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Key roles of glial cells in the encephalopathy of prematurity
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Abstract

Across the globe, approximately one in 10 babies are born preterm, that is, before

37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants

develop brain injury, encephalopathy of prematurity (EoP), that substantially increases

their risk for developing lifelong defects in motor skills and domains of learning, mem-

ory, emotional regulation, and cognition. We are still severely limited in our abilities

to prevent or predict preterm birth. No longer just the “support cells,” we now clearly

understand that during development glia are key for building a healthy brain. Glial

dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendro-

cyte injury. Our knowledge of glial biology during development is exponentially

expanding but hasn't developed sufficiently for development of effective neuroregen-

erative therapies. This review summarizes the current state of knowledge for the

roles of glia in infants with EoP and its animal models, and a description of known

glial-cell interactions in the context of EoP, such as the roles for border-associated

macrophages. The field of perinatal medicine is relatively small but has worked pas-

sionately to improve our understanding of the etiology of EoP coupled with detailed

mechanistic studies of pre-clinical and human cohorts. A primary finding from this

review is that expanding our collaborations with computational biologists, working

together to understand the complexity of glial subtypes, glial maturation, and the

impacts of EoP in the short and long term will be key to the design of therapies that

improve outcomes.
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1 | INTRODUCTION

Glia are a diverse group of non-neuronal cells in the central nervous

system (CNS) that support and modulate neuronal function. Whilst tra-

ditionally overlooked as “glue” or “support cells”, an explosion of

research has revealed the immense significance of glia in health and dis-

ease. Glia include astrocytes, polydendrocytes, oligodendrocytes, and

microglia which are all highly interactive with one another and with

neurons. These interactions, including providing metabolic support, reg-

ulating ion and neurotransmitter balance, participating in synaptic prun-

ing and myelination, and contributing to immune responses and

inflammation in the CNS. Altogether these functions underpin complex

network formation, neurotransmission, and brain homeostasis—all the

functions that make the human brain a vessel for human thought and

consciousness. By unraveling the complexities of glial cells, we hope to

gain insights into the underlying mechanisms of brain disorders, leading

to the development of novel therapeutic strategies and interventions

targeting glial dysfunction to improve outcomes for infants with

encephalopathy of prematurity (EoP).

1.1 | Encephalopathy of prematurity: epidemiology
and impact

Preterm infants constitute a large patient group, as 7%–15% of all

babies globally are born preterm, at less than 37 of 40 typical weeks

of gestation. In the European Union alone, 400,000 babies are born

prematurely each year. In 2010, the Global Burden of Disease Study

estimated that preterm birth was the most common cause of death

and disability in children under the age of 5 years. Preterm birth

causes more deaths than malaria or pneumonia, resulting in the loss of

77 million (95% CI of 66–88 million) disability adjusted life years

(DALYs) (DALYs & Collaborators, 2016). The emotional cost to

affected individuals and their families is immeasurable, but the lifetime

cost of care for one child with cerebral palsy is approximately 1.1 mil-

lion Euros (Kruse et al., 2009).

In well-equipped healthcare settings, more than 50% of babies born

at less than 28 weeks of gestation will survive. However, 30% of the

babies born between 28- and 32-weeks of gestation will develop a life-

long disability, including cerebral palsy, impaired cognitive function, and

psychiatric disorders, such as attention deficit and autism spectrum dis-

orders (ADHD and ASD) (Pierrat et al., 2017). Even babies born

between 32 and 37 weeks (i.e., “late preterm”) are at increased risk of

neonatal mortality and morbidity, including increased rates of cerebral

palsy and lower cognitive performance (Kajantie et al., 2019).

As seen in many diseases affecting the developing brain, boys are

more likely to be affected than girls (Peelen et al., 2016), and have

higher rates of preterm birth and poorer outcomes (O'Driscoll

et al., 2018). Many genetic, biochemical and structural differences

between male and female fetuses convey this altered risk

(Rosenkrantz et al., 2019; Varner et al., 2020).

1.2 | Encephalopathy of prematurity:
neuropathology and imaging in humans

The constellation of brain injuries sustained by preterm-born infants is

called EoP. This term was first coined in 1993 (Lin et al., 1993), to

replace the previously used Little's disease to describe disturbances in

tone in children born preterm or small for gestational age without an

overt acute clinical neurological illness in early life. Based on post-

mortem and magnetic resonance imaging (MRI) studies, we define the

key hallmarks of EoP as gliosis (increased cell number and altered

morphology), white matter injury (WMI) linked to oligodendrocyte

maturation arrest and delayed myelination, dysmaturation of some

interneuron subsets, abnormal cortical microstructure, and reduced

gyrification index. Over time, the proportion of infants developing

necrotic foci (focal oligodendrocyte death) and axonopathy (swollen

axon terminals, engorged varicosities with neurotransmitter granules,

and enlarged axons full of highly phosphorylated neurofilaments) has

substantially reduced but these more severe outcomes are still

observed in some infants (Buser et al., 2012).

Our understanding of the neuropathology in EoP has been driven

by research of human post-mortem cohorts including from France,

the United States, and the United Kingdom. OF note, studies were

undertaken in France in very preterm born infants (25–29 postcon-

ceptional weeks, pcw) (Verney et al., 2012) that compared neuropa-

thology in preterm infants with and without WMI. In infants with

diffuse WMI, microglia had reduced morphological complexity

(assumed to reflect immune activation) and were increased in number

(IBA1), there was increased phagocytosis (CD68 positive cell number),

and decreased astrogliosis (GFAP and MCT1 staining). However, in

the few small focal necrotic lesions present there were no astrocyte

changes. The authors reported no change in the numbers of oligoden-

drocyte lineage cells (Olig2) between preterm infants with or without

WMI (diffuse or focal necrotic) (Verney et al., 2012). These findings

supported a study from a cohort of late preterm-born US infants in

which, similarly, white matter was injured without the loss of oligo-

dendrocytes (Billiards et al., 2008). However, oligodendrocyte cell

death has been reported in cases of late preterm birth from a separate

US cohort (Back, Luo, et al., 2005). A series of neuropathological stud-

ies in the United States also found significant white matter necrosis

around the ventricles in infants who were diagnosed with periventri-

cular leukomalacia (PVL, a severe, cystic form of WMI) (25 pcw-term)

(Haynes et al., 2008; Haynes & van Leyen, 2013; Kinney et al., 2012;

Ligam et al., 2009). Of note, the incidence of cystic WMI (PVL) and
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cerebral palsy has dramatically decreased over the last decades in

most high resource health care settings (Hamrick et al., 2004;

Smithers-Sheedy et al., 2022), thanks to the improved perinatal care

including transfer of women about to deliver preterm to tertiary (high)

level care hospitals, optimization of the nature of prenatal administra-

tion of steroids to promote lung maturation in a way that doesn't neg-

atively impact brain development, less invasive ventilation methods,

approaches to limit painful procedure exposure and parental nutrition.

Microgliosis (increased number and more amoeboid morphology)

is a hallmark of EoP across post-mortem studies (Billiards et al., 2008;

Haynes et al., 2008; Haynes & van Leyen, 2013; Kinney et al., 2012;

Ligam et al., 2009; Verney et al., 2012; Verney, Monier, et al., 2010).

Microglia in preterm infants have been shown to increase expression

of the pro-inflammatory associated markers inducible nitric oxide

synthase (iNOS) and the NMDA receptor (Verney, Monier,

et al., 2010). Astrogliosis (increased number and area coverage) is

reported in infants of later gestational ages (Buser et al., 2012; Haynes

et al., 2003) in agreement with the peak of astrocyte development

post 26 gestational weeks. However, it is also suggested that astro-

gliosis is more prominent in cases with severe injury or where injury

has been present for some time (Back, Luo, et al., 2005). An ongoing

confounder in studies of preterm-born infants is that the timing of

brain change onset is unknown, although evidence suggests

there are structural and biochemical changes well before birth

(Cook et al., 2019; Denney et al., 2021; Hornaday et al., 2022;

Jelliffe-Pawlowski et al., 2018; Story et al., 2021). In preterm-born

infants with cystic WMI from US cohorts, astrocytes have been

reported to increase expression of the pro-inflammatory marker nitro-

tyrosine (Haynes et al., 2003) and expression of the glutamate trans-

porter EAAT (Desilva et al., 2008). Astrocyte cell body and the end

feet coverage of blood vessels have also been investigated in a cohort

of infants from the United States (El-Khoury et al., 2006). This study

demonstrated that with increasing gestational age (from 16 to

40 weeks), astrocyte cell body and end feet coverage increased across

the brain. However, in infants born preterm GFAP-positive end feet

coverage was lower in the germinal matrix compared to the cortex

and white matter, perhaps contributing to vulnerability of the blood

vessels of the preterm born infant germinal matrix to hemorrhage.

Post-mortem studies of infants (24–29 postconceptional weeks,

pcw) diagnosed with cystic WMI who were born in the UK report

fewer neurons in the thalamus (Vontell et al., 2013). Similarly, in stud-

ies of neuropathology on infants diagnosed with cystic WMI who

were late preterm (32 pcw-term) who died in the United States, there

were fewer neurons in the thalamus and cerebral cortex together with

astrogliosis and microgliosis (Andiman et al., 2010; Ligam et al., 2009;

Pierson et al., 2007). Obvious neuronal injury has not been reported

in cases of diffuse WMI (Back, Luo, et al., 2005; Pierson et al., 2007).

However, axonopathy is reported in diffuse WMI cases (Back, Tuohy,

et al., 2005; Buser et al., 2012; Verney et al., 2012) and in cases with

cystic WMI (Ligam et al., 2009). However, changes in the distribution

of interneuron subtypes are reported in post-mortem studies, includ-

ing in the cohort of English infants born very premature with diffuse

WMI (Stolp et al., 2019), and in two cohorts of US-born infants

(Lacaille et al., 2021; Panda et al., 2018). Gene studies strongly sup-

port these cell number and distribution changes in a large cohort of

infants, wherein preterm birth altered the maturation index of the

GABAergic system, based on expression of 14 genes (Lacaille

et al., 2021). Of particular interest, the maturation index was affected

in male, but not female preterm infants.

