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Abstract

Background: Extracellular vesicles (EVs) play a critical role in intercellular

communication under physiological and pathological conditions, including cancer.

EVs cargo reflects their cell of origin, suggesting their utility as biomarkers. EVs are

detected in several biofluids, and their ability to cross the blood–brain barrier has

highlighted their potential as prognostic and diagnostic biomarkers in gliomas,

including glioblastoma (GBM). Studies have demonstrated the potential clinical

utility of plasma‐derived EVs in glioma. However, little is known about the clinical

utility of saliva‐derived EVs in GBM.

Methods: Small EVs were isolated from whole mouth saliva of GBM patients pre‐
and postoperatively. Isolation was performed using differential centrifugation and/

or ultracentrifugation. EVs were characterized by concentration, size, morphology,

and EVs cell‐surface protein markers. Protein cargo in EVs was profiled using mass

spectrometry.

Results: There were no statistically significant differences in size and concentration

of EVs derived from pre‐ and post GBM patients' saliva samples. A higher number of
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proteins were detected in preoperative samples compared to postoperative sam-

ples. The authors found four highly abundant proteins (aldolase A, 14‐3‐3 protein ε,
enoyl CoA hydratase 1, and transmembrane protease serine 11B) in preoperative

saliva samples from GBM patients with poor outcomes. Functional enrichment

analysis of pre‐ and postoperative saliva samples showed significant enrichment of

several pathways, including those related to the immune system, cell cycle and

programmed cell death.

Conclusions: This study, for the first time, demonstrates the feasibility of isolating

and characterizing small EVs from pre‐ and postoperative saliva samples from GBM

patients. Preliminary findings encourage further large cohort validation studies on

salivary small EVs to evaluate prognosis in GBM.
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INTRODUCTION

Glioblastoma (GBM) is the most common type of brain tumor in

adults. Despite aggressive treatment, patient prognosis remains

poor.1,2 The majority of GBM patients experience recurrences within

6 to 9 months from diagnosis.3–5 During treatment and follow‐up

assessments, GBM patients' response is monitored mainly using im-

aging techniques.6–8 Nevertheless, these techniques fail to reliably

confirm tumor progression.9,10 Currently, there are no biomarkers to

monitor response to treatment or disease progression in GBM

patients.8

Liquid biopsy, the detection and analysis of tumor derived bio-

markers in body fluids, is emerging as an exciting new field in the

management of brain cancer patients.11–13 The use of liquid biopsy

may provide tumor information and assist in detecting disease pro-

gression earlier than clinical symptoms or subsequent magnetic

resonance imaging (MRI) assessment. For GBM, putative biomarkers

need to cross the blood–brain barrier (BBB) to be detected in body

fluids. In this context, extracellular vesicles (EVs) present an advan-

tage over other liquid biopsy‐based biomarkers (e.g., circulating tu-

mor cells), because EVs can cross even intact BBBs, while protecting

their cargo (e.g., nucleic acids, protein, lipids).14,15

EV is a generic term to define cell‐derived membrane struc-

tures16 released under physiological or pathological conditions. EVs

play a crucial role in intercellular communication.17 EVs may be

classified as exosomes that are of endosome‐origin and microvesicles

(ectosomes/microparticles) that are derived from budding of plasma

membranes.18 EVs classification according to their biogenesis

pathway is challenging, and no consensus has been achieved in terms

of specific markers to differentiate them.16 Therefore, the Interna-

tional Society for Extracellular Vesicles endorses the use of opera-

tional terms for EV subtypes.16 In this study, instead of using the

terminology “exosomes,” we opted for using “small EVs” (<200 nm).

EVs can be isolated from several body fluids, including blood and

saliva.19 Although blood is a largely analyzed body fluid in a clinical

setting, saliva has been gaining attention as an alternative biofluid

over blood sampling. Saliva collection is easy and cost‐effective, re-

quires no special equipment or specialized staff, and multiple samples

can be collected from an individual.20 Interestingly, the composition of

saliva is altered under pathological conditions such as in cancer.20–25

A limited number of studies have investigated the potential of salivary

biomarkers in brain tumors.26,27

Saliva harbors many proteins that can be of clinical relevance.

