
Tansley insight

A perspective on cross-kingdom RNA
interference in mutualistic symbioses

Author for correspondence:
Ronelle Roth

Email: ronelle.roth@biology.ox.ac.uk

Received: 28 February 2023

Accepted: 24 May 2023

Serena A. Qiao , Zongyu Gao and Ronelle Roth

Department of Biology, University of Oxford, Oxford, OX1 3RB, UK

Contents

Summary 68

I. Introduction 68

II. Cross-kingdom RNA transfer in pathosystems 69

III. The roles of sRNAs in mutualistic symbiosis 74

Acknowledgements 77

References 77

New Phytologist (2023) 240: 68–79
doi: 10.1111/nph.19122

Key words: arbuscular mycorrhizal symbiosis,
cross-kingdom RNAi, endosymbiosis, plant–
microbe interactions, plant–pathogen
interactions, RNA interference.

Summary

RNA interference (RNAi) is arguably one of the more versatile mechanisms in cell biology,

facilitating the fine regulation of gene expression and protection against mobile genomic

elements,whilst also constituting a key aspect of inducedplant immunity.More recently, the use

of this mechanism to regulate gene expression in heterospecific partners – cross-kingdom RNAi

(ckRNAi) – has been shown to form a critical part of bidirectional interactions between hosts and

endosymbionts, regulating the interplay between microbial infection mechanisms and host

immunity. Here, we review the current understanding of ckRNAi as it relates to interactions

between plants and their pathogenic and mutualistic endosymbionts, with particular emphasis

on evidence in support of ckRNAi in the arbuscular mycorrhizal symbiosis.

I. Introduction

Their migration onto land over 450 million years ago introduced
the earliest plants to a new environment abundant in potential
parasitic or mutualistic microbes, which have defined substantial
aspects of land plant evolution (reviewed in Delaux & Schor-
nack, 2021). Early plants, lacking true root systems, likely relied on
symbioses similar to the modern arbuscular mycorrhizal (AM)
symbiosis, which augments phosphate, nitrate and water uptake
from the soil, as well as aspects of pathogen defence (reviewed in
Bennett&Groten, 2022). In exchange, the obligate biotrophicAM
fungi rely entirely on carbon received from the host plant, primarily
in the form of fatty acids (Luginbuehl et al., 2017; reviewed in Rich
et al., 2017; Roth & Paszkowski, 2017). During symbiosis, the

fungus penetrates the plant root and forms elaborately branched
arbuscules inside the cortical cells; accompanying this process, the
plant plasma membrane envelops the hyphal structure within the
peri-arbuscularmembrane (PAM). This creates the peri-arbuscular
space (PAS), a shared apoplastic compartment facilitating the
exchange of nutrients and signalling molecules between the PAM
and the fungal arbuscular membrane (Gutjahr & Parniske, 2013;
Luginbuehl & Oldroyd, 2017).

Such signalling molecules may include small RNAs (sRNAs),
whichmay act inRNA interference (RNAi) both endogenously and
in the heterospecific partner. Plant sRNAs mediating RNAi
broadly fall into two classes: small interfering RNAs (siRNAs)
21–24 nucleotides (nt) in length and produced from double-
stranded precursors; and 20–22 nt micro RNAs (miRNAs)
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generated from double-stranded stem-loop precursors, which are
largely transcribed fromMIR genes. These precursors are processed
by specific ribonuclease III-like enzymes – Dicer-like (DCL)
proteins – to produce shorter double-stranded sRNAs, from which
one strand is loaded into an ARGONAUTE (AGO) protein to
target complementary sequences to the sRNA. Depending on
the sRNA length and AGO type, the complementary sequence
can undergo a variety of processes including post-transcriptional
gene silencing through AGO-mediated targeting of endogenous
and foreign RNAs for cleavage or translational repression;
recruitment of DNA methyltransferases to target DNA sequences
for methylation and transcriptional gene silencing; and the
recruitment of RNA-dependent RNA polymerases to facilitate
the biogenesis of secondary siRNAs (reviewed in Zhan &
Meyers, 2023). Some of these sRNAs are proposed to act in cross-
kingdom RNAi (ckRNAi) between hosts and endosymbionts – a
mechanism by which one organism regulates the gene expression
of a heterospecific partner through the transfer of sRNAs and the
co-option of the partner’s RNAi machinery. More recently,
fragments of tRNAs have been demonstrated to play a similar role
to other sRNAs in ckRNAi (Ren et al., 2019; S�anchez-Correa
et al., 2022), with extracellular vesicles (EVs) proposed as a
mechanism of trafficking a range of sRNA species between partners
(Box 1).