Human studies are immensely informative but must be inter-

preted through several lenses: some countries/cultures/specific hospi-

tals redirect care towards palliative support for infants sooner or at a

less severe stage of injury (note above, France versus the

United States). These practices impact the severity and evolution of

brain injury. In all cases there are significant delays in post-mortem tis-

sue collection, therefore impacting markers (for instance) of cell death

and autophagy. Also, the delay between preterm birth and death can

be variable, potentially influencing neuropathological findings.

However, most of the reported cases have a relatively short duration

of post-natal life as most deaths of very preterm neonates are linked

to withdrawal of care that is most often decided in the first days. The

limited number of reported cases with a longer survival does not allow

us to draw any valid conclusion about the impact on neuropathologi-

cal findings. It is also essential to consider that it is the most injured

infants who die, impacting our understanding of the mechanism of

injury for less severely affected infants.

Imaging studies, whilst arguably less informative about the mech-

anisms of injury, overcome the substantial limitations on data from

post-mortem studies. Imaging studies provide access to the brain in

less severely injured infants at multiple time points and in a high pro-

portion of infants. Magnetic resonance imaging (MRI), magnetic reso-

nance spectroscopy (MRS), and ultrasound (US) are routinely applied

to understand injury and predict outcomes, and these are thoroughly

reviewed elsewhere (Dudink et al., 2020; Inder et al., 2021). MRI,

although more expensive and technically challenging than ultrasound,

is better at identifying patterns of grey and WMI (Kwon et al., 2014)

and allows the quantitative assessment of the integrity, growth, and

connectivity of the brain (Doria et al., 2014). However, it is worth not-

ing the development of in-unit MRI technology will increase the

accessibility and frequency of use of this technology (Cawley

et al., 2022). Neonatal MRI has uncovered critical impacts of preterm

birth, such as reduced cortical development (surface area and less

complex structure) (Ajayi-Obe et al., 2000) and functional conse-

quences such as disrupted network integration (Gilchrist et al., 2022),

changes that last well into adulthood (Nosarti et al., 2014). The sever-

ity of injury at term equivalent, as identified by MRI, is predictive of

adverse outcomes at two years of age (Woodward et al., 2006).

Magnetic resonance spectroscopy measures biochemical changes

that can be interpreted as indicators of brain injury or changes in brain

maturation. For example, proton (1H) MRS can detect increases in

N-acetyl aspartate (NAA) synthesized in neurons or axonal mitochon-

dria over time during development reflecting increased oligodendro-

cyte proliferation and differentiation. Conversely, on 1H MRS choline

(Cho) and lactate decrease with development, reflecting membrane

turnover and maturation of enzyme systems in the brain, respectively

(Robertson & Cox, 2001). MRS indices have been shown to correlate
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with poor outcomes in preterm-born infants (Gire et al., 2022; Hyodo

et al., 2018), especially N-NAA/Cho ratios, reviewed in (Cebeci

et al., 2022). However, the voxel size of MRS is approximately three

times larger compared to MRI, thus reducing the specificity of the

analysis. As such the specific biological function of these metabolites

may be less critical than their predictive utility, as when we work such

large voxels the metabolites will have been produced by multiple dif-

ferent cells, so it is difficult to interpret the data. MRS changes, like

MRI, persist in infants born preterm, with changes in MRS at 3 years

old in prematurely born children associated with executive function

deficits (Schnider et al., 2020).

An imaging modality with the potential to shine a light on the glial

response to injury is positron emission tomography (PET), especially

via the use of the astrocyte and microglia-associated ligand transloca-

tor protein (TSPO) and the microglial ionotropic purinoceptor P2X7.

The development of third-generation TSPO tracers and first-

generation P2X7 tracers as potential diagnostic tools are reviewed

here (Di Virgilio et al., 2023; Singh et al., 2023). However, in the con-

text of EoP and despite PET ligands as a valuable technique in animal

models, concerns about radiation exposure are still significant inhibi-

tors in the development of neonatal-focused PET imaging. We expect

that as the value of PET tracer studies is demonstrated in adults in the

coming years, they will find a place in guiding the delivery of long-

lasting immune-modulatory “tertiary phase treatments” to improve

outcomes after EoP (Fleiss et al., 2012).

1.3 | Encephalopathy of prematurity: etiology

Histological chorioamnionitis, defined as acute inflammation (including

neutrophil infiltration) of the amnion and chorion (Kim et al., 2015), is

the primary factor associated with preterm delivery outside the context

of medically indicated preterm deliveries (Maisonneuve et al., 2020;

Palmsten et al., 2018). Over 40% of infants born spontaneously before

32 weeks of gestation are exposed to histological chorioamnionitis

(Bierstone et al., 2018; Maisonneuve et al., 2020). This relationship is

even more pronounced in extremely preterm infants with up to 70% of

infants born at 22–25 pcw, the threshold of viability, exposed to histo-

logical chorioamnionitis (Maisonneuve et al., 2020). Multiple cohort

studies have indicated a robust link between chorioamnionitis and an

increased risk of cystic WMI and cerebral palsy (Kaukola et al., 2006;

Tsamantioti et al., 2022; Venkatesh et al., 2020), supported further by

similar findings from multiple systematic reviews of the field over time

and location (Maisonneuve et al., 2020; Shi et al., 2017; Tsamantioti

et al., 2022; Venkatesh et al., 2020). However, it is worth noting that

this association between chorioamnionitis and poor outcomes hasn't

always been reported (Shi et al., 2017), possibly due to differences in

definitions and neurological follow-up. Interestingly, preterm birth itself

is a risk factor for the development of autism spectrum disorder, and

the presence of chorioamnionitis further increases the risk of autism

spectrum disorder by up to a factor of 17 (Moster et al., 2008).

Evidence for the presence of hypoxic-ischemic (HI) injury in

preterm-born infants is more difficult to characterize, as the main

diagnostic tool, the Sarnat score (a combined electroencephalogram

[EEG] and neurologic exam) is agnostic to the cause of encephalopa-

thy. For instance, EEG changes (including burst suppression) are

reported in term infants diagnosed with HIE (Iyer et al., 2014), and

preterm born infants exposed to perinatal inflammation (Helderman

et al., 2010). In addition, a recent study of the Sarnat score found poor

agreement even between well-trained operators in infants below

32 weeks of gestation and stated that “further research into the

development of a standardized, gestational age-specific, assessment

tool for classification of HIE in (preterm born) infants is needed”
(Pavageau et al., 2020). Further complicating the issue of characteriz-

ing HI in preterm-born infants is the poor predictive ability of blood

gases. Specifically, historical observations of blood gasses and out-

come, discussed in (Bobrow & Soothill, 1999), suggest that fetal acido-

sis is a poor predictor of outcome and that possibly the infant is

remarkably resistant to acidosis compared to the adult. Using the

Sarnat score, moderate-to-severe HI was diagnosed in 3.7% of pre-

term infants in a US cohort collected from 2008 to 2011 (Galinsky

et al., 2018; Manuck et al., 2016). Other studies using approaches,

including the Sarnat and blood gasses, have reported lower rates,

between 0.6% and 0.8%, of preterm born infants (Chalak et al., 2012;

Pavageau et al., 2020).

Experimental and epidemiological evidence suggests that the fac-

tor linking chorioamnionitis and poor neurological outcomes is neu-

roinflammation driven by systemic inflammation (Favrais et al., 2011;

Hagberg et al., 2015; Kelly et al., 2021; Krishnan et al., 2017; Paton

et al., 2019; Schmidt et al., 2016; Shiow et al., 2017; Van

Steenwinckel et al., 2019; Verney et al., 2012). The fetal and infant

immune responses are complex (Menon et al., 2009), and many stud-

ies link elevated levels of immune markers to poor outcomes

(Hornaday et al., 2022). It is also possible now to take complex multi-

marker approaches to screening for predictive or risk biomarkers

(Aung et al., 2019; Cordeiro et al., 2016; Leviton et al., 2015) that we

hope will provide more understanding of systemic inflammation and

outcomes (O'Shea et al., 2012). It is clear though, that although no

one inflammatory marker is the “key” and that intermittent or sus-

tained systemic inflammation is more detrimental to the brain than

inflammation of shorter (Kuban et al., 2017), reviewed in (Humberg

et al., 2020). Other conditions before or after delivery of the preterm

infant may induce or worsen systemic inflammation. These conditions

include hypoxic-ischemic events, mechanical ventilation (which

induces pulmonary and systemic inflammation) and leads to brain

injury (Allison et al., 2019; Bose et al., 2013), neonatal sepsis, or nec-

rotizing enterocolitis (NEC) (Pierrat et al., 2017), which typically occurs

a few days after birth but causes significant systemic inflammation.

1.4 | Animal models of EoP

An unavoidable and ongoing friction in the field of EoP is the debate

about the factors (environmental, genetic, and social) that precipitate

the onset of EoP, including what is necessary or sufficient. This

knowledge is central to designing models with the greatest
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translational value. In high-resource settings, substantial improve-

ments in antenatal and perinatal care have reduced the overall sever-

ity of brain injury (Jahan et al., 2021; Smithers-Sheedy et al., 2022).

We have also improved our ability to monitor and interpret the bio-

chemical events occurring in utero and perinatally (near-infrared spec-

troscopy, fetal heart rate, MRS, ultrafast Doppler). These monitoring

approaches and information from animal models have shifted the etio-

logical paradigm from “HI only” towards the concept of “HI

+ inflammation” and now towards an increasingly “inflammation-

focused” etiology for most infants with EoP (Gilles et al., 2017). Thus,

it could be argued that all parties now agree that neuroinflammation is

necessary to damage the brain in a way that directly leads to EoP.

However, whether those complex neuroinflammatory events were ini-

tiated by HI and in what infants is still a matter of ongoing debate.

Another key consideration is the contribution from genes and envi-

ronmental factors that may act as drivers of risk alone or that may

sensitize to a precipitating factor but not cause injury alone. The

potential for a more complex model of causal attribution is illustrated

by an increasing number of studies linking genetic factors to more

severe injury profiles in infants diagnosed with neonatal encephalopa-

thy (NE) or cerebral palsy (Calkavur et al., 2011; Varner et al., 2020),

and reviewed in (McIntyre et al., 2021). Historically, injury in these

infants was described as being caused by birth asphyxia alone, with

significant medico-legal implications.

