and the 95% confidence intervals by horizontal bars. Adjustments were made for age, sex, assessment center, birth location, 
single nucleotide polymorphism array, and the top 40 genetic principal components. IVW—inverse-variance weighted Mendelian randomization; MR- 
PRESSO—Mendelian Randomization Pleiotropy RESidual Sum and Outlier; W-Median—weighted median Mendelian randomization; W-Mode—weighted 
mode Mendelian randomization; CVD—cardiovascular disease. g/day—grams per day
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cholesterol or fibrinogen to a reduced risk of CVD.39

Acetaldehyde, the toxic by-product of alcohol metabolism, 
can damage DNA and other cellular components, contribut-
ing to cancer mortality. Moreover, ethanol consumption can 
suppress the immune system, alter hormonal and chemical 
levels, and facilitate the development of cancer in various 
organs.40,41 Alcohol can also impair liver function, increase 
inflammation in the digestive tract, interfere with nutrient ab-
sorption, lead to deficiencies, and cause digestive problems 
such as acid reflux and heartburn, or irritate and damage the 
digestive tract lining.42 Lastly, alcohol can disrupt the func-
tioning of airway cilia and alveolar macrophages, induce 

mast cells, impair the immune system, and cause inflamma-
tion in the respiratory tract.43,44

Strengths of our study include the large sample and the ge-
netic analysis approach which allowed us to explore the asso-
ciation between moderate alcohol consumption and 
mortality risk largely avoiding influences from reverse causal-
ity and confounding which commonly bias conventional epi-
demiological analyses of observational studies. Our approach 
also allows for the exploration of causal associations at any 
level of intake without subjecting participants to potential 
harm, which is unlikely to apply to any RCT conducted in 
this context. To ensure the consistency of our estimates, we 

Figure 3. Genetically predicted alcohol intake and mortality by the mean level of alcohol intake from nonlinear Mendelian randomization analyses. 
(A) All-cause mortality; (B) CVD mortality; (C) cancer mortality; (D) respiratory mortality; (E) digestive mortality (F) COVID-19 mortality in the UK Biobank. 
For all models, Pnon-linearity � 0.21 suggesting the linear model had the best fit. The odds ratio with the 95% confidence intervals for genetically predicted 
alcohol intake falls in the shaded area, and the dot represents the reference point (8 grams per day). Associations were adjusted for age, sex, 
assessment center, birth location, single nucleotide polymorphism array, and the top 40 genetic principal components. CVD—cardiovascular disease
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utilized multiple linear MR methods. To the best of our un-
derstanding, this is the first study of its kind to employ the 
doubly-ranked method for nonlinear MR analysis to examine 
multiple cause-specific mortality types. This new method 
allows us to overcome the assumption that the association be-
tween the genetic instrument (here, alcohol GRS) remains 
constant across differing levels of alcohol consumption, 
which may be violated and lead to a bias in previous nonlin-
ear MR studies.17,25 However, our study also has some limi-
tations. As information on alcohol consumption is typically 
obtained through self-report, calculated amounts may not be 
entirely accurate. This may introduce bias into the stratifica-
tion of individuals into different strata and on weights used 
to calculate the genetically predicted intakes. Although we 
utilized several MR methods to address issues of pleiotropy 
and weak instrument bias, we cannot fully discount-related 
effects. Indeed, the alcohol GRS was associated with TDI and 
smoking, but it is uncertain whether this reflects pleiotropy 
or downstream effects of higher alcohol intakes. Adjustment 
for TDI and smoking did not materially affect results. 
Furthermore, while there is some evidence supporting the rel-
evance of our findings to other ethnic groups,11 we restricted 
the sample to white-British individuals, which reduces the 
generalizability of our results to individuals from other ances-
tries. Like all MR studies, our use of genetic instruments to 
approximate average effects over the life course may not fully 
capture the true biological association between alcohol con-
sumption and mortality risk, which could vary in shape and 
strength at different life stages and be more complex than 
reflected in our study. MR cannot eliminate bias from com-
peting risks, hence, causal estimates for cause-specific mortal-
ities may be biased toward the null, especially for conditions 
that typically affect people of older age. The UK Biobank, de-
spite its large sample size, has only a 5% response rate and 
may not be representative of the general public in the UK. 
While selection bias is likely to affect findings from linear 
MR studies less compared to other designs,45 it is difficult to 
determine the extent to which selection may have affected 
our MR analysis. In particular, differential selection bias can 
induce genetic associations within strata of the population, 
even for the doubly-ranked method.46 We have adjusted for 
age and sex, as these are the strongest predictors of selection, 
which should mitigate the influence of differential selection 
based on these variables.47 Nevertheless, some residual bias 
due to different selections cannot be ruled out.

Genetic evidence strongly suggests that as alcohol con-
sumption increases, there is a linear increase in the risk of 
premature death, including from specific causes such as 
CVD, cancer, and digestive illness, with no evidence for any 
protection by modest intakes. While the greatest mortality 
risks are associated with heavy drinking, public health initia-
tives should prioritize efforts to reduce alcohol intakes at all 
levels of consumption. A re-evaluation of current public poli-
cies regarding drinking guidelines may be warranted.
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