Approximately 20%–30% of blood proteins can also be found in

saliva.21 However, when using whole mouth saliva for mass spec-

trometry (MS)‐based proteomics studies, sometimes low abundant

proteins may be undetected due to the presence of highly abundant

proteins (e.g., amylase),28 which is also inherited to blood‐based

proteomics studies. In an attempt to overcome this limitation, we

conducted sequential window acquisition of all theoretical mass

spectra (SWATH‐MS) to allow for higher proteomic coverage. Sali-

vary EVs have been explored as diagnostic or prognostic biomarkers

in several cancer types.29–34 Currently, there are no published

studies investigating the potential role of salivary small EVs in pa-

tients with GBM.

In this study, we analyzed the protein content of EVs derived

from GBM patients pre‐ and posttreatment with favorable outcomes

and unfavorable outcomes with an aim to investigate the prognostic

potential of EV as biomarkers for GBM.

MATERIALS AND METHODS

Clinical samples collection and processing

This study was approved by the human research ethics committee

(HREC/2019/QRBW/48780) of Royal Brisbane and Women's Hos-

pital (RBWH; Brisbane Australia) and the Queensland University of

Technology (QUT) (approval number: 1900000292). All documents

were acknowledged by the RBWH research governance (RGO). All
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participant patients gave their written consent to participate in this

study, and blood samples were collected from patients before and

after brain surgery or needle biopsy. Pre‐ and postoperative (within 2

weeks of brain surgery) whole mouth saliva samples, hereafter

referred to as “saliva,” from GBM patients (n = 18) and age‐ and sex‐
matched healthy controls (n = 5) were obtained as previously

described.30,35,36 The favorable or unfavorable outcomes were

calculated using the time elapsed between the preoperative saliva

collection date and the date of progression, death, or the last follow‐
up visit with an MRI scan image. The progression was only considered

once confirmed by MRI results and physicians' notes.

Isolation of EVs

Small EVs from saliva (200 µL) were pelleted by differential centri-

fugation and ultracentrifugation as previously described30,37,38

(Figure S1A). All steps were performed at 4°C. Small EVs pellets were

then resuspended (50 µl) in filtered (0.22 µm) phosphate‐buffered

saline (PBS) and stored at −80°C for further experiments.

Nanoparticle tracking analysis

EVs were diluted (1:200) in filtered (0.22 µm) PBS and analyzed using

the NanoSight NS300 with a 405‐nm laser (NanoSight, Ltd, Malvern,

UK). Three videos of 30 seconds were recorded for each sample, and

a report was generated on the size distribution and concentration of

particles. The camera type used was sCMOS; and the laser type was

blue 405. The temperature was set to be 25.0°C during video re-

cordings. Camera level setting ranged from 12 to 14. Analysis setting

for detection threshold ranged from 2 to 3. All other settings were

set to automatic.

Transmission electron microscopy

EV morphology was assessed using transmission electron microscopy

(TEM). Samples were mixed by vigorous vortexing. Five (µl) drops of

sample were placed onto a parafilm, and the mounting grid was

placed over the droplet. The mount was then incubated with 2%

uranyl acetate (negative staining). EVs were imaged on a JEOL JEM‐
1400 TEM at 100 kV mounted with a 2K TVIPS CCD camera at the

Central Analytical Research Facility (CARF)‐QUT.

Western blot

Total protein concentration was quantified using Pierce BCA Protein

Assay Kit (Thermo Fisher Scientific). Western blot was performed as

previously described.39 Equal amounts of EVs protein (5 µg) were

loaded onto gels, and a GBM cell line (U251MG) was used as a

positive control. U251MG cell line was gifted by Prof. Bryan W. Day

(QIMR, Brisbane, Australia). The following primary and secondary

antibodies were used: CD63 (Santa Cruz, #15363), CD9 (Cell

Signaling, #13174), GM‐130 (Cell Signaling, #12480), CD81 (Santa

Cruz, #166029) Calnexin (Abclonal, #A4846), Aldolase A (C‐10)

(Santa Cruz, #390733), ECH1 (B‐3) (Santa Cruz, #515270), 14‐3‐3 ε
(8C3) (Santa Cruz, #23957), and anti‐rabbit or anti‐mouse IgG‐HRP

secondary antibody (Cell Signaling, #7074 or #7076). All primary

antibodies were diluted 1:1000 and secondary 1:2000.