Here, we review emerging evidence for ckRNAi as a mechanism
of controlling mutualistic plant–microbe interactions, drawing
from studies of both pathogenic and mutualistic symbiosis to
examine the case for ckRNAi acting in the AM symbiosis.

II. Cross-kingdom RNA transfer in pathosystems

Pathogen-to-plant communication

Prediction of complementary sRNA-mRNA sequences and
cleavage assays suggest that many pathogenic heterokont and
fungal species use ckRNAi to target transcripts of critical immune
response genes, including mitogen-activated protein kinase
(MAPK) cascade components such as MPK1 (Weiberg
et al., 2013), and leucine-rich repeat receptor kinases (LRR-RKs)
and WRKY transcription factors, such as FEI2 and WRKY7,
respectively (Wang et al., 2017;Table 1; Fig. 1a). In some instances,
multiple host transcripts may be targeted by a single sRNA, such as
Botrytis cinerea siR37, which was shown to target Arabidopsis
thaliana FEI2, WRKY transcription factors and defensins,
increasing host susceptibility to infection (Wang et al., 2017).
Most commonly, ckRNAi-acting pathogen-derived sRNAs co-
purify with host AGO1 (Weiberg et al., 2013;Dunker et al., 2020),
with a 50 uridine that utilises the AGO1 loading bias to drive post-
transcriptional gene silencing against host transcripts (Mi
et al., 2008); indeed, the importance of host AGO1 function in
ckRNAi can be seen in the increased resistance to B. cinerea
exhibited by Arabidopsis ago1 mutants (Weiberg et al., 2013).
Recent reports suggest, however, that some pathogens may
manipulate other plant AGOs in ckRNAi – the 23 nt miRNA-
like Fol-milR1 released by F. oxysporum f.sp. lycopersici, for
example, preferentially binds Solanum lycopersicum AGO4a to

downregulate expression of a host calcium-binding protein kinase
involved in defence signalling (Ji et al., 2021). AGO4 – with a 50

adenosine bias (Mi et al., 2008) – predominantly functions in
RNA-directed DNA-methylation, facilitating transcriptional gene

Box 1 The extracellular vesicle debate

Extracellular vesicles, the product of non-canonical secretion mech-
anisms such as multi-vesicular bodies (MVBs) or exocyst-positive
organelles (EXPOs), have long been described as a crucial infectious
mechanism in microbial interactions with animal hosts, transporting
critical toxins and infectious proteins (Rizzo et al., 2021). More
recently, similar roles have been suggested for EVs in plant–microbe
interactions, shown to mediate infection in both pathogenic (Cai
et al., 2018) and mutualistic contexts, such as in the root nodulating
symbiosis with Sinorhizobium fredii (Li et al., 2022). Critically, the
latter saw the downregulation of defence gene expression and the
upregulated expression of symbiosis-specific transcription factors,
although the mechanism by which this occurred was not elucidated.
This correlates with the evidence of sRNA transport and ckRNAi in
other root nodulating symbioses (Ren et al., 2019) to suggest an EV-
dependentmechanismof sRNA transport in this symbiosis.Currently,
the mechanisms by which these EVs and their cargo are taken up by
the receiving organism are somewhat unclear, although recent
evidence has suggested a role for clathrin-mediated endocytosis
(CME) in the uptake of fungal EVs by the plant host in the
Arabidopsis-B.cinerea pathosystem (He et al., 2023b).

