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Abstract
Background: Immunological traits and functions have been consistently associated 
with environmental exposures and are thought to shape allergic disease susceptibility 
and protection. In particular, specific exposures in early life may have more significant 
effects on the developing immune system, with potentially long- term impacts.
Methods: We performed RNA- Seq on peripheral blood mononuclear cells (PBMCs) 
from 150 children with atopic dermatitis and healthy nonallergic children in rural and 
urban settings from the same ethnolinguistic AmaXhosa background in South Africa. 
We measured environmental exposures using questionnaires.
Results: A distinct PBMC gene expression pattern was observed in those children 
with atopic dermatitis (132 differentially expressed genes [DEGs]). However, the 
predominant influences on the immune cell transcriptome were related to early life 
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exposures including animals, time outdoors, and types of cooking and heating fuels. 
Sample clustering revealed two rural groups (Rural_1 and Rural_2) that separated 
from the urban group (3413 and 2647 DEGs, respectively). The most significantly 
regulated pathways in Rural_1 children were related to innate activation of the im-
mune system (e.g., TLR and cytokine signaling), changes in lymphocyte polarization 
(e.g., TH17 cells), and immune cell metabolism (i.e., oxidative phosphorylation). The 
Rural_2 group displayed evidence for ongoing lymphocyte activation (e.g., T cell re-
ceptor signaling), with changes in immune cell survival and proliferation (e.g., mTOR 
signaling, insulin signaling).
Conclusions: This study highlights the importance of the exposome on immune de-
velopment in early life and identifies potentially protective (e.g., animal) exposures 
and potentially detrimental (e.g., pollutant) exposures that impact key immunological 
pathways.

K E Y W O R D S
atopic dermatitis, children, environment, immune development, transcriptomics

G R A P H I C A L  A B S T R A C T
This study examines the molecular mechanisms and environment exposures underpinning the rural/urban immunological gradient in South 
African children with or without AD. Differences in animal exposures, home fuel use, time spent outdoors, and socioeconomic factors 
associated with differences in immune gene expression. One hundred and thirty- two DEGs were observed in children with AD (including 
IGHE). UMAP clustering identified one urban and two rural groups characterized by differences in both lymphocyte and innate immune cell 
processes.
Abbreviations: AD, atopic dermatitis; ALPL, alkaline phosphatase; CYP4F3, cytochrome P450 family 4 subfamily F member 3; DEFA3, 
defensin alpha 3; DEGs, differentially expressed genes; HSPA1A, heat shock protein family A (Hsp70) member 1A; HSPA1B, heat shock 
protein family A (Hsp70) member 1B; IGHE, immunoglobulin heavy chain constant epsilon; PGLYRP1, peptidoglycan recognition protein 1; 
UMAP, Uniform Manifold Approximation and Projection for Dimension Reduction
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1  |  INTRODUC TION

There is an “immunological window of opportunity” early in life 
when the immune system is particularly responsive to environmen-
tal exposures (including infections, nutrition, and microbiome) that 
help establish the thresholds, patterns of reactivity, and functional 
trajectories that can have long- term consequences including altered 
risk of immune- mediated diseases.1– 5 These interactions can be me-
diated partially via epigenetic mechanisms and ideally should pro-
mote appropriate immune responses that effectively defend against 
infection and tolerate the environmental otherwise harmless anti-
gen/allergen exposures, with limited collateral damage to host tis-
sue, and without any subsequent aberrant inflammatory or allergic 
reactions.6– 9

Multiple studies have shown that human immune traits are pri-
marily influenced by environmental factors.10,11 Some of the most 
important exposures in early life that determine functional program-
ming of the infant immune system are associated with rural- specific 
and urban- specific factors. Rural or traditional farming lifestyles have 
been shown to modify innate (e.g., pattern recognition receptors— 
PRRs) and adaptive immune responses in children.12– 15 Differences 
in exposure to microbes, exposure to animals, dietary habits, use of 
cooking or heating methods that generate pollutants, and socioeco-
nomic status have all been shown to influence the development of 
the early life immune system.16– 22

We have previously shown that atopic dermatitis (AD) in South 
African children is associated with a distinct pattern of circulating 
cytokines (TARC, MCP- 4, and IL- 16) and elevated levels of specific 
IgE to food allergens and house dust mite.4 However, the most signif-
icant effects on circulating serum cytokine levels were due to rural 
and urban exposures in this South African cohort. In the current 
study, our aim was to further examine the molecular mechanisms 
and environment exposures underpinning the rural/urban immuno-
logical gradient in South African children with or without AD. We 
have, therefore, conducted high- throughput mRNA sequencing 
(RNA- Seq) on isolated peripheral blood mononuclear cells (PBMCs) 
from the children's cohort that has already been described. This in-
cludes rural children with AD (n = 46) or healthy (n = 44), and urban 
children with AD (n = 33) or healthy (n = 27).