SWATH mass spectrometry analysis

Sample processing and SWATH‐MS analyses were performed as

previously described by our group.35 In brief, samples were pro-

cessed using filter‐aided sample processing,40 digested using trypsin,

desalted using StageTips containing strong cation exchange mem-

brane and analyzed using liquid chromatography–tandem mass

spectrometry LC–MS/MS. Ten microliters of indexed retention time

(iRT) peptides were spiked into the peptide samples to allow for the

recalibration of retention times in subsequent LC‐MS/MS analyses.41

The MS data generated was searched against the Human SwissProt/

UniProt database (March 2021) using ProteinPilot (SCIEX) software

and the Paragon Algorithm, as previously described.42 The spectral

library consisted of 507 proteins and 11,582 peptides at 95% con-

fidence. SWATH‐MS data analysis was performed using the SWATH

Microapp (v2.0) plug‐in for PeakView (v2.2, SCIEX) software. The

criteria for protein quantification were: six peptides detected per

protein, six transitions detected per peptide, 95% confidence

threshold, 1% false discovery rate (FDR), 6‐minute peak detection

window, and 50 ppm XIC extraction window. Retention time cali-

bration using iRT peptides was performed before ion extraction.43

Additional information and more details are described in the Sup-

porting Material.

Bioinformatic analysis

Gene Ontology (GO) enrichment analysis of differentially abundant

proteins was performed using the Database for Annotation, Visuali-

zation and Integrated Discovery Bioinformatics Resources 6.8

(https://david.ncifcrf.gov/). GO annotation was classified into two

categories, namely biological process and molecular functions. An

adjusted p value <.05 was considered significant. The GO Protein

class analysis was generated using Panther classification44 (http://

www.pantherdb.org/). Pathway analyses were performed using the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.

genome.jp/kegg/) and Reactome (https://reactome.or) to identify

enriched pathways and generate a report, respectively. A protein–

protein interaction (PPI) network was built using Cytoscape (http://

www.cytoscape.org) based on findings from the STRING database

(https://stringdb.org).
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Statistical analysis

Statistical analyses were performed using GraphPad Prism Software

and package MSStats version 2.045 in R.35 Protein significance anal-

ysis was performed by applying a linear mixed‐effects model using

MSStats, as described previously.35 The protein abundance levels

between patients with unfavorable and favorable outcomes were

compared using the Mann‐Whitney test (GraphPad Prism). Differ-

ences between more than two groups were evaluated by one‐way

ANOVA (GraphPad Prism). A p value <.05 was defined as statisti-

cally significant. The partial least squares‐discriminant analysis (PLS‐
DA) was performed using the package mix0mics in R. Volcano plots

and receiver operator characteristic (ROC) curve analysis were

generated in GraphPad Prism.

RESULTS

Demographic and clinical information from patients

Demographic and clinical information from GBM patients and

healthy controls were collected (Table S1). The average age of GBM

patients was 60 years (ranging from 37 to 82 years) and for the

control group was 63.5 years (ranging from 58 to 71 years). The

healthy control group consisted of three women and two men,

whereas the GBM cohort included nine women and nine men. Nearly

all patients were classified as IDH‐wild type GBM (n = 17) and one

patient was classified with IDH1R132H mutation. At the time of

diagnosis, which was before the new 2021 World Health Organiza-

tion classification of central nervous system tumors, patients pre-

senting IDH1R132H mutation had their tumors still classified as

GBM. Within the cohort of GBM patients, 11 were confirmed with

disease recurrence or were deceased within 9 months from diagnosis

(unfavorable outcome), whereas four had no recurrence or confirmed

recurrence after 9 months from diagnosis (favorable outcome). For

three patients, follow‐up information was obtained less than 9

months from diagnosis, so although no progression was evident,

these GBM patients were excluded from further analysis on the

prognostic significance of small EVs (Table S1). Because of the known

prognostic differences in patients with IDH mutation and the lack of

information on the prognosis according to our 9‐month cutoff, the

only patient with IDH mutation was excluded from the favorable/

unfavorable analysis.

Isolation and characterization of salivary small EVs in
GBM patients

Following isolation of salivary small EVs (Figure S1A), size distribu-

tion and concentrations were assessed by nanoparticle tracking

analysis (NTA) (Figure 1A). The average size of salivary EVs from

healthy controls, pre‐, and postoperative samples was 149.6 nm,

163.3, and 143.3 nm, respectively. The average concentration

(particles/ml of saliva) of EVs was 8.8 � 109 in preoperative samples

and 5.6 � 109 in postoperative samples whereas in healthy controls it

was 3.95 � 109. Interestingly, although not statistically significant,

there is a decrease in EV concentration in GBM patients after surgery

(p = .1867). Additionally, TEM images corroborated the presence of

small EVs, showing their typical cup‐shaped structure (Figure 1B).