Outlined in Table 1 are a collection of approaches for modeling

EoP, to highlight the diversity in species and etiological

modeling undertaken leading to similar phenotypes. Preterm-born

infants are also at increased risk of other forms of brain injury includ-

ing germinal matrix or intraventricular hemorrhage (Twilhaar

et al., 2018). Although these are separate clinical entities from EoP,

studies of preclinical models and infants post-mortem also show that

microgliosis, astrogliosis and oligodendrocyte injury are also common

in these insults (Chamnanvanakij et al., 2002; Jinnai et al., 2020;

Romantsik et al., 2022; Truttmann et al., 2020). It is worth noting that

the gestational length in animals used to model EoP and the propor-

tion of brain development occurring in utero varies greatly. For exam-

ple, sheep gestation is approximately 144 days, and arguably the brain

at term in the sheep is equivalent to a 2-week-old term-born human

infant (Back et al., 2006). In contrast, the mouse has a gestation of

approximately 20 days and gives birth to offspring with brain develop-

ment roughly equivalent to a 23-week gestation human (Craig

et al., 2003). These comparisons are primarily made based on neuronal

maturation and migration patterns, and oligodendrocyte differentia-

tion and myelination. A benefit of working with altricial rodents is that

it is possible to injure the brain where there is a functional gut and

lung, removing the variables of oxygen or other nutrient supply in

understanding brain injury.

Although many studies into EoP are undertaken in vivo, another

valuable approach in modeling EoP is ex vivo slice culture. This

approach, which can be applied across diverse species, such as ferret,

rabbit and mouse (Miron et al., 2010; Vinukonda et al., 2012; Wood

et al., 2022) has the benefits of maintaining tissue architecture and

cell-cell interactions and progression of oligodendrocyte maturationT
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and myelination, but in a situation where these outcome measures

can be assessed longitudinally. In addition, these approaches allow for

the study of drugs and other tools that are too high risk to test in vivo

safety but are of interest for understanding the fundamental biology of

injury mechanisms. Work with this approach shows that the creation of

the slice itself leads to oligodendrocyte maturation arrest and hypomye-

lination linked to astrogliosis and microgliosis (Holloway et al., 2021).

The authors used the complex cell-cell interactions of the model to

characterize the damaging impact of astrocyte-derived hyaluronan on

oligodendrocyte maturation (Dean et al., 2011). Slice cultures have also

revealed the specific impacts of the immune response to blood, critical

for understanding the pathophysiology of intraventricular hemorrhage

(Vinukonda et al., 2012), including that gliosis is driven by plasma factors

more than the presence of red blood cells.

Another approach, that has yet to gain significant traction in peri-

natal medicine, is the use of patient-specific induced pluripotent stem

cell (iPSC) derived brain organoids to study the impacts of genetics

and insults. We predict that using patient-derived iPSCs to grow brain

organoids could uncover key links between genetic variants and envi-

ronmental factors in altering brain structure from the start of develop-

ment. The approach has already proven its value by providing deep

insights into the mechanisms of basic brain development (Qian

et al., 2020; Sabate-Soler et al., 2022) and disorders such as Parkinson's

and Alzheimer's disease (Huang et al., 2022; Jarazo et al., 2022).

It is impossible (although attractive) to advocate for the best

model for EoP—as the model needs to match the specific patient

group and we know that many variables impact outcomes. For exam-

ple, if you wish to understand how to improve outcomes for infants

with asphyxia, such as linked to placental abruption, then an in-utero

asphyxia (or an ex-utero HI) model would be ideal. However, if you

want to understand injury occurring in the large proportion of infants

exposed to inflammation, then a model applying an immune activator

is optimal. However, the timing and severity of this also must be care-

fully tuned to the population of interest. For example, to understand

processes occurring in the context of very preterm birth, with “moder-

ate/subclinical” chorioamnionitis but a relatively uncomplicated

post-natal course then perhaps a model of exposure to systemic

inflammation alone (Du et al., 2011; Favrais et al., 2011) would be

ideal. In contrast, to study the impacts of fulminant chorioamnionitis

and birth with severe lung injury, a combination model of inflamma-

tion and hypoxia may be the perfect option (Vaes et al., 2020). We

also know that the “best model” can be one with less complexity,

allowing for the specific contributions of specific variables to be

explored and understood. With these “reductionist approaches” a

great deal of essential knowledge has been gained especially at the

start of the translational pipeline for screening time and dose

responses, reviewed in (Ramanantsoa et al., 2013). An example is the

induction of a focal cortical injury with an excitotoxic injection. This

model, which is easy to perform, has high throughput and low com-

plexity has been valuable for screening drugs, especially dose and tim-

ing studies (Haldipur et al., 2014) that are difficult in more complex

models and although reductionist allows for the specific impacts of

between focal CNS injury without interaction with the systemic

immune response (Blaise et al., 2017). Finally, some models are reduc-

ing in relevance in high-resource settings, such as the hyperoxia

model. However, hyperoxia remains an ongoing problem in low-

resource settings, especially with the development of relatively

affordable oxygen concentrator technology (Ng et al., 2022).

2 | GLIAL CELLS AND MECHANISMS

2.1 | Microglial origins in rodents and humans

Microglia are the macrophages of the brain parenchyma and the pre-

dominant cells driving the immune response in the CNS. Unlike most

tissue-resident macrophages, microglia are yolk sac (YS)-derived with-

out a monocyte intermediate originating from classic hematopoietic

stem cells (Sheng et al., 2015). Instead, microglia originate from c-Kitlo

CD41lo progenitors emerging from the YS around embryonic day 7.25

(E7.25) in the mouse (Ginhoux et al., 2010). Specifically, these progeni-

tors are named early erythroid myeloid progenitors (eEMPs). Microglia

derived from eEMP are detectable in brain parenchyma in mice at E8.5

(Ginhoux et al., 2010; Kierdorf et al., 2013) and in humans between the

4 and 5th postconceptional week; before the onset of substantial neu-

rogenesis (Billiards et al., 2006; Menassa et al., 2022; Verney, Monier,

et al., 2010). In the human fetal brain, microglia penetrate the brain

parenchyma at 4.5–5.5 WG (Verney, Monier, et al., 2010) via the cho-

roid plexus, meninges, and ventricles. The microglia then form clusters

during development (i) between the subplate and cortical plate (10–12

WG) where the first synapses are detected (Monier et al., 2007), (ii) in

the corpus callosum (16 WG), and (iii) around the anterior horn of the

lateral ventricle, the site of major axonal crossroads (19–30 WG)

(Ashwell, 1991; Verney et al., 2012; Verney, Monier, et al., 2010). These

specific brain routes of entries and locations are similar in mice.

Microglia arise from the bloodstream, the ventricular space or the

meninges and have demonstrated the same stepwise colonization and

proliferation pattern across species (Ginhoux et al., 2013).

Brain colonization by YS-derived microglia continues until the

blood-brain barrier is substantially formed at E15.5 in mice (Ben-Zvi

et al., 2014). Microglia penetrate the brain parenchyma in the human

fetus at 4.5–5.5 WG (Verney, Monier, et al., 2010) via the choroid

plexus, meninges, and ventricles. In human, the BBB becomes functional

as early as 12 weeks' gestation (Grontoft, 1954) and the relationship

between microglial invasion and the BBB is less clear than in the mouse.

During early stages of development, microglia are identifiable by their

amoeboid shape, remarkable capacity to proliferate, and specific pat-

terns of gene expression, reflective of their roles in brain building. This

contrasts with adult microglia with their roles in homeostasis and com-

plex morphology (Ginhoux et al., 2010; Kierdorf et al., 2013). In the

human infant, proliferation peaks in the subplate and surrounding areas

by 15–20 pcw, with cells observed to begin migrating into the brain

(Menassa et al., 2022). There is an accumulation of amoeboid proliferat-

ing microglia in and around the developing white matter in premature

neonates, which can largely explain the vulnerability of the white matter

in these neonates (Monier et al., 2007; Monier et al., 2006). Marked
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microglial reactivity in white matter is one of the characteristics classi-

cally observed in human EoP (Buser et al., 2012; Haynes et al., 2003;

Verney et al., 2012). Figure 1 is a summary of the roles of glia in devel-

opment and EoP.

Whilst overall proliferation appears to peak at 6 months of age in

the human, total microglia cell number continues to increase and

peaks at 1.5 years of age—possibly reflecting the important roles not

only in early brain building, but also in sculping the developing con-

nectome into early childhood (Askew et al., 2017). In the mouse,

microglia number increases steadily during the first two postnatal

weeks (Alliot et al., 1999) to reach a density similar to that of the adult

brain. The first 2 weeks in the mouse is comparable to 23 pcw to

3 months of age in the human (Chen et al., 2017). Across species

microglia eventually tile the entire brain via ramified processes, sur-

veying the parenchyma to maintain homeostasis (neuromodulation,

synaptic homeostasis and plasticity, phagocytosis of apoptotic neu-

rons and debris, etc.) (Li & Barres, 2018).

2.2 | Sex differences in microglial organization and
phenotype

Sex differences in microglia begin with dimorphisms in the coloniza-

tion of the developing brain with more microglia in the male brain

early in development in the mouse (Schwarz et al., 2012) and microglia

then act to sculpt the brain in sex dependent ways (Bordt et al., 2020;

Lenz & McCarthy, 2015), impacting behavior (Smith & Bilbo, 2019).

Sex differences in the adult are postulated to underpin differences in

many neurological and neurodegenerative disorders (Chen

et al., 2021; Kodama & Gan, 2019; Ugidos et al., 2022). Not only does

the transcriptome vary by sex, but there are increased microglial den-

sities and soma sizes in the adult mouse male hippocampus, cortex

and amygdala, compared to the female brain (Acaz-Fonseca

et al., 2015). However, transcriptomics analysis suggests that in the

embryonic mouse there are fewer differences between male and

female microglia, but that dimorphism increases over time (Hammond

et al., 2019; Hanamsagar et al., 2018; Villa et al., 2018). In the pig, sex-

ual dimorphism is also reported in late gestation by Antonson et al.

