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Aims: Lipid-lowering medications are widely used to control blood cholesterol levels

and manage a range of cardiovascular and lipid disorders. We aimed to explore the

possible associations between LDL lowering and multiple disease outcomes or

biomarkers.

Methods: We performed a Mendelian randomization phenome-wide association

study (MR-PheWAS) in 337 475 UK Biobank participants to test for associations

between four proposed LDL-C-lowering genetic risk scores (PCSK9, HMGCR, NPC1L1

and LDLR) and 1135 disease outcomes, with follow-up MR analyses in 52 serum,

urine, imaging and clinical biomarkers. We used inverse-variance weighted MR in the

main analyses and complementary MR methods (weighted median, weighted mode,

MR-Egger and MR-PRESSO) as sensitivity analyses. We accounted for multiple test-

ing with false discovery rate correction (P < 2.0 � 10�4 for phecodes, P < 1.3 � 10�2

for biomarkers).

Results: We found evidence for an association between genetically instrumented

LDL lowering and 10 distinct disease outcomes, suggesting potential causality. All

genetic instruments were associated with hyperlipidaemias and cardiovascular dis-

eases in the expected directions. Biomarker analyses supported an effect of LDL-C

lowering through PCSK9 on lung function (FEV [beta per 1 mg/dL lower LDL-C

�1.49, 95% CI �2.21, �0.78]; FVC [�1.42, 95% CI �2.29, �0.54]) and through

HMGCR on hippocampal volume (beta per 1 mg/dL lower LDL-C 6.09, 95% CI 1.74,

10.44).

Conclusions: We found genetic evidence to support both positive and negative

effects of LDL-C lowering through all four LDL-C-lowering pathways. Future studies

should further explore the effects of LDL-C lowering on lung function and changes in

brain volume.
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1 | INTRODUCTION

Lipid-lowering medications are a widely prescribed category of medi-

cation used to control blood cholesterol levels and manage a range of

vascular diseases.1 Unfavourable blood lipid levels (high total choles-

terol [TC], high LDL-cholesterol [LDL-C], low HDL-cholesterol [HDL-

C] and high triglycerides [TG]) are known to be associated with cardio-

vascular disease, high blood pressure, diabetes and older age.2 The

most common type of lipid-lowering medication is statins, which act

on liver enzymes to downregulate the production of LDL-C.3 Statins

act by binding to 3-hydroxy-3-methylglutaryl CoA (HMG-CoA)

reductase and inhibiting its function. There are 7–8 million adults cur-

rently taking statins within the United Kingdom.4 Other common

LDL-C-lowering medications include cholesterol absorption inhibitors

(ezetimibe), bile acid sequestrants (cholestyramine, colestipol) and

proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors

(alirocumab, evolocumab).1

Lowering LDL-C is known to be beneficial for cardiovascular

health. A recent meta-analysis on LDL-C-lowering therapies con-

firmed that the reductions in LDL-C caused by lipid-lowering medica-

tions were also associated with decreased rates of cardiovascular

events.5 Recently, researchers have shifted their focus to PCSK9, a

newer drug target which lowers LDL-C by inactivating the PCSK9 pro-

tein in the liver and promoting the destruction of LDL-C.6 Lowering

LDL-C through the PCSK9 inhibition pathway has been reported to

have both risk-increasing and risk-decreasing disease associations,

including decreased risk of myocardial infarction7 and decreased can-

cer risk,8 but also increased risk of type 2 diabetes.9

Our study uses an MR-PheWAS approach which combines

phenome-wide association (PheWAS) and Mendelian randomization

(MR) analyses. The PheWAS allows us to screen a population for any

associations between a single variant or combined genetic risk score

(GRS) and a wide range of phenotypes.10 MR analyses use genetic

variants, associated with the exposure variable, to investigate the

effects of an environmental exposure on disease risk.11 Since genetic

variants are determined at conception, the analytical method is largely

unaffected by confounding factors and reverse causality, allowing us

to make causal inferences.

In our data-driven hypothesis-free study, we examine the effects

of LDL-C lowering through four distinct pathways representing cur-

rent or potential drug targets. We investigated the PCSK9 inhibition

pathway using variants near the PCSK9 gene, which provides a genetic

proxy for PCKS9 inhibitor drugs such as alirocumab and evolocumab.6

HMGCR variants were used to proxy the effect of statin drugs, which

function through the inhibition of the HMGCR (HMG-CoA reductase)

enzyme.3 Ezetimibe lowers LDL-C through the cholesterol absorption

pathway via NPC1L1 (Niemann–Pick C1–like 1) protein inhibition,

which can be mimicked using NPC1L1 variants.12 Finally, variants in

LDLR encode a newer drug target for LDL-C lowering.13 LDLR encodes

the LDL-receptor protein that contributes to LDL transport into the

cells which decreases the level of circulating LDL-C.14 Our analyses

are conducted in up to 337 475 participants within the UK Biobank,

and we screen for associations with 1135 diseases outcomes, and a

broad range of clinical measures, blood, urine and imaging biomarkers.

2 | METHODS

2.1 | Study population: UK Biobank

The UK Biobank is a prospective, population-based cohort, with deep

genotypic and phenotypic data on 502 536 participants aged

37–73 years.15 The resource compiles lifestyle, physical, genetic and

imaging data collected from questionnaires, physical measurements

and blood and tissue samples. Participants were recruited in 22 assess-

ment centres across Scotland, England and Wales between 2006 and

2010. Further details on participant recruitment and data collection

have been extensively reported elsewhere.15 We restricted the

What is already known about this subject

• Lipid-lowering medications control blood cholesterol

levels through a range of different pathways.

• Unfavourable blood lipid levels are known to be associ-

ated with cardiovascular disease, high blood pressure,

diabetes and older age.

• Genetic analyses can help with drug safety profiling, by

uncovering associations with disease outcomes and

biomarkers.

What this study adds

• Our study is the first to compare LDL-C lowering to a

range of clinical and heart and brain MRI imaging

biomarkers.

• There was no evidence for adverse disease associations,

except diarrhoea. However, the PCSK9-inhibitor proxy

was associated with lower lung capacity, requiring further

investigation.

• The statin proxy was associated with higher hippocampal

volumes, potentially suggesting benefits for brain health.

PHAM ET AL. 2993

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=639
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=639
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6816
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2388
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6744
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7343
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2629


analyses to unrelated individuals of white British ancestry (Figure S1).

Our final analysis sample contained 337 475 participants from the UK

Biobank cohort.

As a secondary analysis of UK Biobank data, this study relies on

the consent of subjects at their participation with the UK Biobank

data collection studies.16 Ethical approval for the UK Biobank was

granted by the National Information Governance Board for Health

and Social Care and North West Multicentre Research Ethics Commit-

tee (11/NW/0382). Participants in the study have provided electronic

consent for use of their anonymised data and access to their medical

records for health-related research. All participants have the right to

withdraw at any point, without explanation or penalty. The

researchers of this study have gained approval for use of the database

under UK Biobank application number 10171.