However,whether sRNAsare largelypackaged inside EVs, or if the
greatest proportion are found external to EVs, remains unresolved.
An encapsulation mechanism has been proposed for the ckRNAi
observed in pathosystems such as that of Arabidopsis–B. cinerea,
where RNase protection assays were used to show that the majority
of sRNAswereprotected in the absenceof detergent, suggesting that
these were encapsulated inside EVs (Cai et al., 2018); EVs have also
been shown to be enriched in 10–17 nt ‘tiny’ RNAs (Baldrich
et al., 2019). Recent experiments with more stringent protease,
detergent and RNase protection assays, however, suggest a pre-
dominant extra-vesicular association between sRNAs and RNA-
binding proteins (RBPs) in the extracellular space (Zand Karimi
et al., 2022). The significance of EVs in ckRNAi may not be entirely
absent, however, as the results fromZandKarimiet al. represented an
uninfected state rather than a pathosystem. Furthermore, additional
studies suggest that these RBPs, such as AGO1 and RNA helicases,
are strongly associated with the membranes of EVs when released in
response to infection (He et al., 2021). It is possible that RBPs form
part of an EVprotein corona,which has beenobserved inmammalian
EVs but remains to be described in plants (reviewed in Buzas, 2022).
Similarities to this protein-bound transport mechanism have also
been documented in parasites, such as nematode worms, that use
ckRNAi as a pathogenesis mechanism (Buck et al., 2014; Chow
et al., 2019); this suggests that RBP-mediated transport is a bona fide
means of sRNA export in ckRNAi. Whether the same can be said for
EVs remains to be seen; such confirmation or refutation would have
significant implications in the studyof ckRNAi inAMsymbiosis, as EVs
observed in the PAS have been proposed as potential sRNA carriers
(Ivanov et al., 2019; Roth et al., 2019). This role of EVs is supported
by TEMevidence ofMVBs fusingwith the PAM, asMVB-derived EVs
have been implicated in the role of sRNA delivery from plants to
pathogens (Cai et al., 2018). Further studies, with an emphasis on
more rigorous digestion assays and microscopy, will be required to
identify candidate sRNAs and their localisation relative to these EVs.
For a recent review, see Holland & Roth (2023).
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silencing. Whilst cleavage of the target transcript was observed,
suggesting post-transcriptional gene silencing, it was not ruled out
that Fol-milR1 also promoted RNA-directed DNA-methylation
through its association with SlAGO4a, and it may thus be possible
that Fol-milR1 facilitates silencing of the host target through two
pathways.

It is important to note, however, that the results from Weiberg
et al., which pioneered the field of plant–microbe ckRNAi research,
have recently been contested. Experiments in the S. lycopersicum–
B. cinerea pathosystem, with the knockout of B. cinerea DCL1 and
DCL2 and the subsequent reduction in predicted ckRNAi-acting
sRNAs, saw no effect on fungal virulence (Qin et al., 2023); this was
concluded to show that ckRNAi had no significant role in the host–
pathogen interaction. However, as was highlighted by a subsequent
rebuttal, this deletion ofBcDCL1/2 – conducted in an unstable ku70
background – could not be accurately compared to BcDCL1/2
mutants as generated in Weiberg et al. (He et al., 2023a);
furthermore, this did not eliminate previously identified sRNAs
acting in ckRNAi. This, coupled with unsuitable bioinformatics
pipelines and lack of experimental validation for the cleavage of
candidate host transcripts by B. cinerea sRNAs, makes it likely that
the majority of globally predicted sRNA–mRNA pairs do not truly
interact and therefore the reduction in these sRNAs would have no
effect on the host–pathogen interaction (He et al., 2023a). This
highlights the level of experimental rigour required to explicitly verify
or refute the occurrence of ckRNAi in plant–microbe interactions
that must be adhered to in future ckRNAi research (Box 2).

The possibility has also recently emerged that sRNAs are not the
only class of RNA transported in pathosystems, with evidence
suggesting that Ustilago maydis, a fungal pathogen of maize,
transports EV-associatedmRNAs into its host. ThesemRNAswere
enriched in transcripts encoding enzymes involved in nitrogen and
glycerolipid metabolism, as well as aromatic amino acid biosynth-
esis (Kwon et al., 2021); this is in line with evidence of
host metabolism reprogramming by U. maydis (Doehlemann
et al., 2008), suggesting that mRNA transfer may enable a transfer
of the metabolic load of protein synthesis to the host, with the
further benefit of immediate delivery of these enzymes into
the host. The efficacy of this mechanism has clear advantages in
the invasion of host tissue, so although not thus far observed in
other plant–microbe interactions, this may change with further
study. Alternatively, it may be that this mechanism is unique to

U.maydis due to its lack of RNAimachinery that prevents the use of
ckRNAi to manipulate gene expression in the host (Laurie
et al., 2008).