Immunoblotting of small EV markers was performed in a subset of

samples (n = 7) (Figure 1C), showing positive bands for CD9, CD81,

and CD63 (Figure 1C). Negative markers GM130 and Calnexin were

absent in all isolated salivary EV samples, suggesting no contamina-

tion of larger EVs or cells16 (Figures 1C and S1B). Taken together,

these results confirm the successful isolation of small EVs from saliva

of GBM patients.

Proteomic profiling of small EVs in pre‐ and
postoperative saliva samples from GBM patients

Following the characterization step confirming the enrichment of

small EVs in our samples, a total of 12.5 µg of protein was used for

data‐dependent acquisition (DDA)‐MS and SWATH‐MS analysis. The

workflow is shown in Figure 2A. A total of 507 proteins were iden-

tified by the DDA analysis in the small EVs fraction isolated from

saliva samples of GBM patients. Of these, 238 (47.0%) were found

only in preoperative samples, 215 (42.4%) were detected in both

conditions, and only 54 (10.6%) were found exclusively post-

operatively (Figure 2B).

The identified proteins were compared to the ones reported in

known EVs databases. We cross‐referenced our findings with Exo-

Carta (v5)46–48 and Vesiclepedia (v4.1)49,50 (Figure 2C). We observed

that 478 of 507 (94%) proteins identified in our study have been

previously reported in at least one of the databases. There were 29

exclusive identifications in our spectral library listed in Table S2. In

addition, quantitative analysis was performed on the identified pro-

teins using SWATH‐MS. A total of 89 significant differentially

abundant proteins (DAPs) were identified between pre‐ and post-

operative saliva samples from GBM patients (Table S3). Among them,

69 were more abundant in patients before surgery, whereas 20 were

less abundant (Figure 2D).

GO and signaling pathway enrichment analyses in
salivary small EVs pre‐ and postoperative

To investigate the functional significance of DAPs between pre‐ and

postoperative saliva samples, functional enrichment analyses were

performed, including GO enrichment and KEGG pathway analysis.

Several biological processes (BP) were found to be significantly

enriched (Figure 2E; Table S4). The three most notable BP included

innate immune response (FDR p = 9.40 � 10−07), Wnt signaling

pathway (FDR p = 2.20 � 10−13), and proteasome‐mediated

ubiquitin‐dependent protein catabolic process (FDR

p = 1.10 � 10−09). For the annotated molecular function (MF),
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proteins were significantly enriched in threonine‐type endopeptidase

activity (FDR p = 1.50 � 10−18), immunoglobulin receptor binding

(FDR p = 3.10 � 10−09), lipopolysaccharide binding (FDR

p = 3.80 � 10−06), antigen binding (FDR p = 3.40 � 10−05), endo-

peptidase inhibitor activity (FDR p = 3.40 � 10−02), and serine‐type

endopeptidase activity (FDR p = 4.90 � 10−02) (Figure 2E, Table S5).

The interaction network generated of BP and MF is shown in

Figure S2. Some cluster interactions can be observed within proteins

related to the immune system (e.g., humoral immune system, defense

response to bacterium, and antimicrobial humoral response). Other

proteins presented disconnected members, unrelated to the other

proteins (e.g., extracellular matrix disassembly, protein activation

cascade, and regulation of protein processing). In addition, we have

classified protein class, showing that 23.48% of proteins were

enriched in protein modifying enzyme (i.e., a protein that directly

covalently modifies another protein), whereas 14.69% in defense/

immunity protein (Figure 2F). KEGG pathways involved were also

classified (Figure 2G), and the most representative functional

pathway was related to the proteasome (FDR p = 2.46 � 10−13),

which was also observed in the clustering of proteasome‐related

proteins in the PPI network (Figure S3). In addition, significant

enrichment of pathways of complement and coagulation cascades

(p = 1.20 � 10−3), carbon metabolism (p = 7.15 � 10−3), and

tuberculosis (p = 3.20 � 10−2) was detected (Figure 2G). Reactome

pathway enrichment revealed 147 overrepresented pathways (FDR

p < 0.05) (Figure S3). Among them, the top 10 (FDR p = 7.88 � 10−15)