2.2 | Genetic instruments for LDL lowering

The Global Lipids Genetics Consortium (GLGC) identifies 157 loci

associated with serum lipid levels, including 57 loci associated with

LDL-C.17 We selected SNPs within 100 KB either side of four gene

regions (PCSK9, HMGCR, NP1L1 and LDLR).18 Each SNP was inde-

pendently associated with LDL-C at a genome-wide significance level

(P < 5.0 � 10�8) within the GLGC and had a linkage disequilibrium of

r2 < .2. For NPC1L1, rs2073547 was excluded due to evidence of devi-

ation from the Hardy–Weinberg equilibrium (P_HWE = 7.5 � 10�13)

(Table S1). Each SNP was coded based on the number of LDL-C

decreasing alleles (0, 1 or 2). Four GRS were constructed for PCSK9,

HMGCR, NPC1L1 and LDLR, to proxy the effect of different LDL-

C-lowering medications (Table S2). GRS were determined by summing

the risk alleles, which were weighted by the beta coefficient taken

from variant-LDL-C association within the GLGC.

2.3 | Phenome construction

Disease outcome information was collected from hospital admission

electronic health records (EHR) and national death registers, including

records up to 31 March 2017. All outcomes were coded according to

the International Classification of Disease (ICD) versions 9 and 10 in

the UK Biobank and mapped to a phenotype code (phecode). Full

description of the phecode mapping process has been previously

reported elsewhere.19 In our analyses, any phecodes with <200 cases

in the analysis sample were excluded to maintain reasonable statistical

power,20 leaving 1135 phecodes for analysis.

2.4 | Biomarker data

Biomarker data from the UK Biobank baseline assessment and imag-

ing sub-phase were used, including serum markers, urine markers, clin-

ical measurements and heart and brain MRI imaging. Serum and urine

biomarkers (including cardiovascular, bone and joint, cancer, diabetes,

renal and liver indicators) were collected from blood and urine sam-

ples at baseline.21 Body mass index (BMI) was calculated from height

and weight measurements ((kg)/height (m)2), while body fat percent-

age was estimated from impedance measurements, both during base-

line assessment.15,22 Blood pressure was averaged from two

automated readings at baseline. We accounted for the effect of blood

pressure-lowering medications by adding a correction constant of

15 mmHg to the systolic blood pressure values and 10 mmHg to the

diastolic blood pressure values.23 Breath spirometry tests were per-

formed at baseline to obtain the respiratory function measures.15

Brain and cardiac markers were taken from brain and heart MRI imag-

ing data.24 Brain volume data were normalized for head size, and out-

lier values (±3SDs) were excluded for both brain and cardiac

biomarkers.

2.5 | Statistical analyses

Our main analyses were conducted in stages: (1) PheWAS of the dis-

ease outcomes; (2) two-sample MR analysis of disease outcomes

detected from the PheWAS; and (3) two-sample MR analysis of

related disease biomarkers. Firstly, a PheWAS approach was used to

screen for any GRS–disease associations using GRS of four LDL-

C-lowering targets. From over 1600 phecodes available within the UK

Biobank, 1135 phecodes, within 18 disease categories, were investi-

gated in our PheWAS (Tables S3 and S4). Using each GRS, we fitted a

logistic regression with each disease outcome in a model adjusted for

age, sex, assessment centre (as a dummy variable), SNP array

(UK BiLEVE array or UK Biobank Axiom array) and 40 genetic princi-

pal components. We checked for any associations between each LDL-

C-lowering GRS and known confounders (age, sex, smoking, alcohol

consumption, physical activity, level of education and Townsend dep-

rivation index). False discovery rate (FDR) correction was applied to

account for multiple testing.25 This method determines the threshold

by considering the ratio of false positive results to total positive test

results, where false positives are determined as the 5% with the high-

est P values from the group of association with P < .05. We tested

1135 disease outcomes and four GRSs, leading to an FDR-corrected

P value threshold of 2.0 � 10�4.

We conducted two-sample MR analyses on any GRS–disease

associations that passed the FDR threshold in the first stage. Five MR

methods were used: inverse-variance weighted (IVW) MR, MR-Egger,

weighted median MR, weighted mode MR and MR-PRESSO. Each

method considers different levels of tolerance to horizontal pleiot-

ropy, allowing us to assess whether associations are potentially causal

or through other pathways. We checked for any distortion in the

IVWMR estimates from outliers using leave-one-out analysis, and

MR-PRESSO outlier test, with additional evidence on horizontal plei-

otropy from MR-Egger intercept. For all analyses, the variant-

exposure estimates were taken from the GLGC, and variant-outcome

estimates were from the UK Biobank. Next, we repeated the two-

sample MR method using biomarker data to explore any underlying

biological mechanisms that may explain observed associations with
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the disease outcomes. For sex-dependant hormone biomarkers, we

also performed sex stratified analyses. We calculated free testoster-

one and free oestradiol values using the Vermeulen equation and the

Anderson equation, respectively.26,27 An FDR-corrected P value

threshold of 1.3 � 10�2 was applied (calculated based on 52 bio-

marker outcomes and four GRSs).

We performed independent replication of identified GRS–disease

and GRS–biomarker associations on MR-Base using variant-outcome

association estimates available within the OpenGWAS repository. All

replication analyses for disease outcomes were conducted in the

FinnGen consortium (data release 4, 2020), comprised of >170 000

Finnish participants, which did not include overlap with the UK Bio-

bank.28 We were able to conduct replication for 9 of 13 significant

disease outcomes (including overlapping disease codes), which include

hypercholesterolaemia, hyperlipidaemia, angina pectoris, aortic aneu-

rysm, coronary atherosclerosis, hypertensive heart, ischaemic heart

diseases, myocardial infarction and unstable angina pectoris.

Power estimations were calculated based on the method devel-

oped by Burgess.29 In our study, the LDLR GRS was adequately pow-

ered to detect a 20% increase in risk per 1 mg/dL decrease in LDL-C

for 10 phecodes, while all other GRS were unable to detect any phe-

codes (Table S5). For a 50% increase in risk, the PCSK9 score was able

to detect 17 phecodes, HMGCR score was able to detect 24 phecodes

and the LDLR score was able to detect 186 phecodes. The power to

detect 100% and 150% increases for each GRS are listed for all phe-

codes in Table S5. For all power calculations, we used a significance

threshold α = 5% and power of 80%. We calculated the percentage

variation in LDL-C within our study population (UK Biobank) for each

GRS: r2PCSK9 = .12%, r2HMGCR = .15%, r2NPC1L1 = .026% and

r2LDLR = .64%.

Data management processes were conducted in STATA SE ver-

sion 15, while all remaining analyses were performed in R version

3.6.1 software.30,31 We utilized the PheWAS, MR-PRESSO and two-

sample MR R packages.