2  |  METHODS

2.1  |  Study design

This study was originally designed as a matched case– control study 
to evaluate the differences in children with or without AD in rural 
and urban settings. All participants were from the ethnolinguistic 
AmaXhosa population. The AmaXhosa nations live in the Cape re-
gion of South Africa. The urban AmaXhosa study participants were 
recruited from the Cape Town metropole and predominantly reside 
in urban townships, while the rural AmaXhosa study participants 
were recruited from the Umtata district and predominantly reside 

in rural reserves and live in homesteads (cluster of houses with ex-
tended family) practicing subsistence crop and pastoral farming. All 
children with AD had a dermatologist diagnosis of AD. The UK work-
ing party criteria was used for study inclusion with 100% of children 
being positive for itch, a history of flexural AD, and a history of dry 
skin and visible flexural dermatitis. The objective SCORAD index 
was used to grade disease severity and participants with moderate 
to severe disease were included in the study. The median SCORAD 
for rural AD was 43.0 and the median SCORAD for urban AD was 
43.5. All participants with AD were on soap substitutes, emollients, 
and topical steroid therapy only. None were on systemic treatments 
or biologicals. Urban children with moderate to severe atopic der-
matitis (n = 33) were enrolled at the Paediatric Dermatology Clinic, 
Red Cross Children's Hospital, Cape Town. Healthy nonallergic, 
nonfood sensitized (on SPT screening) urban participants (n = 27) 
were enrolled from randomly selected crèches in the Cape Town 
metropole. Similarly, children from a rural setting with AD (n = 46) 
were enrolled at the dermatology clinic at the Nelson Mandela 
Academic Hospital, Umthatha. Their nonallergic healthy control 
counterparts (n = 44) were randomly selected at study sites based 
at village clinics in the Mqanduli district of Umthatha. They were 
15– 35 months old with balanced age and gender between the 
groups and normal weight within their age standards (Table S1). All 
participants were seen at one time point for questionnaire, SPT, 
clinical assessment, and blood sample collection. Detailed stand-
ardized questionnaires were completed with the parent/guardian 
to obtain data on family history of atopy, household size, family in-
come, infant exposures, medication use, and environmental expo-
sures, as previously described.23 This clinical study received Human 
Research Ethics Committee approval (HREC 451/2014) and was 
conducted in accordance with the declaration of Helsinki and writ-
ten informed consent was obtained from parents/guardians of all 
participants prior to inclusion in the study.

2.2  |  Cell isolation and cryopreservation

Whole blood samples in lithium heparin tubes were collected from 
participants (n = 150) and PBMCs were isolated according to stand-
ard protocols. Briefly, the separation of PBMCs was achieved using 
Ficoll- Paque 1.077 g/mL density gradient centrifugation. Washed 
PBMCs were resuspended in freezing medium (DMSO, heat- 
inactivated FCS, and RPMI). Cells were then transferred to a −80 C 
freezer and thereafter liquid nitrogen the following day.

2.3  |  RNA isolation & sequencing

Total mRNA was isolated from PBMCs using the RNeasy Mini Kit 
(Qiagen), and RNA levels were quantified by NanoDrop (Thermo 
Fisher Scientific). RNA integrity was confirmed using the Agilent 
2100 BioAnalyzer (Agilent). Libraries were prepared with Illumina's 
Truseq stranded mRNA library prep kit with polyA enrichment. 
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RNA- Seq analysis was performed on samples from all children 
(n = 150) using HiSeq 4000.

2.4  |  RNA- Seq data preprocessing

All the raw fastq files generated were processed using the RNA- 
Seq pipeline from the NF- core framework.24 The pipeline uses Trim 
Galore for adapter trimming with default options.25 Human refer-
ence genome version GRCh38 obtained from Ensembl was used for 
alignment and read count estimation was performed using aligner 
option star_salmon provided by the pipeline. Gene level estimated 
count and TPM (transcript per million) normalized count of genes 
belonging to biotypes namely, protein- coding, lincRNAs, IG gene, 
and TR gene were used for all the downstream analysis. Details 
of the biotypes can be viewed at https://www.ensem bl.org/info/
genom e/geneb uild/bioty pes.html. Dimensionality reduction of the 
data was performed using Uniform Manifold Approximation and 
Projection for Dimension Reduction (UMAP) method implemented 
in the R package umap v0.2.7.0 for visualizing the sample distribu-
tion. TPM normalized gene expression matrix was used for UMAP 
dimensionality reduction.