Plant-to-pathogen communication

Research into the phenomenon of plant-to-pathogen sRNA
transport and ckRNAi is comparatively recent, yet examples have
been documented for both fungal and oomycete pathogens
(Table 1; Fig. 1a). As with the reciprocal ckRNAi event, plant-
driven ckRNAi affects the expression of genes critical to the success
of the infection cycle; these may include virulence-specific
components of the secretion system, as in the Arabidopsis–
B. cinerea pathosystem (Cai et al., 2018), or splicing factors
required for successful reproduction, as in the Arabidopsis–
Phytophthora capsici pathosystem (Hou et al., 2019). Intriguingly,
recent results from host-induced gene silencing (HIGS) studies
suggest that this means of gene expression regulation by the host
may also function in bacterial pathogens, such as Pseudomonas
syringae, which lack conventional RNAimachinery (Singla-Rastogi
et al., 2019); this may be facilitated by host AGO1 proteins taken
up alongside the sRNAs, as these have recently shown to bind plant
extracellular sRNAs used in ckRNAi (He et al., 2021; Box 1). This
unexpected result suggests the possibility that plants may be able to
use native sRNAs in ckRNAi against a range of pathogens, a new
dimension to the plant immune system that merits further
investigation.

III. The roles of sRNAs in mutualistic symbiosis

Mutualist microbe-to-plant communication

As an emerging area of the field, the abundance of in vivo studies of
the role of ckRNAi in mutualistic interactions is limited; however,
there is evidence of ckRNAi betweenMedicago truncatula and the
bacterial symbiont Bradyrhizobium japonicum, with the produc-
tion of tRNA fragments (tRFs) capable of driving Glycine max
transcript cleavage strongly upregulated in B. japonicum during
root nodulating symbiosis. These tRFs were shown to target root
development genes critical in nodule formation such as ROOT
HAIR DEFECTIVE 3 and HAIRY MERISTEM 4 (Table 1;
Fig. 1b); the introduction of target mimics of BjtRFs significantly

Fig. 1 Proposedmodels for the functioningof ckRNAi in pathogenic andmutualistic symbiosis. (a)A representationof the ckRNAiprocesses occurringbetween
theplant host andapathogen, such as theArabidopsis–B.cinereapathosystem.Fungal components–AGOproteins, extracellular vesicles (EVs) andRNAs– are
illustrated in pink and purple; plant components – AGO1 proteins, EVs, RNAs and multivesicular bodies (MVBs) – are illustrated in green and blue. Several
possibilities for the transport of sRNAs are represented here (see Box 1), including the transport of sRNAs associatedwith RNA-binding proteins andwith some
level of association with EVs (He et al., 2021); the fungal mechanism is largely unknown and is here represented as a mirror of proposed plant mechanisms.
Questionmarks represent areas of uncertainty in pathogenic ckRNAi.CME, clathrinmediatedendocytosis (b)Anoverviewof the ckRNAi interactions that have
thus far beendescribed inmutualistic symbioses. ckRNAi has beendescribed in root nodulating symbioseswith twodifferent bacterial strains (Ren et al., 2019);
whilst ckRNAi in ectomycorrhizal symbiosis has currently beendocumented in one interaction (Wong-Bajracharya et al., 2022; see Table 1 for full genenames).
Note the inhibition of membrane remodelling and defence in the AM symbiosis remains to be experimentally verified (Silvestri et al., 2019). Memtubs –
membranous tubules – are illustrated in the AM symbiosis. These have been observed between the fungal cell wall (FCW) and fungal arbuscular membrane
(FAM)during symbiosis andpathogenic infectionsof plant tissue, andhavebeenproposedas a sourceof EVs inAMsymbiosis (Rothet al., 2019); this, however,
remains unverified, and is represented by the question mark. Dotted lines and question marks represent uncertainty surrounding whether reciprocal ckRNAi
fromplant tomutualist occurs.AGO, Argonaute, FAM, fungal arbuscularmembrane;MPA,mitogen-activatedprotein; PAM,peri-arbuscularmembrane;TGS,
transcriptional gene silencing; tRFs, red stem loop tRFs shown in root nodule.
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reduced nodule formation and bacterial colonisation, indicating
that the use of ckRNAi to modulate host development is critical to
the success of the root nodulating symbiosis (Ren et al., 2019).
Furthermore, rhizobial tRFs were found to bind GmAGO1, and
have been shown to bind host AGO5 in the Phaseolus vulgaris–