2.6 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in http://www.guidetopharmacology.org and are

permanently archived in the Concise Guide to PHARMACOLOGY

2019/20.32,33

3 | RESULTS

From the full UK Biobank cohort, we included 337 475 participants

within our study sample. The sample was comprised of 53.7% women

and 75.2% had above average self-reported health (Table 1). Accord-

ing to the NHS guidelines for healthy cholesterol levels, nearly 70% of

participants had above normal values for both TC and LDL-C.34

Despite this, only 16.4% self-reported the use of statin medication. As

expected, the proportion of participants with above normal

cholesterol and LDL-C was significantly lower among statin users,

compared to non-users.

3.1 | PheWAS analyses

The proposed GRSs were all significantly associated with LDL-C

(P < 1.8 � 10�20) (Table S2). The strongest association was between

LDLR GRS LDL-C, which explained 0.64% of variation in LDL-C. The

PCSK9, HMGCR, NPC1L1 and LDLR scores were associated with lower

LDL-C, TC and apoB (Table S6). We found no associations between

any GRSs and known confounders (Table S7).

Results from the PheWAS are shown using Manhattan plots

(Figure 1). Across the four GRSs, we found significant signals for

13 disease outcomes which passed the 5% FDR threshold

(P = 2.0 � 10�4). PCSK9, HMGCR and LDLR scores had strong associa-

tions with hyperlipidaemia, disorders of lipoid metabolism and

hypercholesterolaemia (Figure 1A,B,D). PCSK9 and LDLR also had sig-

nificant associations with a range of cardiovascular outcomes. NPC1L1

was only associated with diarrhoea (Figure 1C).

3.2 | MR analyses of disease outcomes

After removing overlapping phecodes, we identified genetic evidence

that suggests a causal association between at least one of four genetic

instruments and 10 distinct diseases. All instruments were associated

with hypercholesterolaemia in IVWMR analyses (Figure 2). We saw

evidence for lower risks of at least one cardiovascular disease with all

genetic instruments, with the most consistent associations seen

between the LDLR instrument and coronary atherosclerosis (OR per

1 mg/dL decrease in LDL-C 0.98, 95% CI 0.97, 0.98).

For all analyses, MR estimates were broadly similar across the

weighted mode, weighted median and MR-PRESSO methods, but not

significant when using MR-Egger regression (Table S8). We did not

detect any unbalanced horizontal pleiotropy for any of the included

SNPs, across all LDL-C-lowering targets (Ppleiotropy ≥ .27 for all,

Table S8). We also found no evidence to suggest the presence of

influential outliers using the leave-one-out and MR-PRESSO tests

(Figures S2–S5).

OpenWAS replication in the FinnGen cohort confirmed the asso-

ciations between LDL lowering and hypercholesterolaemia, using the

HMGCR genetic instrument and between LDL lowering and hypercho-

lesterolaemia, hyperlipidaemia and unstable angina pectoris, using the

LDLR genetic instrument (Table S9).

3.3 | MR analyses of disease biomarkers

In the final stage of our analyses, we explored associations with a

range of serum, urine, body composition, blood pressure, spirometry,

cardiac imaging and brain imaging biomarkers (Table S10). There was

variation in the effects of lower LDL-C on bone and joint health.

PHAM ET AL. 2995
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PCSK9 and LDLR were associated with higher 25-hydroxyvitamin D

(25(OH)D), while HMGCR was associated with lower 25(OH)D, lower

alkaline phosphatase and slightly lower calcium (Figure 3A). The

HMGCR genetic instrument identified cancer-related biomarker

associations between lower LDL-C and lower sex hormone-binding

globulin (SHBG) (beta in nmol/L per 1 mg/dL decrease in LDL-C

�0.11, 95% CI �0.14, �0.08) and slightly lower testosterone (beta in

pmol/L per 1 mg/dL decrease in LDL-C �10.68, 95% CI �14.33,

F IGURE 1 Manhattan plots for the phenome-wide
association analyses using LDL-cholesterol-lowering
genetic risk scores: (A) PCSK9, (B) HMGCR, (C) NPC1L1
and (D) LDLR. For each LDL-C-GRS-outcome association, a
logistic model was used adjusting for age, sex, 40 principal
components and SNP array. A higher LDL-C-lowering
genetic risk score indicates lower serum LDL-C levels. Red
line: FDR threshold P = 2.0 � 10�4; downward triangles:
OR < 1; upward triangles: OR ≥ 1.
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�7.04), while the PCSK9 instrument was associated with lower IGF-1.

In sex stratified analyses, we found that HMGCR was associated with

lower levels of total, and free, testosterone only in men, while the

association between HMGCR and lower SHBG was only significant in

women (Figure S6). LDL-C lowering was associated with higher

HbA1c, an indicator for increased risk of diabetes, for both HMGCR

(beta in mmol/mol per 1 mg/dL decrease in LDL-C 0.03, 95% CI 0.01,

0.04) and NPC1L1 (beta 0.05, 95% CI 0.03, 0.08) (Figure 3B). For the

F IGURE 2 Forest plots for the Mendelian
randomization analyses on the 10 distinct
significant LDL-C lowering–disease
associations identified in the PheWAS using
the LDL-C-lowering genetic instruments.
Analyses using inverse-variance weighted
Mendelian randomization (IVWMR) are
shown. Estimates are odds ratios (OR 95% CI)
per 1 mg/dL lower LDL-C. FDR threshold:

P = 2.0 � 10�4.
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F IGURE 3 Forest plots for the Mendelian randomization analyses on the 20 significant LDL-C lowering–biomarker associations, which pass
the FDR threshold, using the LDL-C-lowering genetic instruments. Analyses using inverse-variance weighted Mendelian randomization (IVWMR)
are shown. Graphs are presented as standardized mean difference in biomarker levels for each GRS (to compare the estimates with the same
scale) and estimates shown on the right are absolute beta values in their respective units (beta 95% CI) per 1 mg/dL lower LDL-C. FDR threshold:
P = 1.3 � 10�2. (A) Absolute beta values are presented in nmol/L (25(OH)D); IU/L (alkaline phosphatase); μmol (calcium); nmol/L (SHBG); pmol/L
(testosterone) or pmol/L (IGF-1) per 1 mg/dL lower LDL-C. (B) Absolute beta values are presented in mmol/mol (HbA1c); mg/dL (glucose); μmol/L
(urate); mmol/L (urine creatinine) or mmol/L (urine sodium) per 1 mg/dL lower LDL-C. (C) Absolute beta values are presented in nmol/L (direct
bilirubin); U/L (gamma glutamyltransferase); U/L (alanine aminotransferase); U/L (aspartate aminotransferase) or mm3 (hippocampal volume) per
1 mg/dL lower LDL-C. (D) Absolute beta values are presented in kg/m2 (BMI); % (body fat percentage); mL (FEV) or mL (FVC) per 1 mg/dL lower
LDL-C.
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renal biomarkers, PCSK9 was associated with higher urate, HMGCR

with higher urine creatinine and urine sodium and LDLR with higher

urine sodium only.