2.5  |  Digital cell quantification (DCQ)

Digital cell quantification (DCQ) estimates proportion of various 
cell types present in the samples based on bulk RNA- Seq data. 
As the data was generated from PBMCs, differences in cell type 
abundance will significantly influence and bias the gene expres-
sion profile of the samples. To adjust for this bias, we have used 
digital cell quantification (DCQ) results while performing the dif-
ferential expression analysis to reduce the changes in abundance 
of specific immune cell types in each sample. The DCQ procedure 
uses cell type specific gene expression data of 18 different cell 
types downloaded from Human Protein Atlas and signature genes 
of each cell type collected from CellMarker and PangloDb.26,27 A 
deconvolution algorithm was then applied, which is adapted from 
Estimating the Proportions of Immune and Cancer cells (EPIC) 
method.28

2.6  |  Sample clustering

K- means algorithm implemented in R was used to identify the sam-
ple clusters. R function K- means was used for the analysis. The 
top 5000 highly varying genes based on median absolute devia-
tion were selected for generating the sample clusters. Euclidean 
distance between each samples were computed using get_dist 
function from the R package factoextra v1.0.7. Number of possible 
clusters were decided based on average silhouette width calcu-
lated using the function fviz_nbclust from the R package factoextra 
v1.0.7.

2.7  |  Differential gene expression and gene- set 
enrichment analysis

Differential gene expression analysis (DGE) identified genes up-
regulated or downregulated using Bioconductor package DESeq2 
v1.34.0.29 Confounding factors including cell type proportions, age, 
and gender were adjusted while performing differential expression 
analysis. Bioconductor package RUVSeq v1.28.0 was used to com-
pute the factor of unwanted variation and added to the DESeq2 de-
sign matrix.30 A gene was considered to be significantly regulated 
when adjusted p < .05 and log2 fold change ≥1 (two times the ex-
pression difference).

Gene- set enrichment analysis was performed using R package 
piano v2.10.0 to identify pathways of interest.31 KEGG pathway 
gene- sets and gene- level statistics, and log2 fold change values 
were used to identify regulated pathways in each of the pairwise 
comparisons. KEGG pathways belong to the categories Metabolism, 
Environmental Information Processing and Organismal Systems 
were considered in the analysis.

3  |  RESULTS

3.1  |  PBMC gene expression profile associated 
with AD

A total of 132 (adjusted p < .05 and |log2 Fold change| ≥ 1) differ-
entially expressed genes (DEGs) were identified in PBMCs from 
children with AD (n = 79) versus without AD (n = 71; Figure 1A). 
While relatively few genes were altered in PBMCs of AD patients, 
the most highly upregulated gene was IGHE, encoding the heavy 
chain constant region of IgE (adjusted p = 5.2 × 10−10), reinforcing 
the link between AD and atopic mechanisms. Gene expression of 
AD- associated mediators such as IL- 21, IL- 21 receptor, IL- 5, and IL- 9 
receptor were altered in children with AD using unadjusted p- values, 
but adjusted p- values were no longer significant.32– 34 62% of the AD 
patients had a skin prick test (SPT) positive reaction to at least one 
of the food allergens tested (egg, milk, soy, wheat, fish [cod], peanut, 
or hazelnut). However, there were no differences in the RNA- Seq 
data in children with AD and a positive SPT reaction, versus children 
with AD and a negative SPT reaction (Figure S1). Pathway enrich-
ment analysis identified a range of lymphocyte patterns (e.g., TH1, 
TH2, and TH17 differentiation) and innate signaling patterns (e.g., 
TLR signaling) that were downregulated in AD compared to healthy 
volunteers (Figure 1B). These AD gene expression profiles were ob-
served in both rural and urban children.

3.2  |  Living environment dominates PBMC gene 
expression clustering

Data- driven sample clustering identified groups of children with 
similar transcriptomic landscapes. Visualization of similarities using 

https://www.ensembl.org/info/genome/genebuild/biotypes.html
https://www.ensembl.org/info/genome/genebuild/biotypes.html
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Euclidean distance metric showed evidence for distinct clusters of 
children and average silhouette width identified three clusters in 
the total cohort (Figure 2A). K- means- based clustering found that 
all children (except three) from the urban group formed one clus-
ter, while there were two subclusters of children in the rural setting, 
termed Rural_1, and Rural_2 (Figure 2B). The heatmap of the top 500 
highly varying genes showed unique expression patterns for each 
of the three K- means clusters identified (Figure 2C). There were no 
differences in age or gender between the groups. Importantly, the 
clustering was primarily driven by the location of the child, and not 
the presence of AD, demonstrating the strong environmental and 
living conditions effect on the immune system of the growing child.