were neutrophil degranulation, regulation of activated PAK‐2p34 by

proteasome‐mediated degradation, auto degradation of Cdh1 by

Cdh1:APC/C, CF‐β‐TrCP mediated degradation of Emi1, CDT1 as-

sociation with the CDC6:ORC:origin complex, APC/C:Cdc20‐medi-

ated degradation of Securin, Vif‐mediated degradation of

APOBEC3G, degradation of AXIN, Orc1 removal from chromatin,

CDK‐mediated phosphorylation, and removal of Cdc6. Overall,

through the functional enrichment analyses, we have observed that

the majority of proteins were associated with the immune system,

including the innate immune system (e.g., neutrophil degranulation

and FCERI‐mediated nuclear factor–κB activation) and also the

adaptive immune system with antigen processing: ubiquitination and

proteasome degradation, and downstream TCR signaling. In addition,

pathways related to the cell cycle and programmed cell death were

also enriched in the isolated small EVs (Figure S4).

Prognostic potential of salivary small EVs in GBM

To investigate the relationship between the protein content of small

EVs and patients' clinical outcomes, we separated the GBM cohort

into patients with favorable outcomes (progression‐free survival

[PFS] ≥9 months) and unfavorable outcomes (PFS <9 months). This

conservative cutoff was established considering that the average

time for a GBM patient to present disease recurrence is usually

within 6 to 9 months from diagnosis.3–5

F I GUR E 1 (A) Size and concentration of salivary small extracellular vesicles in healthy controls, and pre‐ and postoperative glioblastoma
(GBM) patients. (B) Morphology of salivary small extracellular vesicles imaged by transmission electron microscopy. Representative images of

the cup‐shaped morphology of extracellular vesicles (red arrow) isolated from pre‐ (left) and postoperative (right) samples. (C) Immunoblotting
for positive (CD9 and CD63) and negative (GM130) markers of small extracellular vesicles isolated from saliva of GBM patients. F1 indicates
postoperative sample; L, molecular weight ladder; U251MG, commercial GBM cell line.
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F I GUR E 2 (A) The study workflow. Following isolation of small extracellular vesicles (EVs), proteins were aliquoted and protein digestion
was performed. The peptides were concentrated, and mass spectrometry was performed for data‐dependent and data‐independent

acquisition (SWATH‐MS). Protein Pilot software was used for peptide identification. Bioinformatic analyses were performed and correlated
with clinical information from patients. (B) Venn diagram of identified proteins in salivary EVs pre‐ and postoperative (C) Venn diagram of all
proteins identified in salivary small EV samples of glioblastoma (GBM) patients compared to proteins annotated in two EV databases, Exocarta
and Vesiclepedia. (D) Volcano plot identifying proteins from salivary small EVs by their log2‐fold changes (log2FC) against their corresponding

adjusted p value in patients before and after surgery. Red and blue dots represent proteins with significantly higher and lower abundance,
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The vesicles size was not altered according to the patients'

prognosis (Figure 3A). However, there is a significant difference

(p = .0242) when comparing EV concentration between favorable

and unfavorable outcomes preoperatively (Figure 3B). We further

performed a PLS‐DA of the total salivary‐EV proteome signatures in

pre‐ (Figure 3C) and postoperative (Figure 3D) samples of patients

with favorable (blue) or unfavorable (red) outcomes. The resulting

score plots of the analysis showed a clear separation between pa-

tients with favorable and unfavorable prognoses in the preoperative

condition. However, postoperatively, we observed a partial overlap

between patients. Next, we identified the DAPs in each group pre‐
(Figure 3E) and postoperatively (Figure 3F). Before surgery, a total

of 66 DAPs were detected, among them, 64 were more abundant in

patients with unfavorable outcomes, whereas two were less abun-

dant. After surgery, 15 DAPs were identified, five more abundant

and 10 less abundant in patients with unfavorable outcomes. A list

of all DAPs is available in Table S10. The GO analysis of these DAPs

pre‐ and postoperative is shown in Tables S6 and S8 (BP) and Ta-

bles S7 and S9 (MF).