There was genetic evidence to suggest a causal association

between LDL-C lowering and slightly lower direct bilirubin, which was

consistent across three of four genetic instruments (Figure 3C). PCSK9

was associated with higher gamma glutamyltransferase and higher ala-

nine aminotransferase, and HMGCR was associated with lower aspar-

tate aminotransferase. HMGCR and higher hippocampal volume was

the only imaging biomarker association to pass the FDR correction

(beta in mm3 per 1 mg/dL decrease in LDL-C 6.09, 95% CI 1.74,

10.44). In our analyses of the clinical biomarkers, LDL-C lowering

proxied by HMGCR was associated with higher body fat measures

(Figure 3D). There was evidence to support an association between

PCSK9 and spirometry test indicators for lower lung capacity (FEV1

beta in mL per 1 mg/dL decrease in LDL-C �1.49, 95% CI ��2.21,

�0.78; FVC beta �1.42, 95% CI �2.29, �0.54).

Results are shown for all biomarkers and for all MR methods in

Tables S11–S14.

4 | DISCUSSION

Our analyses confirmed the known associations between the LDL-

C-lowering effect of statins and a range of metabolic and cardiovascu-

lar diseases. There was no evidence for adverse effects of lipid lower-

ing, aside from confirming diarrhoea as a side effect of ezetimibe

(targets NPC1L1)35 and suggestion for novel associations between the

PCSK9 genetic instrument and lower lung capacity (measured by

FEV1 and FVC). Interestingly, LDL-C lowering by HMGCR was associ-

ated with a higher hippocampal volume, which may support proposed

benefits with respect to reduced dementia and depression risk.36,37

Sinnott-Armstrong et al.38 have conducted an MR analysis of the

blood and urine biomarkers in the UK Biobank. They identified

51 causal relationships, including 32 disease associations. The study

assessed genetic associations through GWAS, PheWAS and MR ana-

lyses. Consistent with our findings, PCSK9 and LDLR were correlated

with cardiovascular biomarkers, and NPC1L1 with cardiovascular and

hormone biomarkers in the biomarker phenotype distribution ana-

lyses; however, these genes were not reported on in subsequent anal-

ysis phases as alternate genes had stronger associations with the

biomarkers. In our study, we additionally explored a wide range of dis-

eases using phecode data and a wider range of biomarkers including

clinical, cardiac imaging and brain imaging markers.

Recent PheWAS studies have focused on PCSK9, and all confirm

the known association between PCSK9-inhibitor lipid-lowering medi-

cation and decreased risk of hypercholesterolaemia, hyperlipidaemia

and cardiovascular disease.9,39,40 Our study identified strong associa-

tions between lower LDL-C and lipid-related metabolic diseases,

which was consistent across most GRSs. This is as expected since dis-

orders of lipoid metabolism, hyperlipidaemia and hypercholesterolae-

mia are known to be caused by unfavourable lipid profiles.41 Similarly,

the relationship between LDL-C and cardiovascular diseases is well

known and supported by a recent meta-analysis.5 Decreasing LDL-C

reduces the risk of cardiovascular disease by decreasing the athero-

sclerotic plaque build-up on the artery walls.42 By scaling our esti-

mates to represent a clinically relevant decrease in LDL-C of 20 mg/

dL, which is comparable to a low dose of statin medications,43 our

results suggest that LDL-C lowering through these targets may reduce

risk of myocardial infarction by up to 33% (OR per 20 mg/dL 0.67)

and peripheral vascular disease by up to 34% (OR per 20 mg/dL 0.66).

The only negative side effect identified in our phecode analysis

was the relationship between NPC1L1 and increased risk of diarrhoea,

which can be explained by the NPC1L1 protein's effect on LDL-C by

inhibiting cholesterol absorption in the gastrointestinal tract.12 There

are some previously reported associations between LDL-C lowering

and risk of disease which were not flagged within our study. Carter

et al. found an association between genetic variants in the HMGCR

gene region, a proxy for statins, and reduced overall cancer risk, but

no associations with other statin-related gene targets such as PCSK9,

LDLR and NPC1L1.8 Similarly, an earlier study found evidence to sup-

port an association between the HMGCR gene and decreased risk of

prostate, breast and ovarian cancers.44,45 Although our MR-PheWAS

of the phecodes did not identify a significant association with any

cancers, the biomarker analyses found an association between

HMGCR (statin proxy) and lower levels of testosterone and SHBG.

The relationship between these sex hormones and cancer risk is not

consistent with all cancers; a recent study linked low serum testoster-

one in men with lower risk of prostate cancer.46 The exact mechanism

is still unknown; however, studies suggest that statins may interrupt

feedback from the pituitary glands to the testicles, signalling a

decrease in production of testosterone.47 Our study also identified an

association between PCSK9 inhibitors and lower IGF-1, which may

indicate a decrease in cancer risk, since IGF-1 is implicated in the

growth and proliferation of cancer cells.48 Our study may not be ade-

quately powered in the phecode analyses to observe the cancer dis-

ease associations.

The relationship between LDL-C and bone health biomarkers is

still unclear. It is commonly suggested that 25(OH)D deficiency is

linked with increased risk of hyperlipidaemia and cardiovascular dis-

ease49,50; however, a recent study in the National Health and Nutri-

tion Examination Survey database found that statin users had

significantly higher 25(OH)D levels compared to non-users.51 We

found an association between the statin proxy and lower levels of

vitamin D, alkaline phosphatase and calcium, while PCSK9 and LDLR

were associated with higher 25(OH)D. Kane et al. suggested that the

relationship between LDL-C and 25(OH)D is through the same path-

way as statin medications, whereby vitamin D metabolites inhibit

HMG-CoA reductase to decrease cholesterol synthesis, inhibit

CYP51A1 and interrupt cholesterol biotransformation.52 It is also pos-

sible that HMGCR inhibition inhibits 7-dehydrocholesterol synthesis,

which acts as a precursor to both cholesterol and vitamin D.53

In line with earlier studies by Ference et al.54 and Lotta et al.,55

the HMGCR and NPC1L1 genetic instruments were associated with

HbA1c (glycated haemoglobin), an indicator of increased diabetes

risk.56 The association between HMGCR and lower SHBG is consistent
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with findings for HbA1c. Previous studies report that low SHBG is

associated with obesity, insulin resistance and increased risk of meta-

bolic diseases, such as diabetes.57–59 Our analyses of the clinical bio-

markers identified an association between the statin proxy and higher

BMI and body fat percentage. Although weight gain is debated as a

direct side effect of taking statin medications, a cross-sectional study

of over 27 000 statin users in the US found that statin users com-

pared to non-users had increased caloric and fat intake and faster

increase in BMI.60

We also found evidence to support an association between the

PCSK9 genetic instrument and lower FEV1 and FVC, which can indi-

cate poor lung function and obstructive pulmonary diseases.61 In a

mice study, PCSK9 expression was shown to be involved in the

metastasis process of melanoma cells into lung epithelial cells, while

study of the human lung cells found that PCSK9 had an anti-apoptotic

effect on cancer cells.62,63 Similarly, clinical study of 803 elderly men

found that statin use had a protective effect and attenuated yearly

decline in FEV1 and FVC.64 LDL-C is known to play a role in supplying

cholesterol to lung cells and inhibiting local cholesterol biosynthesis

so a causal effect appears biologically plausible, and it is possible that

reduced availability of LDL-C for lung cells upregulates local choles-

terol biosynthesis, disrupting normal lung function.65 However, we

did not find any association with respiratory diseases in the phecode

analyses, so further investigation is needed to fully understand the

FEV1 and FVC associations.