Analysis of the estimated proportions of various cell types in the 
samples by digital cell quantification (DCQ) revealed highly signif-
icant differences in cell type abundances between rural and urban 
children (Figure 2D). Children in the Rural_1 group had the highest 
levels of memory B cells, but the lowest levels of naïve and memory 
CD4+ and CD8+ lymphocytes, T regulatory cells and naïve B cells. In 

contrast, Rural_2 children had the highest levels of naïve CD4+ and 
CD8+ lymphocytes, and classical and intermediate monocytes. Urban 
children had the highest levels of γδ T cells (Figure 2E). There were 
no differences in the levels of NK cells, plasmacytoid DCs, MAIT 
cells, myeloid DCs, and nonclassical monocytes. There was no sta-
tistically significant difference in cell type specific gene signatures in 
children with AD compared to their healthy counterparts.

3.3  |  Environmental factors associated with PBMC 
gene expression clustering

Several exposures were significantly related to the rural and urban 
gene expression clusters. The most statistically significant differences 
were related to animal exposures and sunlight exposure (reflecting 
time spent outdoors) during both winter and summer in the rural 
group (Table 1). In addition, there were differences in family income 
between the rural and urban groups. While there were no significant 

F I G U R E  1  (A) Volcano plot showing 
differential gene expression analysis 
results in Healthy versus Atopic 
Dermatitis (AD). Positive Log2 Fold 
Change values represent upregulation 
and negative values represent down- 
regulation in AD compared to Healthy. 
(B) Pathway enrichment analysis results. 
The network shows significantly 
downregulated pathways (adjusted 
p < .05) identified in AD. No significantly 
upregulated pathways were found. Node 
size is relative to negative log10 scaled 
adjusted p- values. Edges represent 
overlap of at least 10 genes between the 
pathways.
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differences in the questionnaire data that could explain the two dif-
ferent rural clusters, only Rural 1 children were significantly different 
from the urban cluster for birth mode (highest rate of vaginal delivery 
for Rural 1). Only Rural 2 infants were significantly different from the 
urban cluster for lower rates of peanut and amasi (a fermented drink) 
consumption and differences in the type of heating fuel used (Table 1).

3.4  |  Differential gene expression analysis

Following adjustments for confounding factors, genes that were sig-
nificantly upregulated or downregulated between the three clusters 
of children were identified (Figure 3A– C). The primary driver of gene 

expression changes is the living environment of the child as clearly 
seen by the volcano plots and Venn diagram. The largest number of 
DEGs was observed for the Rural_1 to Urban comparison (n = 3413), 
with slightly fewer DEGs for the Rural_2 to Urban children compari-
son (n = 2647), while relatively low number of DEGs was observed 
for the Rural_1 to Rural_2 comparison (n = 1524; Figure 3D). Distinct 
immune pathway enrichments were observed for each of these 
comparisons (Figure 3E).

We also specifically examined the expression levels of chemo-
kines and their receptors, interleukins, and their receptors, and 
G protein- coupled receptors (GPCRs; Figure 4). When comparing 
the two rural subgroups, several immunologically relevant genes 
were differentially expressed (Figure 4A). Children in the Rural_1 

F I G U R E  2  (A) Heatmap of sample— sample similarity based on Euclidean Distance (ED) metric created with top 5000 highly varying 
genes. Column and row are samples. Lower ED represents higher similarity between samples. The heatmap shows subpopulations in the 
cohort. (B) Three subpopulations identified using K- means algorithm and top 5000 highly varying genes as input. The majority of Urban 
samples are in one cluster and Rural samples formed two separate clusters, named Rural 1 and Rural 2. (C) Expression pattern of top 500 
highly varying genes among all the samples showing differences between the subpopulations identified. Column annotation shows the 
subpopulations and other clinical characteristics corresponding to each sample. (D) Digital cell quantification results. Bubble size and color 
gradient are relative to average cell proportions computed for samples in each subpopulation. (E) Box plot of cell types showed significant 
difference (adjusted p < .05) between subpopulations identified by Mann– Whitney U test.
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group had the highest expression levels of CCR10, GPR137, and 
IL- 15, while children in the Rural_2 group had increased ex-
pression levels of CCR7, GPR174, and IL- 23A. However, a much 
larger number of genes were differentially expressed when 
comparing the Rural_1 or Rural_2 groups with the Urban group 
(Figure 4B,C).