(2019). A microglia developmental index (Tay et al., 2019; Tay

et al., 2017; Tremblay et al., 2010) suggests that from E18 male

mouse microglia are developmentally delayed compared to their

female counterparts and further work indicates this difference might

include that female microglia are skewed toward an anti-inflammatory

response (Hammond et al., 2019). Microglia express receptors for

both estrogen and testosterone (Acaz-Fonseca et al., 2015) and estro-

gen is reported to induce a male microglial phenotype in P2, P5, and

P8 female mice, an effect which persisted into adulthood (Villa

et al., 2018). Interestingly the transcriptomic differences between

F IGURE 1 A representation of brain development across stages of gestation explaining the severity of prematurity, outcomes and then the
events occurring across development that may be impacted by the events leading to encephalopathy of prematurity (EoP) and EoP itself.
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male and female adult microglia are maintained following transplanta-

tion into the brain of mice of the opposite sex (Villa et al., 2018).

There have been two studies of prenatal human microglia that

assessed sexual dimorphism and found none: Kracht et al. (2020) ana-

lyzing microglia from 9 to 18 weeks of gestation (23 samples, scRNA-

seq) and Thion et al. (2018) from 14 to 23 weeks of gestation

(10 samples, bulk RNAseq). Based on the findings from rodents, where

microglia are less sexually dimorphic at younger ages, whether there is

sexual dimorphism in the brain of preterm born infants (22–37 weeks

gestation) will require analysis of additional samples.

2.3 | Microglial reactivity and states

From the earliest stages of colonization, microglia sense the micro-

environment of the brain. Their sensing functions are primarily driven

by a diverse battery of receptors to detect cytokines/chemokines,

damage-associated molecular patterns, and pathogen-associated

molecular patterns (Smolders et al., 2019). Activation of the pathways

downstream of these receptors may trigger the conversion of

“homeostatic” microglia into “reactive” states. There are arguably as

many types of reactive microglia as there are types of brain injuries,

diseases, and types of people, with their unique genetic end environ-

mentally driven characteristics. The M1 versus M2 nomenclature

emerged in the early 2000s to refer to the inflammatory versus

pro-resolution/alternatively reactive microglial phenotypes and was

based on the terminology used by immunologists to describe lympho-

cyte reactivity states. The validity of this binary for microglial has been

clearly and rightly debunked as microglial reactivity is a complex

dynamic process regulated both temporally and spatially and is depen-

dent on the specific nature of the brain injury (Chhor et al., 2017;

Hammond et al., 2019; Hellstrom Erkenstam et al., 2016). Neverthe-

less, a nomenclature to simply and clearly define and describe the

reactive states of microglia is a requirement if we are to communicate

our findings linking microglia development, disease, and function. The

current recommendation for how to describe microglia includes using

multiple markers including protein, gene and morphological/

ultrastructural markers to classify the microglial state. Then, to clearly

define the state relative to the nature of the insult, species, age, sex,

and spatial location (Paolicelli et al., 2022). Subtypes of microglia that

are well established in the literature include dark microglia, linked to

their color on electron microscopy imaging (Bisht et al., 2016),

disease-associated microglia (DAM), and senescent microglia which

are less “functionally active” but the markers characterizing this are

still being debated (Ng et al., 2023). All of these different states add to

the kaleidoscope of roles and (dys)function of microglia that need

to be considered to understand the development of EoP and its long-

term impacts (Fleiss & Gressens, 2012). If we think finding a consen-

sus to describe microglia in our relatively well-controlled pre-clinical

models is complicated, then defining microglia in our post-mortem

studies is even more problematic. Even studies with access to the

largest preterm human cohorts contain samples across gestational

age, survival time, genetics, and prenatal and postnatal course and

thus are unique. As such, circumspection about the generalizability of

any findings will be best practice, allowing us to find commonalities

between studies over time.

2.4 | Microglial reactivity in models of EoP

Studies have established that exposure to inflammatory challenges such

as those associated with chorioamnionitis, sepsis and lung injury acti-

vates microglia to an “immune-responsive” state and that this microglial

response is necessary to lead to oligodendrocyte injury and hypomyeli-

nation (Dommergues et al., 2003; Van Steenwinckel et al., 2019).

“Immune responsive” here is used to describe changes in morphology

to a more amoeboid shape, increased number of cells and up-regulation

of the expression of markers of a pro-inflammatory function, such as

inducible nitric oxide synthase (iNOS), cyclo-oxygenase-2 (COX2), inter-

leukin (IL)-6, and tumor necrosis factor-alpha (TNF-α) (Chhor

et al., 2013; Dean et al., 2010) and down-regulation of markers associ-

ated with a repair or regeneration state, such as insulin growth factor

IGF-1 (Van Steenwinckel et al., 2019). Similar to findings in immune

activation models of EoP, in a model of hypoxic-ischemic EoP microglial

reactivity and recruitment in the white matter correlated with a

decrease in the number of oligodendrocyte progenitors (Falahati

et al., 2013). Across models of the different facets of EoP not only is

there an immediate and robust immune-reactivity, but reactivity can

persist into young adulthood (Galinsky, van de Looij, et al., 2020;

Gussenhoven et al., 2018; Jinnai et al., 2020; Morin et al., 2022;

Romantsik et al., 2022; Snyder et al., 2018; Vaes et al., 2021).

Transcriptomics analyses have shown that microglia involved in

immune-reactive or inflammatory processes disengage from their devel-

opmental functions (Krishnan et al., 2017; Matcovitch-Natan

et al., 2016). The specific impact of the loss of developmental functions

is only just beginning to be explored but is likely to be responsible for

some of the negative impacts of microglia immune activation on brain

development. Male sex is associated with poorer outcomes for infants

born preterm, and sex alters the responses to injury in models of EoP

(Barkhuizen et al., 2019; Favrais et al., 2011; Le Dieu-Lugon et al., 2020;

Mayoral et al., 2009) and across models of perinatal brain injuries in

diverse species (Charriaut-Marlangue et al., 2017; Fleiss et al., 2011;

Fleiss et al., 2012). Underpowered studies have made it challenging to

uncover sexual dimorphism, however (Ankeny et al., 2023).

Exposure of animals to lipopolysaccharide (LPS), a component of

the cell wall of gram-negative bacteria, is one way to model EoP.

Depending on the dose and timing of LPS in these models injury

includes white matter lesions driven by oligodendrocyte dysmatura-

tion (Dean et al., 2009; van de Looij et al., 2012) or cell death includ-

ing the loss of O4+ immature and O1+ mature oligodendrocyte

immunoreactivity and hypomyelination (Galinsky, Dhillon, et al., 2020;

Paton et al., 2019; Rousset et al., 2006; Snyder et al., 2018). This

WMI is consistently accompanied by substantial microglial reactivity,

with cells becoming less ramified in morphology and expressing high

levels of the pro-inflammatory markers IL-1β, iNOS, and TNF-α (Fan

et al., 2005; Galinsky et al., 2018). LPS activates microglial TLR4 and
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CD14 receptors and induces the release of reactive oxygen species

which at a high enough dose of LPS is sufficient to cause pre-

oligodendrocyte death (Lehnardt et al., 2002) leading to diffuse and

cystic WMI (Garnier et al., 2006; Pang et al., 2003). The pro-

inflammatory cytokines IL-1β and TNF-α, released by immune reactive

microglia, can also directly inhibit the proliferation and maturation of

oligodendrocyte precursors (OPCs) (Taylor et al., 2010; Xie

et al., 2016). Interestingly, in “two-hit models” of perinatal brain

injury, including EoP, a relationship exists between timing and dose of

exposure to LPS and its impact on the brain. For instance, exposure to

LPS before a “second hit” (further inflammation or HI) is protective in

some paradigms but in contrast is LPS sensitizing to the severity of a

second hit in other paradigms (Brehmer et al., 2012; Holloway

et al., 2021; Lu et al., 2023; Mathai et al., 2013). This complex time

and LPS dose relationship is reviewed by Galinsky et al. (2018).

2.5 | Microglia identity, heterogeneity, and
developmental functions

The population-wide identifiers of microglia, stratification into states

and understanding of the functions of microglia have been consider-

ably refined in the past decade thanks to the emergence of tools and

technologies, including conditional knockout models, microglia deple-

tion approaches, flow cytometry analysis and cell sorting, quantitative

mass spectrometry and genome-wide expression profiling of microglia

at bulk, spatial and at the single-cell levels. As a tissue-resident macro-

phage of the CNS, murine microglia express multiple macrophage

markers including, integrin CD11B, the leukocyte common antigen

(LCA; also called CD45), the surface glycoproteins F4/80, the fractalk-

ine receptor CX3CR1, the calcium-binding protein IBA1, and the

colony-stimulating factor receptor CSF-1R, which drives a critical sig-

naling pathway for microglial development and maintenance (Prinz &

Mildner, 2011). Microglia also have a unique proteomic and transcrip-

tomic signature. Microglia (specifically, depending on brain region,

species and insult) express a combination of markers that allows them

to be identified specifically including P2Y purinoergic receptor

12 (P2ry12), transmembrane protein 119 (Tmem119), sialic acid bind-

ing Ig-like lectin H (Siglech), G protein coupled receptor 34 (Gpr34),

suppressor of cytokine signaling 3 (Socs3), β-hexosaminidase subunit

β (Hexb), olfactomedin-like protein 3 (Olfml3) and Fc receptor-like S,

scavenger receptor (Fcrls). Some of these markers are also observed

in human microglia, including P2RY12 and TMEM119 (Butovsky

et al., 2014; Butovsky & Weiner, 2018; Satoh et al., 2016; Zhu

et al., 2017).

Microglia show significant heterogeneity across development.

