
R E S E A R CH A R T I C L E

Integrating transcriptomic datasets across neurological
disease identifies unique myeloid subpopulations driving
disease-specific signatures

Claire L. Wishart1,2,3,4 | Alanna G. Spiteri1,2,3,4 | Giuseppe Locatelli5,6 |

Nicholas J. C. King1,2,3,4,7,8

1Infection, Immunity, Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South

Wales, Australia

2Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia

3Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia

4Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia

5Theodor Kocher Institute, University of Bern, Bern, Switzerland

6Novartis Institutes for BioMedical Research, Novartis, Basel, Switzerland

7Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia

8The University of Sydney Nano Institute, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia

Correspondence

Nicholas J. C. King, Infection, Immunity,

Inflammation Research Theme, School of

Medical Sciences, Faculty of Medicine and

Health, The University of Sydney, Sydney,

NSW, Australia.

Email: nicholas.king@sydney.edu.au

Funding information

Australian Government Research Training

Stipend Scholarship; University of Sydney

Postgraduate Merit Award; Associazione

Italiana Sclerosi Multipla, Grant/Award

Number: FISM 2019/R-Single/001; European

Union´s Horizon 2020 Research and

Innovation Programme under the Marie

Skłodowska-Curie grant agreement,

Grant/Award Number: 813294; Merridew

Foundation; National Health and Medical

Research Council, Grant/Award Number:

1088242; Swiss Multiple Sclerosis Society

Abstract

Microglia and bone marrow-derived monocytes are key elements of central nervous

system (CNS) inflammation, both capable of enhancing and dampening immune-

mediated pathology. However, the study-specific focus on individual cell types, dis-

ease models or experimental approaches has limited our ability to infer common and

disease-specific responses. This meta-analysis integrates bulk and single-cell tran-

scriptomic datasets of microglia and monocytes from disease models of autoimmu-

nity, neurodegeneration, sterile injury, and infection to build a comprehensive

resource connecting myeloid responses across CNS disease. We demonstrate that

the bulk microglial and monocyte program is highly contingent on the disease envi-

ronment, challenging the notion of a universal microglial disease signature. Integra-

tion of six single-cell RNA-sequencing datasets revealed that these disease-specific

signatures are likely driven by differing proportions of unique myeloid subpopulations

that were individually expanded in different disease settings. These subsets were

functionally-defined as neurodegeneration-associated, inflammatory, interferon-

responsive, phagocytic, antigen-presenting, and lipopolysaccharide-responsive cellu-

lar states, revealing a core set of myeloid responses at the single-cell level that are

conserved across CNS pathology. Showcasing the predictive and practical value of

this resource, we performed differential expression analysis on microglia and
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monocytes across disease and identified Cd81 as a new neuroinflammatory-stable

gene that accurately identified microglia and distinguished them from monocyte-

derived cells across all experimental models at both the bulk and single-cell level.

Together, this resource dissects the influence of disease environment on shared

immune response programmes to build a unified perspective of myeloid behavior

across CNS pathology.
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central nervous system pathology, high parameter data integration, microglia, monocyte-derived
cells, single-cell RNA-sequencing

1 | INTRODUCTION

Inflammation is a hallmark of many neuropathologies, irrespective of

disease etiology (Spiteri & Wishart et al., 2022). Microglial activation

and the infiltration of bone marrow (BM)-derived monocytes into the

central nervous system (CNS) are key elements of this inflammatory

response, with both cell types capable of promoting tissue healing and

repair, as well as disease pathogenesis and cell damage. However,

despite the pervasive representation of these two cell types in CNS

disease (Marioni et al., 2018; McQuade & Blurton-Jones, 2019; Zhang

et al., 2014), the interplay between resident microglia and recruited

monocyte-derived cells (MC), and the precise contribution to pathol-

ogy of each cell remain poorly resolved.