Previously, we showed that serum levels of many chemokines 
were significantly elevated in rural compared to urban children.4 
Similarly, we noted significant upregulation of multiple chemokines 
and chemokine receptors in PBMCs from both rural children groups 
compared to urban children (Figure 4B,C). A substantially smaller 
number of chemokine and chemokine receptor genes were upregu-
lated in PBMCs from urban children.

GPCRs have been shown to exert significant modulatory ef-
fects on immune cell activity and polarization. Multiple GPCRs 
were differentially regulated between rural and urban children 
with similar numbers of GPCR genes either being upregulated in 
PBMCs from rural children or PBMCs from urban children. The 
most significantly upregulated GPCR gene in rural children was 
GPR132, which has been shown to be involved in the control of 
autoimmune responses and can be activated by microbiota- derived 
metabolites.35,36

In general, many more interleukin- related genes were upreg-
ulated in the two rural groups compared to the urban children. 
For example, rural children displayed significantly elevated levels 
of IL- 1 receptor subtypes (IL- 1R1, IL- 1R2, IL- 1RL2, IL- 1RAP, and 

Rural versus 
Urban

Rural 1 versus 
Urban

Rural 2 versus 
Urban

Rural 1 versus 
Rural 2

Cat exposure 0.03 0.007 0.14 NS

Rural highest Rural 1 highest

Dog exposure 3 × 10−4 8 × 10−4 2 × 10−3 NS

Rural highest Rural 1 highest Rural 2 highest

Farm animals— child 2 × 10−15 6 × 10−13 2 × 10−12 NS

Rural highest Rural 1 highest Rural 2 highest

Farm 
animals— mother

8 × 10−16 3 × 10−13 3 × 10−12 NS

Rural highest Rural 1 highest Rural 2 highest

Peanut consumption 0.002 0.06 0.002 NS

Urban highest Urban highest

Amasi consumption 0.002 NS 0.01 NS

Urban highest Urban highest

Winter sun 6 × 10−13 1 × 10−11 9 × 10−9 NS

Rural highest Rural 1 highest Rural 2 highest

Summer sun 2 × 10−10 1 × 10−11 2 × 10−4 NS

Rural highest Rural 1 highest Rural 2 highest

Income 6 × 10−6 2 × 10−4 3 × 10−5 NS

Urban highest Urban highest Urban highest

Antibiotics 0.05 0.10 NS NS

Frequency Rural highest

Paracetamol 
frequency

0.05 NS 0.07 NS

Urban highest

Delivery mode 
(vaginal delivery)

0.03 0.04 0.16 NS

Rural highest Rural 1 highest

Cooking fuel 1 × 10−7 2 × 10−8 1 × 10−4 NS

Paraffin Rural highest Rural 1 highest Rural 2 highest

Open fire Rural highest Rural 1 highest Rural 2 highest

Electricity/gas Urban highest Urban highest Urban highest

Heating fuel 0.03 NS 0.005 NS

Paraffin/kerosene Rural highest Rural 2 highest

Wood Rural highest Rural 2 highest

Electricity/gas Urban highest Urban highest

Bold values indicate statistical significance (p < 0.05)

TA B L E  1  Exposures that significantly 
associate with the UMAP clustering are 
illustrated. The adjusted p- values are 
shown for those comparisons that are 
significant, and for those comparisons that 
show p- value trends between different 
groups. An adjusted p- value greater than 
0.20 (adjusted p > .20) is illustrated as 
nonsignificant (NS).
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IL- 1RN) suggesting higher levels of IL- 1 signaling in rural children. 
Importantly, IL- 10 gene expression was significantly upregulated in 
rural children compared to urban children. In contrast, urban chil-
dren had the highest expression levels of IL- 2 receptor subunits 
(IL- 2Rγ and IL- 2Rβ) and genes related to TH17 signaling (IL- 23R, IL- 
17RC, IL- 17RE, and IL- 17RA).

Other immunologically relevant genes that were differentially 
expressed include the inhibitory leukocyte immunoglobulin- like 
receptors (LILRs). Leukocyte immunoglobulin- like receptor B1 
(LILRB1), LILRB2, LILRB3, and LILRB4 were significantly upregu-
lated (adjusted p < .05) in PBMCs from both rural subgroups com-
pared to the urban children group. In addition, expression levels of 
genes required for histamine synthesis, histamine degradation, and 
histamine receptors were significantly different between rural and 
urban children. Histidine decarboxylase (HDC) and histamine recep-
tor 2 (H2R) were significantly elevated in PBMCs from urban children 
(adjusted p < .05), while H1R and histamine N- methyltransferase 
(HNMT) were significantly elevated (adjusted p < .05) in PBMCs 
from rural children.