The variety of microglial states across time is directly linked to

changes in the functions of these cells over time including supporting

the proliferation and migration of neurons and supporting myelin mat-

uration and maintenance, making microglia a central element in

brain development (Hammond et al., 2019; Li et al., 2019;

Matcovitch-Natan et al., 2016; McNamara et al., 2023). In human

development, the end of the second and third trimesters of gestation

can be considered to occur from E15 to approximately P10 in mice

(Chen et al., 2017). The developing brain-associated microglia

between E14 and a few weeks after birth in the mouse has been given

the classification of “pre-adult” microglia, based on high expression of

genes related to synaptic pruning and neural maturation (Matcovitch-

Natan et al., 2016). Previous studies support the specific role of

microglia in neuronal development at this time, including that they

modulate laminar positioning of cortical interneuron at E16.5 and

E18.5 and axonal outgrowth of dopaminergic axons (Squarzoni

et al., 2014). Microglia play a major role in synaptic refinement via

pruning and actively engulfing synaptic material which influences the

building of functional brain connectivity during early stages of post-

natal brain development (Kim et al., 2017; Lehrman et al., 2018;

Paolicelli et al., 2011). In addition, microglia are critical modulators of

neuronal survival and apoptotic neuronal clearance. Specifically, it has

been demonstrated that cortical neurons of layer V require microglia-

derived IGF1 for survival during postnatal development (Ueno

et al., 2013). Amoeboid and phagocytic microglia clusters are

observed in regions where programmed cell death of neurons occurs.

The phagocytic clearance of these apoptotic neurons by microglia

requires specific recognition via cell surface signals, leading to the

binding and engulfment of neurons by microglia (Witting et al., 2000).

Considering the pre-adult microglia state, studies of sc-RNA

sequencing data have further highlighted that during the window of

development from early pre and post-natal development it is possible

to identify at least four types of pre-adult microglia (i) Ms4a7-expressing

microglia at E14.5, that are transcriptionally similar to border-associated

macrophages but defined as embryonic microglia in which a microglia-

specific identity had not yet been achieved (Hammond et al., 2019),

(ii) proliferative microglia, expressing cell cycle genes and representing

35%–40% of microglia at E14.5 and P5, and in P7 post-natal brain

(Hammond et al., 2019) (iii) immature microglia expressing higher levels

of microglia-specific homeostatic genes (Q. Li et al., 2019), and

(iv) primitive/embryonic-like microglia in the postnatal brain with an

over-representation of ribosomal components and lower levels of MG-

specific homeostatic genes (Q. Li et al., 2019). The heterogeneity of

microglial populations identified as “pre-adult microglia” calls for in-

depth studies to understand the developmental functions of microglial

states in this window and relevance to preterm born infants. In addition,

more studies are needed on how damage such as that resulting from

neonatal brain lesions could disrupt specific microglial states and their

associated brain-building functions to be able to establish specific pro-

tective strategies. Matcovitch-Natan et al. (2016) successfully charac-

terized the effects of maternal immune activation on microglial

development at E12.5 and E14.5 in the mouse. Their finding detailed

that microglial “development” was accelerated following exposure to

polyinosinic:polycytidylic acid (Poly I:C) at the pre-adult microglial stage,

causing premature expression of genes associated with and adult micro-

glial profile. These interruptions to normal microglial development may

result in chronic and acute developmental abnormalities and diseases.

Furthermore, a similar study in piglets concluded that there were inter-

ruptions to microglial development following maternal immune activa-

tion, and that these are highly sex-dependent (Antonson et al., 2019).
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Recent work demonstrated that microglia associated with mouse

models of Alzheimer's disease comprise two ontogenetically and func-

tionally distinct cell lineages (Silvin et al., 2022). One is an embryoni-

cally derived DAM sharing a common gene expression signature with

developmental (fetal and early post-natal) microglia, including expres-

sion of integrin Itgax (CD11C) that has protective functions. The sec-

ond is a monocyte expressing disease inflammatory macrophage

population that accumulates in the brain during aging (Silvin

et al., 2022). This study highlights that in the context of neurodegen-

erative pathology, there may be a reactivation of a developmentally

associated microglia profile, which may be an attempt to protect the

brain and limit the progression of pathology.

Consistent with a key role of microglia in the onset of WMI in

preterm developing brains, a specific CD11C+ microglial subset

expressing genes for neuronal and glial survival, migration, and differ-

entiation was identified in primary myelinating areas (mainly in the

corpus callosum and cerebellar white matter) during the first post-

natal week in the mouse. These neonatal-specific CD11C+ cells con-

stitute a significant source of insulin growth factor 1 (IGF1) which reg-

ulates myelin thickness. Using CD11cCre-GFP Igf1fl/fl mice, it was

established that an IGF-1 deficit in a CD11C+ cells induced a signifi-

cant decrease of mRNA encoding myelin proteins (including Plp, Mag,

and Mbp), and hypomyelination of axons in corpus callosum. These

findings demonstrate that IGF1-producing CD11c+ cells play a critical

role in primary myelination (Wlodarczyk et al., 2017). Using large-scale

transcriptional profiling, a unique molecular signature of a subset of

microglia located in the white matter was then later established. The

distinct transcriptomic signature of these microglia included expres-

sion of the Clec7a, Spp1, Igf1, Anxa5, Itgax (encoding for CD11C), and

Gpnmb genes (Hagemeyer et al., 2017). In a model of EoP induced by

IL-1β exposure, reactive microglia were characterized by a long-lasting

decrease of Igf1 mRNA. The disturbance of this specific state

of microglia could be explained at least in part by the hypomyelination

of corpus callosum seen in these animals (Van Steenwinckel

et al., 2019).

In addition to differences in distributions of the microglia

described above, there are regional differences in the basal state of

the microglia transcriptional profile, most well established in the grey

matter versus the white matter, within regions and in adult studies of

disease (Amor et al., 2022; Spencer et al., 2019; van der Poel

et al., 2019). However, transcriptomic profiling of microglia in the

cerebrum and the cerebellum in an inflammation-induced model of

EoP demonstrated a common reactive signature characterized by an

over-representation of Gene Ontology terms related to inflammation

and cell proliferation (Klein et al., 2022). Further analysis revealed a

specific cerebellar signature with significant enrichment of interferon

(IFN) signaling, particularly type II IFN (IFN-γ) signaling following sys-

temic inflammatory exposure, which was not significantly observed in

the microglia of the cerebrum. A type II interferon signature in micro-

glia/macrophages was also identified via spatial transcriptomics of

human infant cerebellum after adverse birth events (Holloway

et al., 2023). As such, the specific response of cerebellar microglia

may potentially contribute to the shaping of cerebellar lesions and

associated deficits which are relatively common in preterm-born

infants (Haldipur et al., 2011; Spoto et al., 2021).

2.6 | Specifically targeting microglia to improve
deficits associated with EoP

In neonatal rodents, in some models the selective ablation of microglia

increases the levels of proinflammatory cytokines and chemokines

and exacerbates brain injury (Faustino et al., 2011; Lalancette-Hebert

et al., 2007); a finding that was initially surprising. However, as we

understood the importance of microglia during neonatal development,

it became clear that total microglial depletion was not the best

approach for treating EoP especially if the depletion was prolonged. In

contrast, treating perinatal brain inflammation by specifically targeting

microglia has been demonstrated as an efficient approach to protect-

ing the developing brain. These targeted approaches include nanopar-

ticle drug delivery systems, which are an effective solution for

specifically targeting microglia in the CNS. It is now well established

that microglia take up poly(lactic-co-glycolic) acid (PLGA)- and

l-tyrosine poly- phosphate (LTP)-based nanoparticles and hydroxyl

poly(amido-amine) (PAMAM) dendrimers including 3DNA nanostruc-

tures without inducing the reactive functional aspects of these cells

(Cahalane et al., 2020; Lloyd et al., 2019; Van Steenwinckel

et al., 2019; Zhang et al., 2016).

In vitro studies show that microglia can take up drugs delivered

using nanoparticles in a cell-autonomous manner. For instance, in

LPS-stimulated SIMA9 microglial cells, treatment with the anti-

inflammatory drug Rolipam conjugated to PLGA nanoparticles

decreased LPS-induced release of TNF-α. Interestingly, this is

nanoparticle specific as LPS-induced IL-6 release is suppressed by

LTP-Rolipram nanoparticles but not by PLGA-Rolipam nanoparticles.

In addition, Celastrol an NR4A1 agonist that alleviates inflammation

and induces autophagy incorporated into PAMAM dendrimers

decreased the release of NO and IL-6 induced by LPS, such as NO

and IL-6 (Boridy et al., 2012). In addition, treatment with PAMAM

dendrimers conjugated to minocycline, a highly lipophilic second-

generation semisynthetic derivative of tetracycline inhibited the

release of NO from LPS-stimulation of a murine BV-2 microglial cell

line (Sharma et al., 2017).

Nanoparticles also have a demonstrated ability to cross the blood-

brain barrier and be taken up specifically by microglia in both mice and

rabbits (Kannan et al., 2012; Sharma et al., 2017; Van Steenwinckel

et al., 2019). In a rabbit model of cerebral palsy induced by prenatal

exposure to LPS, a dendrimer-minocycline conjugate administered by

an intravenous route was specifically taken up by reactive microglia in

periventricular white matter areas, including the corpus callosum and

the lateral ventricle (Sharma et al., 2017). In the rabbit model of cerebral

palsy induced by exposure to LPS during gestation, a single injection of

PAMAM dendrimer conjugated to N-acetylcysteine (NAC) an amino

acid stimulating the antioxidant glutathione production) leads to coloca-

lization in reactive microglia and astrocytes in the periventricular region

and attenuates neuroinflammatory processes, greatly improving motor
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function (Kannan et al., 2012). This NAC dendrimer is also protective in

a mouse model of HI-induced neonatal white matter injury, at subacute

or delayed time points after injury. The D-NAC dendrimer could attenu-

ate the pro-inflammatory response up to 9 days after injury, while not

impacting the anti-inflammatory response. The D-NAC therapy also

improves myelination, resulting in a reduction of white matter injury

(Nance et al., 2015). Oral pediatric formulation containing D-NAC is

now available and could be an effective option for treating neuroinflam-

mation (Yellepeddi et al., 2018).