Microglia and MCs are ontogenetically distinct cell types. Micro-

glia are CNS-resident tissue macrophages arising from uncommitted

KIT+ erythromyeloid precursors (Kierdorf et al., 2013) that seed the

CNS from the yolk sac during embryogenesis (Ginhoux et al., 2010).

These CNS-resident cells self-renew in situ, independently of BM-

derived hematopoietic stem cells (HSC) (Ajami et al., 2007). By con-

trast, monocytes are derived from the fetal liver during embryogenesis

and are continuously renewed throughout postnatal life from HSCs in

the adult BM (Geissmann et al., 2010).

Despite microglia and MCs arising from precursors with distinct

developmental trajectories, these cells often adopt similar phenotypes

and morphologies during neuroinflammation, confounding definitive

discrimination between them (Spiteri & Wishart et al., 2022; Spiteri

et al., 2022; Spiteri et al., 2021; Getts et al., 2008). Recent advances in

single-cell RNA-sequencing (scRNA-seq) technologies have shed light

on some uniquely-expressed microglial genes, including Fc receptor-

like S (Fcrls), purinergic receptor P2Y G-protein-coupled 12 (P2ry12)

(Butovsky et al., 2014), Spalt-like transcription factor 1 (Sall1)

(Buttgereit et al., 2016), sialic acid-binding immunoglobulin-type lectin

H (Siglech) and transmembrane protein 119 (Tmem119) (Bennett

et al., 2016). This has substantially aided the identification and resolu-

tion of these myeloid populations. During inflammation, however,

many of these homeostatic markers are downregulated in microglia

(Friedman et al., 2018; Jordão et al., 2019; Krasemann et al., 2017;

Masuda et al., 2019; Vankriekelsvenne et al., 2022) or upregulated in

MCs (H.-R. Chen et al., 2020; Spiteri et al., 2021; Werner et al., 2020),

making their transcriptomic and phenotypic profiles highly

overlapping, highlighting the need for a more comprehensive insight

into the biological processes defining distinct myeloid cells during

homeostasis and across pathologies.

Along these lines, in the last few years transcriptomic sequencing

uncovered a possible universal “disease-associated microglia” (DAM)

(Keren-Shaul et al., 2017) or “microglial neurodegenerative” (MGnD)

(Krasemann et al., 2017) signature that is argued to be conserved

across neurological disease (Beuker et al., 2022; Cao et al., 2021;

Y. Chen & Colonna, 2021; Deczkowska et al., 2018; Hunter

et al., 2021; Plemel et al., 2020; Ramesha et al., 2021; Rexach

et al., 2020; Safaiyan et al., 2021; Tay et al., 2018). These universal

DAM/MGnD signatures characteristically downregulated homeostatic

genes, including P2ry12, Tmem119 and Cx3cr1, and upregulated

inflammatory program genes, including Trem2, Apoe, Axl, Lpl, Itgax and

Clec7a (Keren-Shaul et al., 2017; Krasemann et al., 2017).

In contrast, more recent findings suggest microglia develop het-

erogenous signatures highly specific to a disease state that may

individually drive immune-mediated pathology or promote tissue

repair, rather than adopting a universal disease signature (Friedman

et al., 2018; Olah et al., 2020; Sanin et al., 2022; Sobue

et al., 2021; Sousa et al., 2018; Yang et al., 2021). However, many

of these studies have focused on individual cell types in specific dis-

eases, using disparate experimental approaches and sequencing plat-

forms, which considerably limits our ability to convincingly compare

the identified myeloid signatures and their associated functions

more widely across CNS pathologies. Connecting these disease-

associated signatures across different studies is an essential unmet

need of current research on neuroinflammation and would allow us

to uncover intrinsic myeloid response programs to CNS perturba-

tion, which could realistically inform the development of novel ther-

apeutic and diagnostic tools.