Considering the more representative separation from the PLS‐
DA of preoperative samples (Figure 3C), we selected four pro-

teins for further investigation, namely aldolase A (ALDOA), 14‐3‐3
protein ε (1433E), transmembrane protease serine 11B (TM11B),

and enoyl CoA hydratase 1 (ECH1) (Figure 4A). Our criteria for

selection included (1) a fold change of at least 1.5, (2) p value <.05,

and (3) biological relevance. All protein candidates presented

increased abundance in patients with unfavorable outcomes

compared to patients with favorable outcomes. ALDOA, 1433E, and

ECH1 abundance was also verified by Western blotting considering

their biological relevance. For ALDOA (Figure 4B), we confirmed

that patients with unfavorable outcomes presented with visually

stronger bands compared to patients with a good outcome. 1433E

and ECH1 were not detected in the Western blot (Figure S5). This

result might be due to the low abundance of both proteins (target

protein abundance relative to total protein content = 1 � 10−5).

Additionally, we performed a ROC curve analysis of ALDOA, which

showed a sensitivity of 90.91% and specificity of 100.0%

(Figure 4C).

F I GUR E 3 (A) Size of salivary small extracellular vesicles of glioblastoma (GBM) patients with favorable and unfavorable outcomes in pre‐
and postoperative samples. (B) Concentration of salivary small extracellular vesicles of GBM patients with favorable and unfavorable
outcomes in pre‐ and postoperative samples. The Mann‐Whitney test (GraphPad Prism) was used to determine significance (*p < .05). Partial

least squares‐discriminant analysis score plots of proteome signatures in the total salivary small extracellular vesicles (EVs) from GBM patients
with favorable prognosis (blue) and unfavorable prognosis (red) (C) pre‐ and (D) postoperative. Volcano plots of all proteins from salivary small
EVs of patients with unfavorable and favorable prognoses (E) pre‐ and (F) postoperative. Plots correspond to proteins' log2‐fold changes
against their corresponding adjusted p value. Red dots represent more abundant proteins. Blue dots correspond to less abundant proteins.

respectively. (E) Gene Ontology analyses of top 10 biological processes (green) and molecular functions (blue) of differentially abundant proteins
from pre‐ and postoperative GBM patients generated using Database for Annotation, Visualization and Integrated Discovery. (F) Donut Chart of

Gene Ontology Protein class analysis. Graph generated using Panther classification44 (http://www.pantherdb.org/). (G) Bubble chart showing
Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially abundant proteins in pre‐ and postoperative salivary EV samples.
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DISCUSSION

We have demonstrated for the first time the feasibility of isolating

and characterizing small EVs from saliva samples (pre‐ and post‐
treatment) of GBM patients. Pre‐ and post‐treatment saliva samples

demonstrated no significant differences in relation to particle size

and concentration of small EVs. However, patients with unfavorable

outcomes presented with a higher concentration of EV particles in

preoperative samples compared to patients with favorable outcomes.

We also found four differentially abundant proteins (ALDOA, 1433E,

TM11B, and ECH1) in saliva samples from GBM patients with unfa-

vorable outcomes compared to patients with favorable outcomes.

One of the highly abundant proteins, ALDOA, is an enzyme that plays

a major role in glycolysis and the maintenance of glucose.51 A study

has shown that the knockdown of genes regulating glycolysis,

including ALDOA, in GBM cells reduced cell viability, migration, and

invasion.52,53 In contrast, overexpression of ALDOA has been

correlated with higher cellular proliferation leading to poor prognosis

in pancreatic cancer,54 lung cancer,55,56 colorectal cancer,57 liver

cancer,58 gastric cancer,59 and kidney cancers.60 1433E (YWHAE)

regulates the cell cycle and signaling pathways and genetic abnor-

malities in astrocytoma formation. Furthermore, there is evidence

linking the downregulation of 14‐3‐3 ζ protein, a distinct isoform of

the YWHA protein family, with human GBM cells becoming more

responsive to apoptosis induction.61 For TM11B, the knockdown of

another transmembrane protease serine family member, TMPRSS3,

inhibited cell proliferation, migration, invasion, and induced apoptosis

of glioma cells.62

F I GUR E 4 (A) Box‐and‐whisker plots of normalized protein abundance of four protein biomarker candidates preoperatively (aldolase A
[ALDOA], 14‐3‐3 protein ε, enoyl CoA hydratase 1, and transmembrane protease serine 11B). The Mann‐Whitney test (GraphPad Prism) was
used to determine significance (*p < .05; **p < .01). (B) Verification of ALDOA using an independent method, Western blotting, in patients with

favorable (numbers colored in blue) and unfavorable (numbers colored in red) prognoses. (C) Receiver operator characteristic curve analysis of
ALDOA in preoperative salivary extracellular vesicles from glioblastoma patients with favorable and unfavorable outcomes.
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We adhered to the International Society for Extracellular Vesi-