Rhizobium tropici symbiosis, suggesting that host RNAi is
manipulated in a similar manner to ckRNAi in pathosystems
(Ren et al., 2019; S�anchez-Correa et al., 2022).

Thus far, evidence in support of ckRNAi in mycorrhizal
symbioses includes the miRNA-directed cleavage of host

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

New Phytologist (2023) 240: 68–79
www.newphytologist.com

New
Phytologist Tansley insight Review 75



nucleotide-binding leucine-rich repeat (NB-LRR) defence gene
transcripts in the ectomycorrhizal symbiosis between Eucalyptus
grandis and Pisolithus microcarpus (Fig. 1b). Inhibition of the
Pmic_miR-8 miRNA significantly reduced the maintenance of the
mycorrhizal association, indicating that such mechanisms carry
significant weight in the success of mycorrhizal symbioses (Wong-
Bajracharya et al., 2022). The case for ckRNAi in AM symbiosis is
supported by in silico predictions of sRNA–host transcript pairs
which remain to be experimentally validated, in combination with
evidence of complete RNAi machinery complements conserved
across AM fungi (Lee et al., 2018; Silvestri et al., 2020) and
significantly expanded in species such as Rhizophagus irregularis
(Dallaire et al., 2021). As in pathogenic and ectomycorrhizal
systems, the fungal symbiont appears to target host defence genes,
but also membrane-remodelling phospholipases that may permit
the formation of the PAM (Silvestri et al., 2019, 2020), akin to the
development-regulating role of tRFs in root nodulating symbioses
(Ren et al., 2019).

Plant-to-microbial mutualist communication

Evidence for reciprocal communication in these symbioses is
considerably scarcer than in pathosystems (Table 1), although
in silico experiments have suggested that Populus spp. miRNAs are
capable of targeting gene expression in both ectomycorrhizal
(Laccaria bicolor) and AM (R. irregularis) fungal partners (Mewalal
et al., 2019). These remain to be experimentally verified, and,
moreover, do not appear to target symbiotically relevant genes
(Table 1); however, given the evidence of many other bidirectional
signalling processes involved in establishing and maintaining these
symbioses (reviewed inLanfranco et al., 2018), itmight be expected
that the plant host in fact regulates key functions of its
endosymbiont during symbiosis. It is therefore likely that further
in silico exploration beyond this initial study and, crucially,
experimental validation, will reveal true ckRNAi in these
symbioses. Whilst it might be argued that the capacity for ckRNAi
is limited in the root nodulating symbiosis due to the lack of
bacterial RNAi machinery, the evidence of successful HIGS in the
Arabidopsis–P. syringae pathosystem suggest that plant-derived
sRNAs are capable of driving bacterial gene silencing through an as-
yet unidentified mechanism (Singla-Rastogi et al., 2019). As such,
there is the potential for reciprocal ckRNAi in both symbioses.

Host-induced gene silencing experiments in AM symbiosis also
lend support to the idea that RNAs may be transported from plant
to fungus andmodulate fungal gene expression, withHIGS used to
experimentally silence Rhizophagus spp. and Gigaspora sp.
transporters, receptors, effectors and secreted proteins (Helber
et al., 2011; Kikuchi et al., 2016; Tsuzuki et al., 2016; Xie
et al., 2016; Voß et al., 2018). Recent evidence from transmission
electron microscopy (TEM) and tomography of the plant–fungal
interface – the PAM and PAS – indicates the presence of EVs of
indeterminate origin in the PAS (Ivanov et al., 2019; Roth
et al., 2019). However, TEM also indicated the fusion of
multivesicular bodies with the PAM, suggesting that some EVs,
at least, are derived from the plant, and furthermore may be
analogous to mammalian EVs that are known to courier diverse

RNA and protein cargoes tomodulate recipient cell function (Roth
et al., 2019; reviewed in van Niel et al., 2018; Holland &
Roth, 2023). Studies of pathogenic ckRNAi implicate the roles of
these EVs in sRNA transport (Box 1); thus, there is promising
evidence for the transport of sRNAs from plant to fungus at the
PAM, which, along with in silico evidence, suggests the possibility
of ckRNAi as a reciprocal regulatory force in AM symbiosis
(Mewalal et al., 2019; Fig. 1b).