To address this issue, we present a detailed meta-analysis inte-

grating the transcriptomes of resident and CNS-infiltrating myeloid

cells from demyelinating, ischemic, neurodegenerative, traumatic

injury, and infectious conditions. Using high-parameter data

integration and visualization techniques, including clustering algo-

rithms and dimensionality reduction techniques, we compared these

unique profiles to understand the relationship between disease

models and cell types. Specifically, we demonstrate that microglia and

monocyte transcriptomes are highly divergent across pathologies,
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emphasizing the importance of individual disease environments in

shaping myeloid immune responses. We suggest that these special-

ized disease-specific signatures shown in bulk populations are driven

by the differential proportional expansion of unique subpopulations,

identified by scRNA-seq integration, in different disease contexts.

Further, differential expression analysis between microglia and mono-

cytes across pathologies enabled the identification of the tetraspanin

gene, Cd81, as a microglia-enriched transcript that reliably discrimi-

nates between microglia and infiltrating monocytes across all exam-

ined CNS disease models, thereby showcasing the predictive and

practical value of this resource.

2 | METHODS

2.1 | Resource availability

2.1.1 | Lead contact

Further information and requests for resources and reagents should

be directed to and will be fulfilled by the Lead Contact, Professor

Nicholas King (nicholas.king@sydney.edu.au).

2.1.2 | Materials availability

This study did not generate new reagents or datasets.

2.2 | Experimental model and subject details

2.2.1 | Mice used for flow cytometry studies

Female 9–10 week-old C57BL/6J mice were obtained from the Ani-

mal Resource Centre (Western Australia, Australia) and kept in indi-

vidually ventilated cages under specific pathogen-free conditions with

access to food and water ad libitum in accordance with National

Health and Medical Research Council's ethical guidelines and the Uni-

versity of Sydney Animal Ethics Committee under the animal ethics

approval number 2019/1696. Mice were randomly assigned to an

experimental condition, that is, non-infected and infected, with at

least three mice per group.

2.3 | Method details

2.3.1 | WNV infection

Mice were anesthetized with isoflurane before they were intranasally

infected with 1.2 � 105 plaque-forming units of West Nile virus

(WNV) (Sarafend) delivered in 10 μl of sterile PBS, as previously

described (Getts et al., 2008). The original virus stock was acquired

from The John Curtin School of Medical Research (ACT, Australia).

2.3.2 | Tissue preparation and staining for flow
cytometry

Mice were anesthetized by intraperitoneal injection of avertin and

perfused transcardially with ice cold sterile PBS before tissue collec-

tion at day 7 post-infection. Spleen, BM, and brains were collected in

ice cold PBS. For BM cells, mouse femurs were flushed using a

30-gauge needle in PBS. Spleens were homogenized into single-cell

suspensions using 70 μm nylon mesh sieves and plastic syringe

plungers. RBC lysis buffer (Invitrogen) was used to lyse erythrocytes

in single cell suspensions of BM cells and splenocytes. Brains were

processed into single-cell suspensions in PBS and DNase I (0.05 mg/

ml) and collagenase (5 mg/ml) (Sigma-Aldrich, MO, USA) using the

gentleMACS dissociator (Miltenyi Biotec, Bergisch Gladbach,

Germany) at 37�C for 30 min. Brain cells were subsequently isolated

from a 30%/80% Percoll gradient, as previously described (Spiteri

et al., 2021; Spiteri et al., 2022). After tissue processing, live cells were

counted with trypan blue (0.4%) on a hemocytometer. Single-cell sus-

pensions were incubated with purified anti-CD16/32 and Zombie UV

Fixable Viability Kit (Biolegend) for 30 min at 4�C in PBS and subse-

quently stained with a cocktail of fluorescently-labeled antibodies

(listed Table 1) in FACS buffer for 30 min at 4�C. Cells were washed

twice and resuspended in fixation buffer (Biolegend). Anti-CD206

(C068C2, Biolegend) was used to stain brain cells intracellularly after

surface staining, fixation and incubation with Cytofix/Cytoperm

(BD Biosciences).