cles (ISEV) recommendations (to use at least two complementary

techniques to characterize small EVs: TEM, Western blotting, and

NTA) when isolating and characterizing small EVs from saliva sam-

ples.16 Using TEM, we observed a double‐layer membrane structure

with a cup‐shaped morphology, corresponding to the size range of

small EVs (<200 nm) in saliva samples. Our findings corroborate

previously published data.63–65 In addition, we observed that the

concentration of small EVs was higher in the preoperative samples

compared to postoperative saliva samples and healthy controls

(Figure 1A). A reduction in small EVs' concentration post‐surgery

may be attributed to a reduction of EVs being released by the tu-

mor following surgery. Similarly, Osti et al.66 have identified a higher

concentration of EV in GBM patients compared to healthy controls,

brain metastasis, and extra‐axial brain tumors patients. The authors

have also observed a decrease in plasmatic EVs in GBM patients

post‐surgery compared to pre‐surgery, which corroborates our data.

Recent studies have reported that the protein content of small

EVs reflects the phenotypic signature of GBM cells.17,67 This would

mean that identifying the protein cargo associated with small EVs

may help to address the lack of prognostic biomarkers for GBM.68

Although EVs have been investigated in other body fluids derived

from GBM patients,69–72 thus far, there are no studies in literature on

small EVs isolated from saliva of GBM patients. We identified 507

proteins from pre‐ and post‐treatment saliva samples. The majority

of the proteins detected in our study have been identified in two

publicly available EV databases (Exocarta and Vesiclepedia). In

addition, we have also found unique proteins in salivary EVs of GBM

patients and these were predominantly immunoglobulins and pro-

teins involved in the TGF‐β signaling pathway. We reported a total of

89 DAPs in salivary small EVs between pre‐ and postoperative GBM

patients that is comparable to the 102 DAPs reported from plasma‐
derived EVs of GBM patients.63–65 The main GO annotations

enriched in our proteome were associated with the immune system.

Proteins identified in salivary EVs from GBM patients have been

found in previous findings of GBM‐derived blood EVs and condi-

tioned media harvested from GBM cells. Seven of the DAPs identified

in our study were included in a list of “potential glioblastoma

markers” using EVs from GBM cell lines73 and 11 were included in a

list of “GBM EV protein signature”66 using plasmatic EVs.66,73,74

Mainly, these proteins are involved in the complement and coagu-

lation cascade and regulation of iron metabolism.66 They have been

reported to be differentially abundant in EVs66 derived from plasma

and serum of GBM patients.75 A common marker across all studies is

C3. C3 is a member of the complement system and plays a critical

role in the innate immunity.76 PPIA, which regulates protein folding

and trafficking, has been reported to be upregulated and to play a key

role in the progression of a number of cancer types.77 These results

suggest that we have successfully enriched in small EVs associated

with GBM.

Although we have adhered to current ISEV guidelines for isola-

tion and characterization of small EVs, it is important to highlight that

there is no consensus on a standard technique to isolate and

characterize EVs. Another limitation of our study is the small patient

cohort due to the rarity of GBM. Although our results show an

enrichment of salivary small EV proteins associated with a “GBM

signature” reported from other studies using plasmatic EVs or GBM‐
cell conditioned media, it is essential to interpret our data with

caution. Because not only tumor cells secrete small EVs, but nearly all

cells in our body are constantly releasing small EVs, our results from

EVs' cargo may also be reflecting the changes due to systemic

inflammation and not only from tumor‐derived EVs. Most of the

patients were receiving medication, including corticosteroids, which

may influence both the vesicles release and their protein pattern, as

previously reported in the literature.78 Further research should be

undertaken to investigate their prognostic potential in GBM. A

noninvasive assessment of GBM using saliva, independent of tumor

tissue obtained at brain surgery, sheds light on novel possibilities for

GBM subtyping detection, monitoring of disease progression, and

serial sample collections to analyze the tumor behavior post‐
treatment.

Our preliminary data demonstrate the feasibility of isolating and

characterizing small EVs from pre‐ and postoperative saliva samples

from GBM patients. There were no statistically significant differences

in size and concentration of small EVs between both time points,

however, a distinct protein profile was observed. Our preliminary

findings encourage further large cohort validation studies on salivary

small EVs to evaluate prognosis in GBM.
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