Finally, aryl hydrocarbon receptor (AHR) and AHR repressor 
(AHRR) gene expression were significantly increased in the Rural_2 
group compared to Urban children, while AHRR (but not AHR) was 
significantly increased in the Rural_1 group compared to Urban chil-
dren (adjusted p < .05, Figure S2). AHRR gene expression positively 
correlated with summer and winter sunlight exposure (adjusted 
p < .05) and was significantly higher expressed for children living in 
homes using fires or paraffin for cooking, or paraffin/wood/coal for 
heating compared to children living in homes using electricity or gas 
for cooking and heating (adjusted p < .05). No significant correlations 
were found with AHR gene expression.

3.5  |  Co- expression network analysis

While many individual genes were significantly different between 
the groups, a more complete understanding of the biological changes 
can be inferred from weighted co- expression network analysis. 
Gene co- expression communities that capture the transcriptomics 

signatures specific to each cohort were identified and the corre-
sponding functions were investigated.

This analysis identified six communities (c1– c6) of highly intercor-
related gene expression (Figure 5A). Gene expression patterns that 
characterize urban children were found within communities c1 and 
c5, communities c3 and c4 were associated with the Rural_1 group, 
while community c2 was enriched in the Rural_2 children. The gene 
co- expression community specific to the urban children (c1) shows 
evidence of metabolic compromise, as these pathways suggest a 
unique pattern of PBMC metabolism (Figure 5B). The pathways that 
were most significantly regulated in Rural_1 children were related to 
innate activation of the immune system (e.g., TLR signaling, NF- κB 
signaling, MAPK signaling), cytokine (including TNF) and chemokine 
signaling, changes in lymphocyte polarization (e.g., TH17 cells), and 
immune cell metabolism (i.e., oxidative phosphorylation). The Rural_2 
gene co- expression c2 community suggests ongoing lymphocyte ac-
tivation (e.g., T cell receptor signaling), with changes in immune cell 
survival and proliferation (e.g., mTOR signaling, insulin signaling).

4  |  DISCUSSION

RNA- Seq analysis of PBMCs from this South African children's co-
hort revealed highly significant changes in immune cell gene ex-
pression profiles that were heavily dependent on the rural versus 
urban environment of the child. AD was also associated with distinct 
changes in circulating immune cell gene expression, but far less than 
the changes induced by environmental exposures, perhaps due to 
many, but not all, of the inflammatory effector responses being re-
stricted to the skin or the lack of gene expression for barrier factors 
by PBMCs.37,38

There is a growing appreciation of ethnogenetic background in 
shaping immune activation in AD and disease outcomes.39,40 In addi-
tion, region- specific diversity in environmental exposures (e.g., S. au-
reus carriage), socioeconomic factors, diet, and lifestyles can expose 
gene– environment interactions that yield very different outcomes 
when taking ethnicity into consideration. Upregulation of IgE expres-
sion in this cohort highlights the importance of TH2 responses in AD 

F I G U R E  3  (A) Volcano plot showing differential gene expression analysis results in Urban versus Rural 1. Positive Log2 Fold Change 
values represent upregulation and negative values represent down- regulation in Rural 1 compared to Urban. Top 5 upregulated and 
downregulated genes (adjusted p < .05, Log2 Fold Change >1) are labeled. (B) Volcano plot showing differential gene expression analysis 
results in Urban versus Rural 2. Positive Log2 Fold Change values represent upregulation and negative values represent down- regulation in 
Rural 2 compared to Urban. Top 5 upregulated and downregulated genes (adjusted p < .05, Log2 Fold Change >1) are labeled. (C) Volcano 
plot showing differential gene expression analysis results in Rural 2 versus Rural 1. Positive Log2 Fold Change values represent upregulation 
and negative values represent downregulation in Rural 2 compared to Rural 1. Top 5 upregulated and downregulated genes (adjusted p < .05, 
Log2 Fold Change >1) are labeled. (D) Venn diagram of significantly expressed genes (adjusted p < .05, Log2 Fold Change >1) in each pairwise 
comparison. (E) Pathway enrichment analysis results. The heatmap shows significantly upregulated and downregulated pathways (adjusted 
p < .1) in each comparison. The heatmap visualizes negative log scaled adjusted p- values of different directionality classes computed by 
the enrichment analysis. Nondirectional p- values are generated based on gene- level statistics alone without considering the expression 
direction. The mixed- directional p- values are calculated using subset of gene- level statistics of up-  and downregulated genes, respectively, 
for mixed- directional up and down. Distinct directional up and distinct directional down p- values are calculated from gene statistics 
with expression direction. Distinct class is used to define upregulated and downregulated pathways. The column annotation includes 
directionality of pathways and corresponding differential expression analysis.
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that are shared between African, European, and Asian studies.41 We 
also noted reduced expression of TH1- , TH2- , and TH17- associated 
genes in the peripheral circulation likely reflecting mass migration of 
these cells into the skin compartment, which corresponds with the 
previously described TH1- , TH2- , and TH17- high skin biopsy profile 
in early onset AD.42 As no differences in pathway enrichment for 
the TH22 axis were observed (increased skin TH22 responses were 