We found an association between the HMGCR genetic instru-

ment and slightly higher hippocampal volume, which was the only

imaging biomarker to pass FDR correction. To our knowledge, the

association is yet to be reported in human subjects; however, a

study performed in mice found that long-term use of simvastatin

impaired synaptic plasticity within the hippocampus.66 Hippocampal

volumes have been shown to be clinically significant markers for risk

of dementia, highlighting the need for future studies to confirm and

further explain this association.37 In our biomarker MR analyses,

PCSK9 was associated with higher WMH volumes; however, the

association was not significant after FDR correction. WMHs are an

indicator of brain lesions and are known to be strong indicators of

cognitive impairment, depression, dementia and stroke.67 Previous

genetic studies of LDL-C lowering via PCSK9 reported detrimental

effects on risk of Alzheimer's disease and depression.68,69 Given

that in the UK Biobank the neuroimaging biomarkers have been col-

lected from a significantly smaller sample size (n ≤ 27 117) than the

serum, urine and clinical markers, we may see an association

between PCSK9 and biomarkers of dementia or cognitive impair-

ment as the number of participants in the imaging sub-study

increases.

One of the main strengths of our study is the large sample size

and the availability of linked EHRs and mortality data. The PheWAS

allows us to screen for a wide range of disease associations. Mean-

while, the application of MR analyses allows us to establish evidence

for causality in a more feasible and cost-effective manner than in ran-

domized controlled trials.70 We use a range of MR methods and sensi-

tivity analyses to detect pleiotropic effects and any potential biases.

To our knowledge, our study is the first to compare LDL-C lowering

to not only the UK Biobank blood and urine markers, but also to a

range of clinical and heart and brain MRI imaging biomarkers. Our

study also allows for the comparison between different LDL-lowering

medication pathways and to observe their effects on disease out-

comes and biomarkers.

It is also important to acknowledge the weaknesses of our study.

Our study sample is comprised of only older participants with a white

British ethnic background; hence, caution should be exercised when

generalizing the results to the other populations. Healthy volunteer

bias is known to be present in the UK Biobank.71 Power analyses

showed that we were only powered to detect relatively large effects

in disease outcomes, meaning that any mild or rare effects may be

missed. Although the population available for analyses on disease out-

comes was large (N � 337 000, up to 32 554 cases), the sample sizes

available for the imaging outcomes were notably smaller, likely limiting

the ability to detect associations (n < 27 106). We mentioned

methods to detect pleiotropic effects; however, we cannot completely

exclude bias due to pleiotropy, nor account for the effect of residual

genetic confounding. MR analyses are designed to detect linear

increases in LDL-C-lowering effects.11 It cannot accurately capture

non-linear associations and tends to underestimate the higher range

of LDL-C-lowering effects. We used univariable MR to investigate the

association of LDL-C lowering on disease outcomes, and it is possible

that some of the associations are mediated by factors such as BMI

and blood pressure. Genetic instruments can only approximate aver-

age effects of LDL-C lowering in an individual's lifetime but does not

accurately reflect the complex changes in LDL-C that can occur

throughout life. Additionally, the genetic instruments were selected

based on current and potential drug targets for LDL-C-lowering medi-

cations and were only weakly associated with LDL-C. As sex-specific

genetic instruments were not available, we conducted sex stratified

analyses using the overall GRS(s), assuming similar genetic association

in men and women. We were unable to conduct OpenGWAS replica-

tion for all outcomes, and for outcomes that were available for replica-

tion analyses, sample sizes were considerably smaller than in our

study.

In conclusion, we confirmed many of the known associations

between LDL-C-lowering effects of statin medication and a range of

metabolic and cardiovascular diseases. Our biomarker analyses sug-

gested novel associations between the PCSK9-inhibitor proxy and

lower lung function (lower FEV1 and lower FVC) and between the

statin proxy and higher hippocampal volumes. Future studies should

aim to further investigate the effects of lipid lowering on lung function

and brain volume, particularly in clinical settings.

AUTHOR CONTRIBUTIONS

Kitty Pham analysed the data and prepared the first draft and concep-

tualized the study with Elina Hyppӧnen conceptualized the study.

Anwar Mulugeta and Elina Hyppӧnen advised on data analyses. Kitty

Pham, Anwar Mulugeta, Amanda Lumsden and Elina Hyppӧnen inter-

preted results, revised the paper and approved the manuscript for

submission.

PHAM ET AL. 3001



CONFLICT OF INTEREST STATEMENT

The authors do not have any conflicts of interest to declare.

ACKNOWLEDGEMENTS

Open access publishing facilitated by University of South Australia, as

part of the Wiley - University of South Australia agreement via the

Council of Australian University Librarians.

DATA AVAILABILITY STATEMENT

All data supporting this study will be available to approved users of

the UK Biobank upon application.

ORCID

Kitty Pham https://orcid.org/0000-0002-8944-7882

Anwar Mulugeta https://orcid.org/0000-0002-8018-3454

Amanda Lumsden https://orcid.org/0000-0002-0214-6498

Elina Hyppӧnen https://orcid.org/0000-0003-3670-9399

REFERENCES

1. American Heart Association. Cholesterol Medications. American Heart

Association; 2020. Accessed March 15, 2021. https://www.heart.org/

en/health-topics/cholesterol/prevention-and-treatment-of-high-

cholesterol-hyperlipidemia/cholesterol-medications

2. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease.

Prim Care. 2013;40(1):195-211. doi:10.1016/j.pop.2012.11.003

3. Davies JT, Delfino SF, Feinberg CE, et al. Current and emerging uses

of statins in clinical therapeutics: a review. Lipid Insights. 2016;9:

13-29. doi:10.4137/LPI.S37450

4. Chan S. Statins: 10 Facts You Might Not Know. British Heart Founda-

tion; 2020. Accessed March 11, 2021. https://www.bhf.org.uk/for-

professionals/healthcare-professionals/blog/statins-10-facts-you-

might-not-know

5. Silverman MG, Ference BA, Im K, et al. Association between lowering

LDL-C and cardiovascular risk reduction among different therapeutic

interventions: a systematic review and meta-analysis. JAMA. 2016;

316(12):1289-1297. doi:10.1001/jama.2016.13985

6. Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era

of lipid lowering therapy. World J Cardiol. 2017;9(2):76-91. doi:10.

4330/wjc.v9.i2.76

7. Schmidt AF, Holmes MV, Preiss D, et al. Phenome-wide association

analysis of LDL-cholesterol lowering genetic variants in PCSK9.

BMC Cardiovasc Disord. 2019;19(1):240. doi:10.1186/s12872-019-

1187-z

8. Carter P, Vithayathil M, Kar S, et al. Predicting the effect of statins on

cancer risk using genetic variants from a Mendelian randomization

study in the UK Biobank. eLife. 2020a;9:e57191. doi:10.7554/eLife.