2.3.3 | Acquisition and processing of flow
cytometry data

Fluorescently-labeled antibodies were measured using the 5-laser

Aurora, Spectral cytometer (Cytek Biosciences). Acquired data was

analyzed in FlowJo (BD Biosciences, v10.8). Quality control gating

including time, single cells, non-debris/cells and Live/Dead staining

was applied to exclude debris, doublets and dead cells prior to analy-

sis. Populations shown in Figure 8 were gated as previously published

(Spiteri et al., 2021). Histograms, dot plots (showing surface markers)

and tSNE plots (using default settings) shown in Figure 8 were created

in FlowJo (BD Biosciences, v10.8). The clustered heatmap shown in

Figure 8 was made in R using the pheatmap package (v1.0.12)

(Kolde, 2012).

2.4 | Quantification and statistical analysis

2.4.1 | Identification and selection of eligible gene
expression datasets for meta-analysis

Gene expression studies of acutely isolated microglia and MCs from

adult mouse brains or spinal cords in various disease conditions were

considered for our analysis. We systematically mined PubMed data-

base for microarray, bulk RNA-seq, and scRNA-seq expression

906 WISHART ET AL.

mailto:nicholas.king@sydney.edu.au


TABLE 1 Key resources table

Reagent or resource Source Identifier

Antibodies

Brilliant Violet 510™ anti‐mouse 1‐A/I‐E Biolegend Cat#107635; Clone: M5/114.15.2

Brilliant Violet 570™ anti‐mouse CD4 Biolegend Cat#100542; Clone: RM4‐5

Brilliant Violet 605™ anti‐mouse Ly‐6C Biolegend Cat#128036; Clone: HK1.4

Brilliant Violet 650™ anti‐mouse Ly‐6G Biolegend Cat#127641; Clone: 1A8

Brilliant Violet 711™ anti‐mouse F4/80 Biolegend Cat#123147; Clone: BM8

Brilliant Violet 785™ anti‐mouse CD11c Biolegend Cat#117336; Clone: N418

PerCP/Cyanine5.5 anti‐mouse Siglec H Biolegend Cat#129614; Clone: 551

PE anti‐mouse CD115 Biolegend Cat#135506; Clone: AFS98

BD Horizon™ BUV395 Anti‐mouse CD11b BD Biosciences Cat#563553; Clone: M1/70

PE anti‐P2RY12 Biolegend Cat#848004; Clone: S16007D

PE anti‐mouse/rat CD81 Biolegend Cat#104906; Clone: Eat‐2

PE/Dazzle™ 594 anti‐mouse CD3ε Biolegend Cat#100348; Clone: 145‐2C11

PE/Cyanine5 anti‐mouse NK‐1.1 Biolegend Cat#108716; Clone: PK136

PE/Cyanine7 anti‐mouse CD64 (FcγRI) Biolegend Cat#139314; Clone: X54‐5/7.1

PE/Cyanine7 anti‐mouse CD45 Biolegend Cat#103114; Clone: 30‐F11

APC anti‐P2RY12 Biolegend Cat#848006; Clone: S16007D

APC anti‐mouse/rat CD81 Biolegend Cat#104910; Clone: Eat‐2

BD Horizon™ BUV737 Anti‐mouse CD45R/

B220

BD Biosciences Cat#612838; Clone: RA3‐6B2

BD Horizon™ BUV737 Anti‐mouse CD11c BD Biosciences Cat#612796; Clone: HL3

Alexa Fluor® 700 anti‐mouse CD45 Antibody Biolegend Cat#103128; Clone: 30‐F11

APC/Cyanine 7 anti‐mouse CD86 Biolegend Cat#105030; Clone: GL‐1

APC/Cyanine 7 anti‐mouse CD48 Biolegend Cat#103432; Clone: HM48‐1

BD Horizon™ BUV805 Anti‐mouse CD8a BD Biosciences Cat#612898; Clone: 53–6.7

Brilliant Violet 421™ anti‐mouse CX3CR1 Biolegend Cat#149023; Clone: SA011F11

Brilliant Violet 421™ anti‐mouse CD117 (c‐Kit) Biolegend Cat#B105828; Clone: 2B8

Brilliant Violet 785™ anti‐mouse CD206

(MMR)