previously only detected in adult- onset, but not infant AD), the AD 
profile described in our cohort aligns with age- specific features of 
the disease that have been documented in pediatric AD elsewhere. 
However, the relative contribution of TH1, TH17, and TH22 responses 
to AD across ethnogenetic backgrounds certainly requires further 
study, especially in well- matched multiethnic cohorts with adequate 
power to detect differences.
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Unsupervised clustering of children's PBMC gene expression 
profiles revealed two rural subgroups that were separated from 
children within the urban setting. These two rural gene expression 
patterns may represent the transition from a truly rural gene expres-
sion signature (rural group 1) to an intermediate gene expression 
signature (rural group 2), to the urban pattern of immune cell gene 
expression. The average cell proportions identified using digital cell 

quantification were more similar for rural group 2 and the urban 
children, supporting the immune transition hypothesis. Currently, 
we do not know if these environmental effects on immune cell gene 
expression are related only to specific exposures characteristic of 
this cohort, and further studies in geographically unrelated cohorts 
are required in order to determine the generalizability of our find-
ings. A recent Swedish study did not find any significant differences 

F I G U R E  4  Significant differences (adjusted p < .05) in PBMC chemokine and chemokine receptors, GPCRs, interleukins, and interleukin 
receptors are illustrated when comparing children in the Rural_1 versus Rural_2 clusters (A), Rural_1 versus Urban clusters (B), and Rural_2 
versus Urban clusters (C). Adjusted p- value (y- axis) and fold change are plotted for each significant gene.
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FIGURE 5  Legend on next page
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in the proportions of major immune lineages between anthropos-
ophic (families with higher levels of home delivery, lower frequency 
of body washing, prolonged breastfeeding, organic diet with live 
lactobacilli, and restricted use of antibiotics, antipyretics, and vac-
cinations) non- IgE sensitized and nonanthroposophic IgE sensitized 
children, suggesting that the rural– urban differences in exposures 
that influence immune cell populations in this South African cohort 
may be missing in the North European setting.1 Animal exposures, 
sunlight exposures and type of cooking fuel were significantly dif-
ferent between rural and urban South African children but were not 
significantly different between the two rural subgroups. Delivery 
mode was significantly different only for rural group 1 (not for rural 
group 2) compared to urban children and c- section delivery can sig-
nificantly influence the development of the early life microbiota, 
thereby impacting immune development.43,44 The use of wood or 
coal as home heating fuel was only significantly different for rural 
group 2 compared to urban children, which may also have effects on 
immune cell gene expression. However, it is likely that other factors 
not recorded in this study (e.g., outdoor pollution level, detailed di-
etary habits, etc.) may also drive the differences in gene expression 
between the two rural subgroups.

Multiple pathways that are well described to regulate or sup-
press aberrant inflammatory immune responses were more highly 
expressed in rural children. IL- 10 gene expression was highly upreg-
ulated in rural children's PBMCs, and IL- 10 potently limits effector 
functions of antigen- presenting cells and lymphocytes.45 Gene ex-
pression of additional IL- 10 family members (IL- 20R and IL- 22) sim-
ilarly elevated. Inhibitory leukocyte immunoglobulin- like receptors 
were increased in rural children (LILRB1 to LILRB4). These receptors 
are expressed on immune cells where they bind to MHC class I mol-
ecules on antigen- presenting cells and transduce a negative signal 
that inhibits stimulation of an immune response, thereby modulating 
cell activation thresholds and maintaining immune tolerance.46– 48 
G protein- coupled receptors (GPCRs) are involved in a wide array 
of physiological functions including important roles in regulating 
immune responses, attenuating inflammation, and promoting re-
turn to homeostasis.49 A surprisingly large number of GPCRs were 
differentially expressed in PBMCs from rural and urban children. 
The GPCRs with immune regulatory functions that were elevated 
in PBMCs from rural children include GPR132 (inhibits autoimmune 