57191

9. Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB,

Ingelsson E. Large-scale phenome-wide association study of PCSK9

variants demonstrates protection against ischemic stroke. Circ

Genom Precis Med. 2018;11(7):e002162. doi:10.1161/circgen.118.

002162

10. Hebbring SJ. The challenges, advantages and future of phenome-wide

association studies. Immunology. 2014;141(2):157-165. doi:10.1111/

imm.12195

11. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian

randomisation studies: a guide, glossary, and checklist for clinicians.

BMJ. 2018;362:k601. doi:10.1136/bmj.k601

12. Pirillo A, Catapano A, Norata GD. Niemann-Pick C1-Like 1 (NPC1L1)

inhibition and cardiovascular diseases. Curr Med Chem. 2016;23(10):

983-999. doi:10.2174/0929867323666160229114111

13. Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterol-

emia: HMGCR and LDLR. Diabetes Metab Syndr Obes. 2019;12:

1543-1553. doi:10.2147/DMSO.S219013

14. National Center for Biotechnology Information (NCBI). LDLR Low

Density Lipoprotein Receptor [Homo sapiens (Human)]. National Library

of Medicine; 2021. https://www.ncbi.nlm.nih.gov/gene?Db=gene&

Cmd=DetailsSearch&Term=3949

15. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access

resource for identifying the causes of a wide range of complex

diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

doi:10.1371/journal.pmed.1001779

16. UK Biobank. UK Biobank Ethics and Governance Framework. UK

Biobank; 2007. https://www.ukbiobank.ac.uk/wp-content/uploads/

2011/05/EGF20082.pdf

17. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement

of loci associated with lipid levels. Nat Genet. 2013;45(11):

1274-1283. doi:10.1038/ng.2797

18. Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and

HMGCR and risk of cardiovascular disease and diabetes. N Engl J

Med. 2016;375(22):2144-2153. doi:10.1056/NEJMoa1604304

19. Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of

phenome-wide association study of electronic medical record data

and genome-wide association study data. Nat Biotechnol. 2013;

31(12):1102-1111. doi:10.1038/nbt.2749

20. Verma A, Bradford Y, Dudek S, et al. A simulation study investigating

power estimates in phenome-wide association studies. BMC Bioinfor-

matics. 2018;19(1):120. doi:10.1186/s12859-018-2135-0

21. Elliott P, Peakman TC, on behalf of UK Biobank. The UK Biobank

sample handling and storage protocol for the collection, processing

and archiving of human blood and urine. Int J Epidemiol. 2008;37(2):

234-244. doi:10.1093/ije/dym276

22. UK Biobank. Body Composition Measurement. UK Biobank; 2011.

https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/body_composition.pdf

23. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for

treatment effects in studies of quantitative traits: antihypertensive

therapy and systolic blood pressure. Stat Med. 2005;24(19):

2911-2935. doi:10.1002/sim.2165

24. Littlejohns TJ, Holliday J, Gibson LM, et al. The UK Biobank imaging

enhancement of 100,000 participants: rationale, data collection,

management and future directions. Nat Commun. 2020;11(1):2624.

doi:10.1038/s41467-020-15948-9

25. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a prac-

tical and powerful approach to multiple testing. J R Stat Soc B Metho-

dol. 1995;57(1):289-300. doi:10.1111/j.2517-6161.1995.tb02031.x

26. Anderson DC. Sex-hormone-binding globulin. Clin Endocrinol (Oxf).

1974;3(1):69-96. doi:10.1111/j.1365-2265.1974.tb03298.x

27. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple

methods for the estimation of free testosterone in serum. J Clin Endo-

crinol Metab. 1999;84(10):3666-3672. doi:10.1210/jcem.84.10.6079

28. University of Helsinki. FinnGen Data Freeze Version 4. 2020. https://

r4.finngen.fi/

29. Burgess S. Sample size and power calculations in Mendelian randomi-

zation with a single instrumental variable and a binary outcome. Int J

Epidemiol. 2014;43(3):922-929. doi:10.1093/ije/dyu005

30. R Core Team. R: A Language and Environment for Statistical Computing.

(Version 3.6.1) [Statistical Computing Software]. R Foundation for

Statistical Computing; 2017. https://www.R-project.org/

31. Stata Corp. Stata Statistical Software. (Version 15) [Statistical Comput-

ing Software]. StataCorp LLC; 2017.

32. Alexander SPH, Fabbro D, Kelly E, et al. The Concise Guide to

PHARMACOLOGY 2019/20: Enzymes. Br J Pharmacol. 2019;176(S1):

S297-S396. doi:10.1111/bph.14752

33. Alexander SPH, Kelly E, Mathie A, et al. The Concise Guide to PHAR-

MACOLOGY 2019/20: Transporters. Br J Pharmacol. 2019;176(S1):

S397-S493. doi:10.1111/bph.14753

3002 PHAM ET AL.

https://orcid.org/0000-0002-8944-7882
https://orcid.org/0000-0002-8944-7882
https://orcid.org/0000-0002-8018-3454
https://orcid.org/0000-0002-8018-3454
https://orcid.org/0000-0002-0214-6498
https://orcid.org/0000-0002-0214-6498
https://orcid.org/0000-0003-3670-9399
https://orcid.org/0000-0003-3670-9399
https://www.heart.org/en/health-topics/cholesterol/prevention-and-treatment-of-high-cholesterol-hyperlipidemia/cholesterol-medications
https://www.heart.org/en/health-topics/cholesterol/prevention-and-treatment-of-high-cholesterol-hyperlipidemia/cholesterol-medications
https://www.heart.org/en/health-topics/cholesterol/prevention-and-treatment-of-high-cholesterol-hyperlipidemia/cholesterol-medications
info:doi/10.1016/j.pop.2012.11.003
info:doi/10.4137/LPI.S37450
https://www.bhf.org.uk/for-professionals/healthcare-professionals/blog/statins-10-facts-you-might-not-know
https://www.bhf.org.uk/for-professionals/healthcare-professionals/blog/statins-10-facts-you-might-not-know
https://www.bhf.org.uk/for-professionals/healthcare-professionals/blog/statins-10-facts-you-might-not-know
info:doi/10.1001/jama.2016.13985
info:doi/10.4330/wjc.v9.i2.76
info:doi/10.4330/wjc.v9.i2.76
info:doi/10.1186/s12872-019-1187-z
info:doi/10.1186/s12872-019-1187-z
info:doi/10.7554/eLife.57191
info:doi/10.7554/eLife.57191
info:doi/10.1161/circgen.118.002162
info:doi/10.1161/circgen.118.002162
info:doi/10.1111/imm.12195
info:doi/10.1111/imm.12195
info:doi/10.1136/bmj.k601
info:doi/10.2174/0929867323666160229114111
info:doi/10.2147/DMSO.S219013
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3949
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3949
info:doi/10.1371/journal.pmed.1001779
https://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf
https://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf
info:doi/10.1038/ng.2797
info:doi/10.1056/NEJMoa1604304
info:doi/10.1038/nbt.2749
info:doi/10.1186/s12859-018-2135-0
info:doi/10.1093/ije/dym276
https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/body_composition.pdf
info:doi/10.1002/sim.2165
info:doi/10.1038/s41467-020-15948-9
info:doi/10.1111/j.2517-6161.1995.tb02031.x
info:doi/10.1111/j.1365-2265.1974.tb03298.x
info:doi/10.1210/jcem.84.10.6079
https://r4.finngen.fi/
https://r4.finngen.fi/
info:doi/10.1093/ije/dyu005
https://www.R-project.org/
info:doi/10.1111/bph.14752
info:doi/10.1111/bph.14753


34. National Health Service (NHS). Cholesterol Levels: High Cholesterol.

Department of Health and Social Care; 2019. Accessed May 3, 2021.

https://www.nhs.uk/conditions/high-cholesterol/cholesterol-levels/

35. National Health Service (NHS). Ezetimibe: A Medicine Used to Treat

High Blood Cholesterol. Department of Health and Social Care; 2019.