Perspectives and future directions

At present, definitive in vivo evidence for the role of ckRNAi in
regulating AM symbiosis is lacking; however, this can arguably be
inferred from the substantial body of literature indicating the use of
sRNAs in regulating plant interactions with both microbial
mutualists and pathogens. Recent results from in silico predictions
would suggest that AM fungi may likewise be able use ckRNAi to
modulate host defence, as well as aspects of arbuscule development
through regulating host membrane remodelling (Silvestri
et al., 2019, 2020).Given the role of theAMsymbiosis in supplying
inorganicminerals to theplant inexchange for fatty acids, it couldbe
speculated that the fungusmight also target host functions that shift
the balance of the exchange in its favour – for example, modulating
plant fatty acid transport and biosynthesis, or phosphate metabo-
lismtoalter thehost’sdemandsand the carbon the fungus receives in
return, mimicking native RNAi regulation of phosphate-related
genes (Pandey et al., 2018). These results remain to be validated
in vivo and will require further experimental validation (Box 2).

The same is yet to be experimentally demonstrated reciprocally,
although the bidirectional nature of the majority of signalling
processes involved in establishing and maintaining AM symbiosis
would seem to suggest both the possibility and the necessity of
such an event, supported by some initial in silico predictions
(Luginbuehl & Oldroyd, 2017; Lanfranco et al., 2018; Mewalal
et al., 2019). Such plant-to-fungus ckRNAi might therefore
likewise enable the plant to regulate the metabolism of the AM
fungus, modulating functions such as phosphate or lipid uptake
and transport, or the timing of arbuscule development, to control
the balance of phosphate–lipid exchange. It may also be the case
that ckRNAi in AM symbiosis is necessary for the host to modulate
the development of the non-self organism, as TEM tomography
showed the formation ofmembrane tubules in the paramural space
that resemble those observed during invasive hyphal growth of
U. maydis (Ivanov et al., 2019; Roth et al., 2019), suggesting
aggressive invasion of the host tissue thatmayneed to be curbed by a
mechanism such as ckRNAi that has been observed to do the same
in pathosystems (Cai et al., 2018; Hou et al., 2019).

Tantalising results from studies of pathogen–plant ckRNAi also
open many avenues for future research; for instance, the loading of
endosymbiont sRNAs into host AGO4proteins opens the prospect
of these driving transcriptional gene silencing, possibly allowing
long-term regulation of gene expression in the host through
methylation of target genes. Such regulation would have consider-
able benefits in a mutualism, potentially adapting one or both
partners to increase the stability of the interaction; indeed, the
importance of DNA methylation in symbiosis has been recently

New Phytologist (2023) 240: 68–79
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Review Tansley insight
New
Phytologist76



demonstrated in ectomycorrhizal symbiosis, with hypomethyla-
tion in the Populus sp. host associated with decreased association
with the Laccaria bicolor mycorrhizal fungus (Vigneaud
et al., 2023). Determining whether this is observed in the AM
symbiosis will be an important avenue for research, especially given
that this could be modified to increase the stability of symbioses in
key crops. Similarly, the recently proposed transfer of mRNAs
between host and pathogenic fungi (Kwon et al., 2021) might be
more widely distributed across plant–microbial interactions, and

could form key mechanisms of both pathogenesis and mutualistic
colonisation; however, it may also be the case that this is in fact
limited to microbes which lack canonical RNAi machinery,
complementing the inability to conduct ckRNAi. Again, verifying
this will be critical in expanding our understanding of the
communication and manipulation between partners occurring in
AM symbiosis, and if present, may form the basis of future
augmentation of the symbiosis.
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