In a mouse model of systemic inflammation induced EoP, 3DNA

nanoparticles targeting microglia have been shown to reduce brain

injury. Unbiased transcriptomic analyses of microglia in a mouse

model of EoP induced by systemic inflammatory activation (early

postnatal IL-1β exposure in the mouse) have shown a significant

decrease of canonical WNT signaling in reactive microglia. Multiple

pharmacological and genetic approaches in vitro and in vivo demon-

strated that the level of WNT pathway activity in microglia is inversely

correlated with proinflammatory marker expression level. Targeting

microglia specifically with 3DNA nanoparticles conjugated to a WNT

activator reduced IL-1β exposure-induced white matter injury by

modulating microglial reactivity and improving myelination and persis-

tent cognitive deficit in adults (Van Steenwinckel et al., 2019). In the

same model of systemic inflammation-driven EoP, analysis of

the microglial “micro”-transcriptome and an in vitro study of primary

microglia have demonstrated a major role of miR-146b-5p on the reg-

ulation of pro-inflammatory processes in pro-inflammatory immune

reactive microglia. The immunomodulatory miR-146 family acts via a

negative feedback mechanism in a wide variety of immune cells to

prevent overstimulation of the inflammatory response. Targeting

microglia specifically with 3DNA nanoparticles conjugated to syn-

thetic miR-146b-5p demonstrated the ability of miR-146b-5p to shut

down this immune reactivity, improving myelination and cognitive

deficits (Bokobza et al., 2022).

2.7 | Astrocytes in the developing brain

Astrocytes are the most numerous glial in the CNS, and together with

oligodendrocytes and neurons, they are derived from neuroepithelium

lining the developing neural tube. Astrocyte proliferation begins

around 26 wGA in humans, peaking around 28–30 wGA. Astrogenesis

in the mouse brain is initiated at E16-18 (Nagao et al., 2016). The tim-

ing of the peak in astrocyte production could be particularly relevant

for preterm neonates given that astrocytes play a major role in brain

development and homeostasis. In particular, astrocytes support neu-

ronal growth and axonal guidance (Doherty et al., 1990; Kanemaru

et al., 2007; Tomaselli et al., 1988) and as astrocytes surround and

contact most neuronal synapses, releasing soluble molecules neces-

sary for synapse formation and proper brain connectivity (Allen &

Eroglu, 2017; Elmariah et al., 2005; Hughes et al., 2010; Ullian

et al., 2001). Astrocytes also play a major role in myelination; for

example, white matter astrocytes express higher levels of GFAP (often

used as a marker of immune reactivity, astrogliosis) which is essential

for normal white matter architecture and blood-brain barrier integrity

(Cai et al., 2007), illustrated by the fact that GFAP deficits lead to late-

onset CNS demyelination (Liedtke et al., 1996) and in mice carrying a

null mutation in GFAP, abnormal myelination, poor vascularization of

the white matter and impairment of the blood-brain-barrier has been

described (Liedtke et al., 1996). Astrocytes support myelination

through their communication with oligodendrocytes via gap junctions,

transfer of lipids and secretion of pro-myelination factors (Dupree

et al., 1998; Magnotti et al., 2011; Menichella et al., 2003; Odermatt

et al., 2003; Stankoff et al., 2002; Sutor et al., 2000).

2.8 | Astrogliosis in EoP

Compared to microglia, relatively less is known about the role of

astrocytes in EoP, so we also include a discussion of their roles in

other forms of neonatal white matter injury. Reactivity of astrocytes

to damage or inflammation induces the release of cytokines, chemo-

kines and growth factors which actively participate in the neuroin-

flammatory response (Liddelow et al., 2017; Shiow et al., 2017).

Astrocytes, like microglia, respond to multidimensional parameters to

establish distinct astrocyte phenotypes and play a detrimental or ben-

eficial role depending on developmental stage, injury or disease

(Escartin et al., 2021; Liddelow et al., 2017). Using in vitro techniques,

it has been demonstrated that blocking differentiation of OPCs into

oligodendrocytes by chemically-induced hypoxic stress was restored

by brain-derived neurotrophic factor released from astrocytes

(Miyamoto et al., 2015). This important finding suggests that appropri-

ate modulation of astrocytes could represent a powerful strategy to

support oligodendrogenesis.

Astrogliosis describes a complex morpho-functional remodeling in

response to immune activation (injury, pathogen). In human preterm

infants, diffuse WM lesions are accompanied by diffuse astrogliosis

and increased hyaluronic acid (HA), suggesting the occurrence of

extracellular matrix remodeling within the lesion (Buser et al., 2012).

Extracellular high molecular weight HA can be broken down by hyal-

uronidase activity or reactions with reactive oxygen species (Litwiniuk

et al., 2016). In addition, high molecular weight HA and fragments of

different sizes can influence various biological processes through

interactions with receptors such as CD44. It has also been demon-

strated that a high molecular weight form of HA synthesized by astro-

cytes in chronic demyelinated lesions inhibits the maturation of OPCs

into myelin-producing cells (Back, Tuohy, et al., 2005). The hyaluronan

(HA) receptor CD44, an independent marker of astrogliosis, is also

upregulated in HA-rich WMI lesions (Buser et al., 2012; Srivastava

et al., 2020). In cases of human term neonatal HI encephalopathy with

subcortical WMI, the production of the COX2-inducing E2 pro-

inflammatory mediator was strongly induced in reactive astrocytes

(Shiow et al., 2017). In the same study, looking at a model of

inflammation-associated EoP, prostaglandin E2 (PGE2) derived from

astrocytes directly inhibited OPC maturation (Shiow et al., 2017). In a

mouse model of neonatal HI, a lineage tracing approach revealed

a preferential generation of subventricular zone (SVZ)-derived white
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matter astrocytes, rather than oligodendrocytes, suggesting impair-

ments in the specification of glial precursors within the neonatal SVZ

during recovery from neonatal HI (Bain et al., 2010) that might also

impact preterm infants. A detailed study of the gene expression of

GABAergic targets in the prefrontal cortex of post-mortem preterm

born infants revealed an astrocyte specific dysfunction, predominately

in males (Lacaille et al., 2021). Transcriptome analyses have also clearly

outlined that mouse astrocytes are sexually dimorphic, male astrocytes

mature faster and dimorphism peaks at P7, declining with age (Rurak

et al., 2022). Astrocyte dimorphism impacts their responses in utero in a

manner relevant to preterm-born infants. Specifically, administration of

synthetic glucocorticoids to rats during pregnancy (on E18), to mimic

treatment to mature the fetal lung in women with threatened preterm

labor), causes changes in adulthood in the number, density and distribu-

tion of astrocytes, predominantly in males (McArthur et al., 2016).

2.9 | Targeting astrocytes in EoP

Specific modulation of reactive astrocytes in models of HI encepha-

lopathy demonstrates some protective effects on the developing

brain. For example, in a model of term infant HI, GFAP and vimentin

knockout increases the number of surviving newborn neurons

(Jarlestedt et al., 2010). Hypoxia-inducible factor-1α (HIF-1α), a sensi-

tive regulator of oxygen homeostasis, is known to play an extensive

role in the pathophysiology of stroke, including neuronal survival, neu-

roinflammation, angiogenesis, glucose metabolism, and blood-brain

barrier regulation (He et al., 2021). A delayed expression of HIF-1α

was observed in astrocytes at 7 days after induction of HI in rat pups

to mimic term infant NE. Inhibiting this delayed HIF-1α expression

decreased astrogliosis, reduced damage to myelination and memory

performance (Wang et al., 2022). Also, in a term infant model of HI

injury in the rat, overexpression of receptors for complement peptide

C3a (C3a) under the control of the GFAP promoter, reduced hippo-

campal neurodegeneration and reactive gliosis (Pozo-Rodrigalvarez

et al., 2021). In a very limi study of a neonatal model of sepsis induced

by LPS a deficit of astrocytic Cx43 was established using Cx43flox/+:

hGFAP-Cre mice. This resulted in weakened inflammatory responses

characterized by reduced upregulation of pro-inflammatory cytokines

and reduced microglial reactivity (Zhou et al., 2015), but these finding

needs to be validated. Finally, in a model of preterm HI-induced EoP

in sheep, the blockade of astrocytic connexin 43 hemichannels was

able to significantly reduce the severity of EEG dysfunction and par-

tially recover deficits in the neuropathology (Davidson et al., 2014).

As such, astrogliosis and microgliosis seem to represent a major pro-

cess that requires careful analysis at multiple levels to characterize

potential opportunities to develop targeted therapeutic strategies.

2.10 | Oligodendrocytes in EoP

Historically, oligodendrocytes were considered just a “victim” in EoP.

In more severe models of injury and cases of EoP within the focal

white matter lesions oligodendrocyte death is observed (Du

et al., 2011; Haynes et al., 2003; Rousset et al., 2006; Scafidi

et al., 2014; Serdar et al., 2018). In cohorts with less severe outcomes

(dWMI) and comparable models, dysmaturation/hypomyelination

without cell death is more common (Billiards et al., 2008; Favrais

et al., 2011; Li et al., 2018; Verney et al., 2012). Interestingly, recent

work shows that oligodendrocytes themselves produce inflammatory

and trophic factors which are hypothesized to participate in the

inflammatory response, reviewed in (Kirby & Castelo-Branco, 2021;

Madeira et al., 2022) and even play a role in circuit formation

(Buchanan et al., 2023). For instance, in a model of systemic-

inflammation driven EoP with diffuse WMI (Favrais et al., 2011),

TLR3, IL-1β, IFN-β, chemokine ligand (Ccl) 2, and Cxcl10 are elevated

in the immune-activated oligodendrocytes, and this effect was greater

in the pre-OLs compared to the OPCs (Boccazzi et al., 2021). This is

linked to impacts of inflammation to open the chromatin conforma-

tion around transcription factors in the oligodendrocytes (Schang

et al., 2022).

A greater understanding of oligodendrocyte biology also high-

lights roles for OPCs, also known as NG2 glia or polydendrocytes as

more than a progenitor pool. Not all OPC mature into mature oligo-

dendrocytes, and during development and into adulthood OPC are

being shown to play active roles in synaptic pruning, playing a role in

experience-dependent mechanisms of synaptic refinement in the tha-

lamocortical relays in mice (Auguste et al., 2022) and capable of

phagocytosing whole cells in the context of models of multiple sclero-

sis (Nguyen & Pender, 1998). The phagocytotic abilities of the oligo-

dendrocytes enable them to function as antigen-presenting cells, and

they express MHC I and MHC II which are increased in the context of

IFNγ exposure (Kirby et al., 2019), a cytokine associated with WMI in

preterm born infants (Hansen-Pupp et al., 2005) and in models of EoP

(Jellema et al., 2015; Van Steenwinckel et al., 2019).