responses), GPR183 (protective role in SLE and important for ger-
minal center reactions), GPR55 (negative regulator of γδ T cell mi-
gration), GPR17 (negative regulator of inflammatory cell recruitment 
and modulates TH2/TH17 cytokine expression), GPR84 (regulates 
TH2 effector cell function), GPR35 and GPR135 (activated by tryp-
tophan metabolites), GPR31 (essential in the induction of oral toler-
ance by maintaining IL- 10 producing intestinal RORγt+ Foxp3+ Treg 
cells), GPR171 (suppressor effects on T- cell- mediated effector re-
sponses), GPR15 (regulates preferential homing of Foxp3+ Treg cells 
to the large intestine), and GPR65 (regulates immune cell migration 
and maintains epithelial barrier homeostasis).50– 60 The majority of 
GPCRs that are upregulated in PBMCs from urban children have not 
yet been functionally assessed. However, exceptions include GPR3 
(expressed by activated effector and regulatory T cells), GPR174 (re-
strains Foxp3+ Treg cell development, activation, and immune reg-
ulatory activity), and GPR108 (negative regulator of TLR responses 
but potent activator of NF- κB when overexpressed).61– 64 Overall, 
the combination of regulatory cytokines, inhibitory receptors, and 
GPCRs suggest a higher level of immunoregulatory pathway activa-
tion in rural compared to urban children.

AHR is well known for sensing xenobiotic agents and xenobiotic 
metabolism in the liver.65,66 However, it is also expressed within 
epithelial barrier tissues and associated immune cells, where AHR 
signaling (often in response to nonxenobiotic compounds such as 
microbiota- derived indoles) contributes to maintenance of regula-
tory cell function and TH17 differentiation.36 AHRR is expressed in 
response to AHR activation and subsequently functions to counter- 
regulate AHR target genes.67 It also plays a major role in immune 
cell differentiation and function.68 Interestingly, AHRR expression 
profiles did not mirror AHR expression in this cohort, suggesting that 
AHR may be consistently expressed, and inducible AHRR gene ex-
pression may better reflect activation of the AHR. In addition, AHRR 
may be selectively expressed by specific immune cell subsets or may 
be upregulated via AHR- independent mechanisms.68 Regardless, 
increased expression of AHRR by rural children suggests increased 
exposure to AHR activating agents such as pollutants outside the 
home, or inside the home, or maybe in response to a different diet 
and microbiota metabolism.

In conclusion, the predominant influences on the peripheral 
blood immune cell transcriptome in children are related to early 

F I G U R E  5  (A) Global weighted co- expression network topology analysis. The heatmap shows expression of top 25 nodes from each 
of the six co- expression gene communities identified. The nodes were ranked based on betweenness centrality. Centrality measurement 
defines the importance of each node in the existence of the network. Column annotation shows the cohort and other clinical parameters 
corresponding to each sample. Row annotation denotes the gene communities. The communities were further examined for their 
association with the three cohort subpopulations. Ratio of presence of significantly upregulated genes in a subpopulation compared to 
other two subpopulations (signature genes) was used to define the corresponding subpopulation- specific community. The analysis found 
that gene co- expression community 1 (C1) and community 5 (C5) were specific to Urban children, gene co- expression community 2 (C2) was 
specific to Rural_2 subpopulation and gene co- expression community 3 and 4 (C4 and C4) were specific to Rural_1 population. The second 
heatmap shows the association between each of the communities calculated by Spearman correlations. (B) Network visualization of the 
top 25% nodes of six co- expression communities. Betweenness centrality was used to rank the nodes. Nodes represent genes belonging to 
communities and edges represent significant (adjusted p < 1e- 5) positive Spearman's correlations among the genes. Node size is relative to 
betweenness centrality of the node. Dark- colored nodes denote the subpopulation- specific signature genes. Significant pathways (adjusted 
p < .1) associated with each community are labeled.
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life environmental exposures and lifestyle factors. Protective (e.g., 
microbiota and animal) exposures and potentially detrimental (e.g., 
virus infection and pollutants) exposures shape the early life innate 
and adaptive immune response. Understanding these mechanisms 
will progress our appreciation for the importance of environment on 
immune development and prevention of chronic immune- mediated 
disorders. These discoveries will also underpin the development of 
novel diagnostic markers and translational targets for more specific 
and safe modulation of immune activity, both within the skin, sys-
temically and within other organs.
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