Accessed April 29, 2021. https://www.nhs.uk/medicines/ezetimibe/

36. Cole J, Costafreda SG, McGuffin P, Fu CH. Hippocampal atrophy in

first episode depression: a meta-analysis of magnetic resonance

imaging studies. J Affect Disord. 2011;134(1–3):483-487. doi:10.

1016/j.jad.2011.05.057

37. Dawe RJ, Yu L, Arfanakis K, Schneider JA, Bennett DA, Boyle PA.

Late-life cognitive decline is associated with hippocampal volume,

above and beyond its associations with traditional neuropathologic

indices. Alzheimers Dement. 2020;16(1):209-218. doi:10.1002/alz.

12009

38. Sinnott-Armstrong N, Tanigawa Y, Amar D, et al. Genetics of 35 blood

and urine biomarkers in the UK Biobank. Nat Genet. 2021;53(2):185-

194. doi:10.1038/s41588-020-00757-z

39. Safarova MS, Satterfield BA, Fan X, et al. A phenome-wide associa-

tion study to discover pleiotropic effects of PCSK9, APOB, and LDLR.

NPJ Genom Med. 2019;4(1):3. doi:10.1038/s41525-019-0078-7

40. Smit RAJ, Trompet S, Leong A, et al. Statin-induced LDL cholesterol

response and type 2 diabetes: a bidirectional two-sample Mendelian

randomization study. Pharmacogenomics J. 2020;20(3):462-470.

doi:10.1038/s41397-019-0125-x

41. Harvard Medical School. High Cholesterol (Hypercholesterolemia).

Harvard Health Publishing; 2019. Accessed April 30, 2021. https://

www.health.harvard.edu/a_to_z/high-cholesterol-hypercholesterolemia-

a-to-z

42. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins

cause atherosclerotic cardiovascular disease. 1. Evidence from

genetic, epidemiologic, and clinical studies. A consensus statement

from the European Atherosclerosis Society Consensus Panel. Eur

Heart J. 2017;38(32):2459-2472. doi:10.1093/eurheartj/ehx144

43. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low

density lipoprotein cholesterol, ischaemic heart disease, and stroke:

systematic review and meta-analysis. BMJ. 2003;326(7404):1423.

doi:10.1136/bmj.326.7404.1423

44. Orho-Melander M, Hindy G, Borgquist S, et al. Blood lipid genetic

scores, the HMGCR gene and cancer risk: a Mendelian randomization

study. Int J Epidemiol. 2018;47(2):495-505. doi:10.1093/ije/dyx237

45. Yarmolinsky J, Bull CJ, Vincent EE, et al. Association between geneti-

cally proxied inhibition of HMG-CoA reductase and epithelial ovarian

cancer. JAMA. 2020;323(7):646-655. doi:10.1001/jama.2020.0150

46. Watts EL, Appleby PN, Perez-Cornago A, et al. Low free testosterone

and prostate cancer risk: a collaborative analysis of 20 prospective

studies. Eur Urol. 2018;74(5):585-594. doi:10.1016/j.eururo.2018.

07.024

47. Stanworth RD, Kapoor D, Channer KS, Jones TH. Statin therapy is

associated with lower total but not bioavailable or free testosterone

in men with type 2 diabetes. Diabetes Care. 2009;32(4):541-546. doi:

10.2337/dc08-1183

48. Shanmugalingam T, Bosco C, Ridley AJ, Van Hemelrijck M. Is there a

role for IGF-1 in the development of second primary cancers? Cancer

Med. 2016;5(11):3353-3367. doi:10.1002/cam4.871

49. Wang Y, Si S, Liu J, et al. The associations of serum lipids with vitamin

D status. PLoS ONE. 2016;11(10):e0165157. doi:10.1371/journal.

pone.0165157

50. Zhang R, Li B, Gao X, et al. Serum 25-hydroxyvitamin D and the risk

of cardiovascular disease: dose–response meta-analysis of prospec-

tive studies. Am J Clin Nutr. 2017;105(4):810-819. doi:10.3945/ajcn.

116.140392

51. Orces CH, Montalvan M, Tettamanti D. The effect of statins on

serum vitamin D concentrations among older adults. Cureus. 2020;

12(7):e8950. doi:10.7759/cureus.8950

52. Kane L, Moore K, Lütjohann D, Bikle D, Schwartz JB. Vitamin D3

effects on lipids differ in statin and non-statin-treated humans: supe-

riority of free 25-OH D levels in detecting relationships. J Clin Endo-

crinol Metab. 2013;98(11):4400-4409. doi:10.1210/jc.2013-1922

53. Grimes DS. Statins and vitamin D. Cardiovasc Drugs Ther. 2009;23(4):

261-262. doi:10.1007/s10557-009-6182-7

54. Ference BA, Ray KK, Catapano AL, et al. Mendelian randomization

study of ACLY and cardiovascular disease. N Engl J Med. 2019;

380(11):1033-1042. doi:10.1056/NEJMoa1806747

55. Lotta LA, Sharp SJ, Burgess S, et al. Association between low-density

lipoprotein cholesterol-lowering genetic variants and risk of type

2 diabetes: a meta-analysis. JAMA. 2016;316(13):1383-1391. doi:10.

1001/jama.2016.14568

56. Edelman D, Olsen MK, Dudley TK, Harris AC, Oddone EZ. Utility of

hemoglobin A1c in predicting diabetes risk. J Gen Intern Med. 2004;

19(12):1175-1180. doi:10.1111/j.1525-1497.2004.40178.x

57. Cooper LA, Page ST, Amory JK, Anawalt BD, Matsumoto AM. The

association of obesity with sex hormone-binding globulin is stronger

than the association with ageing—implications for the interpretation

of total testosterone measurements. Clin Endocrinol (Oxf). 2015;83(6):

828-833. doi:10.1111/cen.12768

58. Ding EL, Song Y, Manson JE, et al. Sex hormone-binding globulin and

risk of type 2 diabetes in women and men. N Engl J Med. 2009;

361(12):1152-1163. doi:10.1056/NEJMoa0804381

59. Moon H, Choi I, Kim S, et al. Cross-sectional association between tes-

tosterone, sex hormone-binding globulin and metabolic syndrome:

the Healthy Twin Study. Clin Endocrinol (Oxf). 2017;87(5):523-531.

doi:10.1111/cen.13390

60. Sugiyama T, Tsugawa Y, Tseng CH, Kobayashi Y, Shapiro MF. Different

time trends of caloric and fat intake between statin users and nonusers

among US adults: gluttony in the time of statins? JAMA Intern Med.