Biolegend Cat#141729; Clone: C068C2

TruStain FcX™ anti‐mouse CD16/32 Biolegend Cat#101320; Clone: 93

Bacterial and virus strains

WNV (Sarafend) The John Curtin School of

Medical Research (ACT,

Australia)

Chemicals, peptides, and recombinant proteins

Fixation Buffer Biolegend Cat#420801

BD Cytofix/Cytoperm™ Fixation and

Permeabilization Solution

BD Biosciences Cat#554722

Zombie UV™ Fixable Viability Kit Biolegend Cat#423108

eBioscience™ 10× RBC Lysis Buffer Invitrogen Cat#00‐4300‐54

Deposited data

Keren‐Shaul et al., 2017 Gene Expression Omnibus GSE98969

Krasemann et al., 2017 Gene Expression Omnibus GSE101686

Krasemann et al., 2017 Gene Expression Omnibus GSE101688

Locatelli et al., 2018 Gene Expression Omnibus GSE107792

Mendiola et al., 2020 Gene Expression Omnibus GSE146113

Werner et al., 2020 Gene Expression Omnibus GSE120701

Lewis et al., 2014 Gene Expression Omnibus GSE59725

DePaula‐Silva et al., 2019 Gene Expression Omnibus GSE127233

(Continues)
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profiling. In addition, publicly availably transcriptomic data sets were

searched in the NCBI Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo/). The following search terms were

used: “neuropath*” [Title/Abstract], “neuroinflammation” [Title/

Abstract], “neuroinflammatory diseases” [Title/Abstract], “cns pathol-

ogy” [Title/Abstract], “spinal cord injury” [Title/Abstract], “stroke”
[Title/Abstract], “viral encephalitis” [Title/Abstract], “multiple sclero-

sis” [Title/Abstract], “encephalitis” [Title/Abstract], “Alzheimer's dis-

ease” [Title/Abstract], “Parkinson's disease” [Title/Abstract],

“amyotrophic lateral sclerosis” [Title/Abstract], “motor neuron dis-

ease” [Title/Abstract], “neurodegeneration” [Title/Abstract],

“neurodegenerative disease” [Title/Abstract], “macrophage” [Title/

Abstract], “myeloid” [Title/Abstract], “monocyte-derived” [Title/

Abstract], “monocyte” [Title/Abstract], “microglia” [Title/Abstract],

“single cell rna seq” [Title/Abstract], “single cell rna sequencing”
[Title/Abstract], “single cell rna seq” [Title/Abstract], “single cell rna

sequencing” [Title/Abstract], “scRNA-seq” [Title/Abstract], “single cell

transcriptom*” [Title/Abstract], “single cell transcriptom*” [Title/

Abstract], “RNA seq” [Title/Abstract], “RNA sequencing” [Title/

Abstract], “Bulk transcriptome*” [Title/Abstract], “Gene Expression

Profiling” [Title/Abstract], “Transcriptome” [Title/Abstract], “gene
expression” [Title/Abstract]. References of identified articles were

TABLE 1 (Continued)

Reagent or resource Source Identifier

Hammond et al., 2019 Gene Expression Omnibus GSE121654

Somebang et al., 2021 Gene Expression Omnibus GSE175430

Milich et al., 2021 Gene Expression Omnibus GSE162610

Experimental models: Organisms/strains

Mouse: C57BL/6J Animal Resource Centre (ARC)

(Western Australia, Australia)