Oligodendrocyte development and function, like that of microglia

and astrocytes, is sexually dimorphic, manifesting as differences in

total myelin in adulthood in humans and rodents (Cerghet et al., 2006;

Seeker & Williams, 2022). In a study including transcriptomics, prolif-

eration, migration, myelination and cytotoxicity assays in mouse OPCs

(Yasuda et al., 2020), female OPCs have a higher capacity for

proliferation and migration, male OPCs have a higher capacity for dif-

ferentiation and myelination, and female OPCs are more resistant to

oxygen-glucose deprivation.

This is a relatively new field, and no studies specifically target oli-

godendrocyte immune function as a therapy for EoP. However, this

approach has been used successfully in a model of multiple sclerosis,

with nanoparticle-mediated delivery of the immunomodulatory and

pro-myelinogenic factor LIF to increase in vivo myelination (Rittchen

et al., 2015). However, it is an obvious extension of the idea of oligo-

dendrocytes being immunomodulatory targets that all our current

therapies (melatonin, EPO, hypothermia, etc.) may partially reduce

inflammatory reactions by acting directly on oligodendrocytes. This

requires further study to identify which agents are most effective, to

see if combination therapies can be better designed for modulating

glia (R. Pang et al., 2021) and to understand cross-talk between cell
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types as oligodendrocytes have been shown to mediate anti-

inflammatory processes (Madsen et al., 2020).

2.11 | The role of non-CNS cell types

Typically, CNS macrophages are classified into two groups based on

their location: microglia, which are found within the brain tissue itself,

and border-associated macrophages (BAMs), which inhabit various

border tissues of the CNS such as the meningeal membranes, the cho-

roid plexus, and perivascular spaces (Munro et al., 2022).

2.11.1 | Diversity of BAMs

Meningeal macrophages

The three anatomical layers that surround the CNS, known as the

meninges, consist of the dura mater, which is located beneath

the skull and contains lymphatic vessels and fenestrated blood ves-

sels, followed by the arachnoid mater, and finally the pia mater, a thin-

ner tissue that adheres to the CNS (Rua & McGavern, 2018). The

arachnoid and pia mater are called the “leptomeninges.” While it was

previously believed that the CNS was immune-privileged, recent find-

ings indicate that the meninges contain a dense network of immune

cells, such as resident meningeal macrophages, dendritic cells, B cells,

and T cells (Goldmann et al., 2016; Louveau et al., 2015; Mrdjen

et al., 2018; Rua & McGavern, 2018).

Interestingly, dural BAMs can be divided into two distinct subsets

based on their gene expression patterns: MHCIIlowCD206high cells

present initially, and MHCIIhigh CD206low cells which appear later

(Mrdjen et al., 2018; Rua & McGavern, 2018; Van Hove et al., 2019).

Leptomeningeal BAMs are more homogeneous, consisting primarily of

MHCIIlowCD206high cells, and like microglia they self-maintain inde-

pendently of monocyte input (Goldmann et al., 2016).

Choroid plexus macrophages

During normal conditions, the choroid plexus plays a role in both the

secretion and regulation of cerebrospinal fluid (CSF), while also partic-

ipating in the elimination of waste products and metabolites (Bedussi

et al., 2015). BAMs can be found both in the stroma and at the apical

site (Kolmer cells) of the choroid plexus (Munro et al., 2022). Stromal

choroid plexus macrophages are enriched in MHC-II upon aging, simi-

lar to dural macrophages (Goldmann et al., 2016). On the apical side,

Kolmer's epiplexus cells have a transcriptomic signature closer to

microglia than BAMs, and lineage tracing studies indicate that they

self-maintain, like microglia and leptomeningeal macrophages (Van

Hove et al., 2019).

Perivascular macrophages

The perivascular spaces surrounding blood vessels within the brain tis-

sue also contain macrophages (Munro et al., 2022). Under normal cir-

cumstances, these compartments are predominantly inaccessible to

molecules originating from the bloodstream, unless there is a selective

transportation mechanism in place (Banks 2016). Perivascular macro-

phages (PVMs) are essential in the immune response in the brain as

they communicate with surrounding endothelial cells and permit the

transmigration of other immune cells to elicit a reaction to insult or

injury (Faraco et al., 2017).

2.11.2 | BAM origins

In mice, the CSF system forms at embryonic day E9.5 when the neural

tube undergoes closure, trapping amniotic fluid inside (Munro

et al., 2022). Macrophages begin arriving in the embryo proper from

E9.5, following the stepwise establishment of the embryonic circula-

tion (Q. Li & Barres, 2018; Perdiguero & Geissmann, 2016).

BAMs initially derive from YS–generated progenitors during

embryogenesis, and in the dura and choroid plexus, these cells are par-

tially replaced by monocyte-derived macrophages in adulthood, that

preferentially differentiate in MHC-IIhigh BAMs (Goldmann et al., 2016;

Rua et al., 2019). Recent findings suggest that some of the myeloid cells

in the dura arise from myeloid cell reservoirs in the adjacent skull bone

marrow rather than from circulatory routes (Cugurra et al., 2021).

On the basis of their transcriptomes, BAMs have been linked with

many biological processes, such as lipid metabolism, stimulus detection,

antigen presentation, and phagocytosis (Van Hove et al., 2019). Using

drug and transgenic approaches to manipulate BAMs, several groups

have studied their role in cognition, CSF flow and inflammation.

2.11.3 | Roles for BAM

Cognition

Kipnis and colleagues demonstrated the crucial involvement of menin-

geal IL-4 derived in exerting beneficial effects on learning and memory

by modulating the phenotype of meningeal myeloid cells (e.g., BAMs).

In the absence of IL-4, these meningeal myeloid cells adopt a pro-

inflammatory bias, which correlates with impaired cognitive perfor-

mance (Derecki et al., 2010). A recent study showed that deletion of

the transcription factor SMAD4 in microglia and embryonic-derived

BAMs using Crybb1-Cre caused a developmental arrest of microglia.

Interestingly, instead of developing into typical microglia, cells

acquired a specification signature resembling that of BAMs and this

was associated with impairment of mouse memory skills (Brioschi

et al., 2023). Additionally, PVMs are implicated in cognitive impair-

ment and blood-brain barrier dysfunction related to hypertension, as

well as neurovascular alterations observed in Alzheimer's disease

(Mildenberger et al., 2022). On the other hand, PVMs have been

found to play a beneficial role in clearing amyloid-β in cerebral amyloid

angiopathy, illustrating their diverse involvement in various disease

processes (Mildenberger et al., 2022).

CSF flow

Mice lacking macrophages (such as Csf1r-/-), display enlarged ventri-

cles and hydrocephaly, suggesting that CNS macrophages regulate
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CSF homeostasis (Mildenberger et al., 2022). In addition, PVM play a

role in regulating the dynamics of CSF flow. Specifically, PVMs are

found near the brain arterial tree and their depletion through pharma-

cological or genetic means resulted in the accumulation of extracellu-

lar matrix proteins, obstructing the access of CSF to perivascular

spaces. As a consequence, this impairs CNS perfusion and clearance

(Drieu et al., 2022).

Inflammation

Several studies have investigated the fate and protective function

of BAMs following infection by pathogens introduced either locally

or from the periphery. One study focused on the intracranial injec-

tion of lymphocytic choriomeningitis virus (LCMV), which caused

infection and death of resident dural meningeal macrophages. It

also resulted in the long-term engraftment of monocytes derived

from the blood in the dura mater, but these monocytes displayed

impaired immune functions (Rua et al., 2019). Furthermore, dural

BAMs responded to systemic inflammation induced by peripheral

injection of LPS, SARS-CoV-2, or LCMV (Rebejac et al., 2022). In

contrast to intracranial infection, peripheral LCMV infection does

not produce symptoms in immunocompetent mice. However,

depleting dural meningeal macrophages increased brain viral load

and led to fatal meningitis, mimicking the effects of an intracranial

infection (Rebejac et al., 2022). In another infection model, periph-

eral infection of mice with Trypanosoma brucei, the causative agent

of sleeping sickness, resulted in parasite invasion of the brain bor-

ders and parenchyma. This triggered a temporary recruitment of

monocytes, and long-term transcriptional changes were more

noticeable in BAMs, particularly those in the choroid plexus, com-

pared to microglia (De Vlaminck et al., 2022). Depletion of resident

macrophages, which affects microglia as well as leptomeningeal

and dural BAMs, led to an increased parasite load. Likewise, deple-

tion of BAMs (Cui et al., 2020; Pinho-Ribeiro et al., 2023) resulted

in an elevated bacterial load following infection with Streptococcus

agalactiae or Streptococcus pneumoniae.

These studies were performed in adult mice, but little is known

about the behavior of BAMs upon inflammation in early life. Injection

of a viral genome mimetic, polyinosinic-polycytidylic acid to pregnant

dams at E12.5 (a model of maternal immune activation) caused accu-

mulation of epiplexus macrophages, associated with increase in CCL2

(Cui et al., 2020), however the causal link with long-term neurodeve-

lopmental deficits was not assessed.

While no functional study is currently available regarding the

role of BAMs in EoP, it is tempting to speculate that BAMs

might play a role through loss of trophic and/or gain of toxic

functions. Indeed, in adult mice, BAMs protect and nurture the

brain, and these functions are impaired upon infection (Rebejac

et al., 2022). It is thus likely that in early-life, BAMs downregu-

late their homeostatic program upon inflammation, which could

impair brain development. In addition, BAMs could also promote

and relay inflammation to the underlying parenchyma, thus cre-

ating changes in the developmental trajectory, and long-term

cognitive issues

2.11.4 | Modulators of glial function: the role of
gut-brain-axis communication

The gut-brain axis refers to the physiological pathways enabling com-

munication between the central and enteric nervous systems (ENSs),

via neural, endocrine, immune, and humoral signals. The ENS houses

200–600 million neurons (Furness et al., 2014) and is commonly

referred to as the “second brain”. Like the brain, the ENS encom-

passes a vast network of interconnected neurons which are involved

in regulating autonomic processes within the gastrointestinal tract.