2014;174(7):1038-1045. doi:10.1001/jamainternmed.2014.1927

61. Moore VC. Spirometry: step by step. Breathe. 2012;8(3):232-240.

doi:10.1183/20734735.0021711

62. Suh JM, Son Y, Yoo JY, et al. Proprotein convertase subtilisin/kexin

Type 9 is required for Ahnak-mediated metastasis of melanoma into

lung epithelial cells. Neoplasia. 2021;23(9):993-1001. doi:10.1016/j.

neo.2021.07.007

63. Xu X, Cui Y, Cao L, Zhang Y, Yin Y, Hu X. PCSK9 regulates apoptosis

in human lung adenocarcinoma A549 cells via endoplasmic reticulum

stress and mitochondrial signaling pathways. Exp Ther Med. 2017;

13(5):1993-1999. doi:10.3892/etm.2017.4218

64. Alexeeff SE, Litonjua AA, Sparrow D, Vokonas PS, Schwartz J. Statin use

reduces decline in lung function: VA Normative Aging Study. Am J Respir

Crit Care Med. 2007;176(8):742-747. doi:10.1164/rccm.200705-656OC

65. Gowdy KM, Fessler MB. Emerging roles for cholesterol and lipopro-

teins in lung disease. Pulm Pharmacol Ther. 2013;26(4):430-437.

doi:10.1016/j.pupt.2012.06.002

66. Guo Y, Zou G, Qi K, et al. Simvastatin impairs hippocampal synaptic

plasticity and cognitive function in mice. Mol Brain. 2021;14(1):41.

doi:10.1186/s13041-021-00758-x

67. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are

white matter hyperintensities made of? Relevance to vascular cogni-

tive impairment. J Am Heart Assoc. 2015;4(6):001140. doi:10.1161/

JAHA.114.001140

68. Alghamdi J, Matou-Nasri S, Alghamdi F, Alghamdi S, Alfadhel M,

Padmanabhan S. Risk of neuropsychiatric adverse effects of lipid-

lowering drugs: a Mendelian randomization study. Int J Neuropsycho-

pharmacol. 2018;21(12):1067-1075. doi:10.1093/ijnp/pyy060

69. Williams DM, Finan C, Schmidt AF, Burgess S, Hingorani AD. Lipid

lowering and Alzheimer disease risk: a Mendelian randomization

study. Ann Neurol. 2020;87(1):30-39. doi:10.1002/ana.25642

70. Sekula P, Del Greco M F, Pattaro C, Köttgen A. Mendelian randomiza-

tion as an approach to assess causality using observational data. J Am

Soc Nephrol. 2016;27(11):3253-3265. doi:10.1681/asn.2016010098

PHAM ET AL. 3003

https://www.nhs.uk/conditions/high-cholesterol/cholesterol-levels/
https://www.nhs.uk/medicines/ezetimibe/
info:doi/10.1016/j.jad.2011.05.057
info:doi/10.1016/j.jad.2011.05.057
info:doi/10.1002/alz.12009
info:doi/10.1002/alz.12009
info:doi/10.1038/s41588-020-00757-z
info:doi/10.1038/s41525-019-0078-7
info:doi/10.1038/s41397-019-0125-x
https://www.health.harvard.edu/a_to_z/high-cholesterol-hypercholesterolemia-a-to-z
https://www.health.harvard.edu/a_to_z/high-cholesterol-hypercholesterolemia-a-to-z
https://www.health.harvard.edu/a_to_z/high-cholesterol-hypercholesterolemia-a-to-z
info:doi/10.1093/eurheartj/ehx144
info:doi/10.1136/bmj.326.7404.1423
info:doi/10.1093/ije/dyx237
info:doi/10.1001/jama.2020.0150
info:doi/10.1016/j.eururo.2018.07.024
info:doi/10.1016/j.eururo.2018.07.024
info:doi/10.2337/dc08-1183
info:doi/10.1002/cam4.871
info:doi/10.1371/journal.pone.0165157
info:doi/10.1371/journal.pone.0165157
info:doi/10.3945/ajcn.116.140392
info:doi/10.3945/ajcn.116.140392
info:doi/10.7759/cureus.8950
info:doi/10.1210/jc.2013-1922
info:doi/10.1007/s10557-009-6182-7
info:doi/10.1056/NEJMoa1806747
info:doi/10.1001/jama.2016.14568
info:doi/10.1001/jama.2016.14568
info:doi/10.1111/j.1525-1497.2004.40178.x
info:doi/10.1111/cen.12768
info:doi/10.1056/NEJMoa0804381
info:doi/10.1111/cen.13390
info:doi/10.1001/jamainternmed.2014.1927
info:doi/10.1183/20734735.0021711
info:doi/10.1016/j.neo.2021.07.007
info:doi/10.1016/j.neo.2021.07.007
info:doi/10.3892/etm.2017.4218
info:doi/10.1164/rccm.200705-656OC
info:doi/10.1016/j.pupt.2012.06.002
info:doi/10.1186/s13041-021-00758-x
info:doi/10.1161/JAHA.114.001140
info:doi/10.1161/JAHA.114.001140
info:doi/10.1093/ijnp/pyy060
info:doi/10.1002/ana.25642
info:doi/10.1681/asn.2016010098


71. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of sociodemo-

graphic and health-related characteristics of UK Biobank participants

with those of the general population. Am J Epidemiol. 2017;186(9):

1026-1034. doi:10.1093/aje/kwx246

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Pham K, Mulugeta A, Lumsden A,

Hyppӧnen E. Genetically instrumented LDL-cholesterol

lowering and multiple disease outcomes: A Mendelian

randomization phenome-wide association study in the UK

Biobank. Br J Clin Pharmacol. 2023;89(10):2992‐3004. doi:10.

1111/bcp.15793

3004 PHAM ET AL.

info:doi/10.1093/aje/kwx246
info:doi/10.1111/bcp.15793
info:doi/10.1111/bcp.15793

	Genetically instrumented LDL-cholesterol lowering and multiple disease outcomes: A Mendelian randomization phenome-wide ass...
	1  INTRODUCTION
	2  METHODS
	2.1  Study population: UK Biobank

	What is already known about this subject
	What this study adds
	2.2  Genetic instruments for LDL lowering
	2.3  Phenome construction
	2.4  Biomarker data
	2.5  Statistical analyses
	2.6  Nomenclature of targets and ligands

	3  RESULTS
	3.1  PheWAS analyses
	3.2  MR analyses of disease outcomes
	3.3  MR analyses of disease biomarkers

	4  DISCUSSION
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST STATEMENT
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