Software and algorithms

FlowJo v10.8 BD Biosciences https://www.flowjo.com

DESeq2 Love et al., 2014; Galaxy Version

2.11.40.6 + galaxy1

https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/iuc/deseq2/deseq2/2.11.40.6+galaxy1

featureCounts Liao et al., 2014; Galaxy Version

2.0.1

https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/iuc/featurecounts/featurecounts/2.0.1

annotatemyIDs Galaxy Version 3.12.0 https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/iuc/annotatemyids/annotatemyids/3.12.0

CutAdapt Martin, 2011; Galaxy Version

3.4 + galaxy0

https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/lparsons/cutadapt/cutadapt/3.4+galaxy0

HISAT2 Kim et al., 2015; Galaxy Version

2.1.0 + galaxy7

https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/iuc/hisat2/hisat2/2.1.0+galaxy7

FastQC Andrews, 2010; Galaxy Version

0.72 + galaxy1

https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/

repos/devteam/fastqc/fastqc/0.72+galaxy1

Seurat v4 Hao et al., 2021 https://satijalab.org/seurat/

Spectre Ashhurst et al., 2021 https://immunedynamics.io/spectre/

LIGER v0.5.0 Welch et al., 2019 https://CRAN.R-project.org/package=rliger

topGO v2.44.0 Alexa & Rahnenfuhrer, 2022 https://bioconductor.org/packages/topGO/

pheatmap v1.0.12 Kolde, 2012 https://cran.r-project.org/web/packages/pheatmap/index.

html

Python v3.8.5 Vanrossum & DeBoer, 1991 https://www.python.org

TPMCalculator Vera Alvarez et al., 2019 https://github.com/ncbi/TPMCalculator

UpSetR v1.4.0 Conway et al., 2017 https://cran.r-project.org/web/packages/UpSetR/index.

html

ViSEAGO v1.6.0 Brionne et al., 2019 https://bioconductor.org/packages/ViSEAGO

RankProd 2.0 Del Carratore et al., 2017 https://www.bioconductor.org/packages/devel/bioc/html/

RankProd.html

ggplot2 v3.3.5 Wickham, 2006; Wickham &

Wickham, 2007

https://ggplot2.tidyverse.org/

Galaxy Afgan et al., 2016; Jalili

et al., 2020

https://usegalaxy.org.au

SuperExact test Wang et al., 2015 https://cran.r-project.org/web/packages/SuperExactTest/

index.html
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additionally searched. Studies were eligible for inclusion if: (1) raw

data was accessible on a public data repository, (2) data was acquired

by nanostring, bulk or single-cell RNA-sequencing technologies; and

(3) data included either microglia in disease and control conditions or both

microglia and MCs in disease conditions. Exclusion criteria for all eligible

studies included (1) additional comorbidities (e.g., diabetes, obesity, etc.);

(2) adoptively transferred microglia or monocytes; (3) gene knock-out or

mutant models but not excluding transgenic mice e.g., APP/PS1, 5xFAD,

SOD1G93A; (4) transcriptomes from pharmacologically-treated mice, unless

data from non-treated disease and homeostatic controls were available;

(5) single-cell RNA-sequencing data included a minimum of 600 single cells

passing quality-control metrics (see 2.4.4 Single-cell RNA-sequencing analy-

sis, Pre-processing and normalization). Lists of excluded studies and reasons

for exclusion, along with all study metadata characteristics for included

studies (including time points at which mice were sacrificed, sorting

methods and other possible confounding variables) are provided in

Table S1. Excluded data included 19 samples from Keren-Shaul

et al., 2017 (see Table S1 for sample details and reasons for exclusion of

each sample). Ten transcriptomic datasets from eight separate studies

were integrated to identify conserved and disease-specific transcriptional

signatures and for differential expression analysis (see Table 1 and

Table S1). The following information was recorded for each study: GEO

expression number, cell type, disease model, mouse strain, mouse age

(weeks), mouse sex, sequencing method, sequencing platform, layout (sin-

gle vs. paired), scRNA-seq protocol, library size, cell sorting strategy, ana-

tomical region, and tissue processing method (Table S1). We additionally

determined the FAST QC results for bulk RNA-seq data sets and the

median percent mitochondrial gene expression, median number of unique

genes per cell, and total number of molecules per cell for all included

scRNA-seq data (Table S1).