Enteric neurons are organized into ganglia within the ENS, adjacent to

resident glial cells, referred to as enteric glial cells (EGCs). In addition

to the gut microbiota being important in regulating gastrointestinal

function, it is vital in regulating brain function via the gut-brain axis.

An absence of gut microbiota, as studied in germ-free mice, affects

behavior and cognitive function, resulting in decreased spatial and

working memory function (Gareau et al., 2011), altered hippocampal

neurogenesis and functional connectivity (Scott et al., 2020), as well

as reduced anxiety-like (Neufeld et al., 2011) and social behaviors

(Desbonnet et al., 2014). Germ-free mice also exhibit defects in micro-

glia, resulting in impaired immune function (Erny et al., 2015). This

body of work demonstrates the critical ability of the microbiome to

shape neurodevelopment, including cognitive function and immune

cell development.

In addition to altering microglia located in the brain, depletion of

the gut microbiome also affects development of enteric glia. Like brain

astrocytes, EGCs support enteric neuronal function, and regulate neuro-

transmitter balance, and maintain epithelial barrier integrity (Neunlist

et al., 2014). They can also adopt a pro-inflammatory reactive pheno-

type in inflammatory gastrointestinal disorders and bacterial and viral

infections (Ochoa-Cortes et al., 2016). The ENS houses the largest pop-

ulation of glia outside of the brain (Rosenberg & Rao, 2021). Population

of the lamina propria by enteric glial cells occurs during early postnatal

stages and the abundance of EGCs remain consistent after weaning as

they are continuously renewed during adult life (Kabouridis

et al., 2015). This renewal of EGCs in the gut is regulated by the host

microbiota. This has been demonstrated by decreased numbers of EGCs

as a result of antibiotic-induced depletion of the microbiota (Kabouridis

et al., 2015; Poon et al., 2022; Vicentini et al., 2021), which appears to

occur in a sex-dependent manner (Poon et al., 2022). In addition, a loss

of enteric neurons was also observed following antibiotic treatment in

mice which was accompanied by slower transit time and increased

intestinal permeability (Vicentini et al., 2021). Of interest, recovery of

the gastrointestinal microbiota after antibiotic withdrawal also pro-

moted enteric neurogenesis and restored both gut function as well as

enteric neuronal and glial population numbers (Vicentini et al., 2021).

These findings highlight the importance of the microbiome in regulating

neuroglial networks and gastrointestinal function. Thus, it is evident that

the gut microbiome is fundamental in shaping the development and

function of the nervous system, which is highly relevant in neurodeve-

lopmental disorders, including those resulting from premature birth.

The developmental stage at which an infant is born can affect

their microbiome composition. The microbiome of infants at term is
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temporarily dynamic after birth. Initially, the microbial population pos-

sesses low diversity and abundant gut bacteria, hosting aerobes and

facultative anaerobes (reviewed in (Healy et al., 2022)). These bacteria

consume oxygen available in the lumen of the gut creating an anoxic

environment, which enables proliferation by obligate anaerobic bacte-

ria, increasing in diversity and abundance to resemble growth toward

an adult human gut microbiome population (Foong et al., 2020).

Premature birth results in impaired maturation of the gut microbiome,

as well as the gastrointestinal tract and immune system. The initial

colonizers of the gut are similar in term and preterm infants, however

variables including mode of delivery (vaginal vs. caesarean), feeding

method and duration (breastfeeding vs. formula), and antibiotic expo-

sure results in in differences of the abundance of different popula-

tions of microbiota (Healy et al., 2022).

Recent evidence suggests that the gut microbiota of preterm

infants is associated with early cognitive and behavioral neurodeve-

lopment (Chen et al., 2023; Sarkar et al., 2022) and has been identified

as a potential biomarker of neurodevelopmental delay in preterm

infants (Roze et al., 2020). Disruption of the maturation and develop-

ment of the microbiome has also been linked to a number of fatal dis-

eases in preterm infants, including NEC and late-onset sepsis (Masi &

Stewart, 2019; Thanert et al., 2021). NEC is a disease involving severe

intestinal inflammation, cellular damage, and necrosis of gastrointesti-

nal tissue. If left untreated, this damage can lead to perforation of the

intestine, peritonitis, sepsis and death (Neu & Walker, 2011). A signifi-

cant role of microbial dysbiosis is thought to contribute to NEC, in

addition to intestinal immaturity including impaired permeability and

motility, and an underdeveloped and highly reactive immune system

(Tanner et al., 2015). Alterations in the diversity of viral components

of the gastrointestinal microbiome have also been reported prior to

the onset of NEC (Kaelin et al., 2022). Experimentally, the hypothesis

that immature microbiome development is involved in the pathogene-

sis of NEC is strengthened by animal research demonstrating that

administration of trinitrobenzene sulfonate, an immune stimulant used

to model NEC in rodents, is ineffective in germ-free mice due to the

absence of gut bacteria (MohanKumar et al., 2017).

While enteric glial cells have yet to be well-studied in preterm

infants per se, some research has been conducted in preterm infants

with NEC. For example, Fagbemi and coworkers identified that the

chemokine CCL20 was upregulated in 9 of 20 preterm infants with

acute NEC and strongly expressed by glial cells, and 11 cases showed

reduced expression of glial cells (Fagbemi et al., 2013). Similarly, a pre-

clinical model of NEC exhibits depletion of enteric glia which is medi-

ated via the toll-like receptor 4 (TLR4), and this is accompanied by

reduced intestinal motility and inflammation (Kovler et al., 2021).

Given our growing understanding of the role of the ENS and, more

specifically, the microbiome in modulating neurodevelopment and

immune function, the bacterial composition of preterm infants

and potential interventions must be studied in greater depth.

Probiotics have been proposed as a potential therapeutic in miti-

gating the adverse effects of microbial dysbiosis in preterm infants.

For example, probiotic administration has previously been reported to

reduce the incidence of NEC (Sun et al., 2017; Underwood, 2019;

Zhu et al., 2019), sepsis, mortality, as well as reducing the duration of

hospitalization post birth compared with controls (Sun et al., 2017).

Beneficial impacts of probiotics have also been observed in preclinical

animal models of NEC including decreased inflammation, improved

intestinal barrier function, and decreased incidence and severity of

NEC (Underwood, 2019).

Another potential treatment for complications arising from pre-

term birth is the application of bacteriophage therapy. Bacteriophages

(phage) constitute most of the viral population within the gut micro-

biome. These phages are unique from other viruses in their specificity

in targeting and infecting bacteria. While dysbiosis of gut bacterial

populations are increasingly profiled in relation to disease states, per-

turbations to the balance of phage communities within the gut are

less well characterized (Shamash & Maurice, 2022). The absence of

viral particles in the meconium, the earliest infant stool sample, sug-

gests that the gut does not have an established virome at birth and

becomes colonized with phage within the first week of life (Breitbart

et al., 2008). Potential therapeutic benefits proposed by manipulating

phage are additionally of interest due to an increasing prevalence of

antibiotic resistance in healthcare. Phage are highly specific in target-

ing their bacterial host, a trait that makes them suitable for targeting

specific bacterial species (Furfaro et al., 2017) within gut microbial

communities, unlike broad-spectrum antibiotics which inhibit a wider

range of bacteria and can commonly disrupt the human microbiome

to result in detrimental effects. Indeed, antibiotic treatment to address

bacterial infection in preterm infants is associated with widespread

perturbation of the microbiome (Gibson et al., 2016) and a higher inci-

dence of NEC, late-onset sepsis, and death (Kuppala et al., 2011).

While applications of bacteriophage-mediated therapies are still

emerging, promising results in mediating multi-drug resistant and

antibiotic-resistant bacterial infections in preclinical animal models

and in human trials have been reported (Lin et al., 2017). In summary,

the use of bacteriophage therapy in the context of premature compli-

cations and NEC may enable specific targeting of a source of infection

without disturbing the balance of beneficial bacteria within the gut

microbiome.

An enhanced understanding of the complex neuroglial networks

within the gut and their relationship with host microbial communi-

ties may prove vital in treating disorders affecting neurodevelop-

ment and cognition. Additional research is required to clarify the

roles of bacteria, viruses and bacteriophage in modulating enteric

neuronal and glial function in the pathophysiology of preterm

infants. Addressing microbial dysbiosis via probiotics and the poten-

tial application of bacteriophage therapy to treat early-life infections

are emerging therapeutic options to reduce the potentially fatal

complications of preterm birth.

In conclusion, glia are critical for brain development, and together

the derailment of these normal processes and their “immune activa-

tion” causes brain injury in the preterm born infant (summarized in

Figure 2). There has been an explosion in data describing glial function

and responses in some contexts, like normal mouse development and

disease, and in human post-mortem studies of disorders such as

Autism, Parkinson's and Alzheimer's disease, using cutting-edge omics

490 VAN STEENWINCKEL ET AL.



approaches (Velmeshev et al., 2019). However, in perinatal brain

injury, most studies are arguably lower in technology and depth of

analysis. The main reason for this is that the field of perinatal brain

injury is relatively small and modestly funded compared to adult

neurological disease subspecialties. Also, human studies are stymied

by less tissue donation than for adult disorders and far more

unknowns about patient history (when did injury start, how severe

was the onset, what was the specific nature of the injury, how well

did the infant adapt), plus the complex treatments offered to the

infants (steroids, ventilation, antibiotics, etc.) that all alter the out-

puts of later analyses. However, as the technologies and approaches

move through the fields of neurological disorders including reducing

costs and technological requirements, more studies using combined

neuropathology and genetics across human and periclinal models

are creating increasing waves of valuable knowledge. With these

knowledge gains and biomedical engineering advances (CRISPR,

nanoparticles, etc.) therapies targeting glia phenotypes to steer

these cells to repair and regenerate the brain can be developed in

future.
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