2.4.2 | Bulk RNA dataset pre-processing and
normalization

FASTQ files were downloaded from the Gene Expression Omnibus

(Barrett et al., 2013) and loaded into the online Galaxy platform (Afgan

et al., 2016; Jalili et al., 2020). Cutadapt (v 1.16.6) (Martin, 2011) was

used to trim known adaptor and primer sequences from raw reads and

filter low quality (minimum quality cutoff = 20) and short reads (mini-

mum length = 20 bp after trimming). All reads passed quality control

checks using FastQC (v0.72 + galaxy1) (Andrews, 2010). Trimmed and

filtered reads were then aligned to the built-in mm10 reference genome

using HISAT2 (v2.1.0 + galaxy7) (Kim et al., 2015). FeatureCounts was

used to generate counts from HISAT2 output files using the built-in

mm10 gene annotation file (v2.0.1) (Liao et al., 2014) and known genes

were annotated with AnnotateMyIDs (v3.12.0). Transcripts per million

mapped reads (TPM) values were calculated using TPMCalculator (Vera

Alvarez et al., 2019) in Python (Vanrossum & DeBoer, 1991). The same

pre-processing, alignment and normalization pipeline was used for each

bulk RNA-sequencing study.

2.4.3 | Nanostring data pre-processing and
normalization

Nanostring data was acquired from Krasemann et al. (2017) already

pre-processed and normalized using nSolver™ software. Data was not

re-analyzed from raw files since it was uniformly processed by a single

study.

2.4.4 | Single-cell RNA sequencing analysis

Pre-processing and normalization

Matrices of UMI counts were downloaded from the Gene Expression

Omnibus (Barrett et al., 2013). The R toolkit Seurat v4.0 (Hao

et al., 2021) was used for quality control processing, graph-based clus-

tering, visualizations and differential gene expression analyses of

scRNA-seq datasets and performed in R (v.4.0.3). Each scRNA-seq data-

set was processed separately. Samples were filtered to remove cells that

were either empty droplets or possible doublets/multiples or had a

higher percentage of reads mapping to the mitochondrial genome. Cells

in each dataset were included if the number of unique genes detected

per cell were between 250 and 25,000 and the percentage of mitochon-

drial reads were less than 5%. As mitochondrial genes were not present

in Keren-Shaul et al. (2017), this dataset was filtered only by the number

of unique genes per cell. Low quality cells were prefiltered from Milich

et al., (2021). The number of cells in each dataset before and after filter-

ing is shown in Table 2. Normalization and variance stabilization of UMI

counts were performed using the sctransform() function in Seurat

(Hafemeister & Satija, 2019). Where possible, mitochondrial gene

expression and total number of reads per cell were regressed out to con-

trol for confounding sources of variation. After normalization and vari-

ance stabilization, linear dimensionality reduction was performed using

PCA on the top 2000 highly variable genes.

TABLE 2 Number of single cells passing quality control metrics in each single‐cell RNA‐sequencing dataset

First author GSE # Disease model # Cells before QC # Cells after QC # QC myeloid cells

Mendiola et al. GSE146113 EAE 9079 6859 3297

Hammond et al. GSE121654 LPC‐induced demyelination 5510 5408 5408

Keren‐Shaul et al. GSE98969 5xFAD transgenic mice 10,146 9636 3958

Keren‐Shaul et al. GSE98969 SOD1G93A transgenic mice 2820 (day 80 only) 2693 1091

Milich et al. GSE162610 Spinal cord injury 66,428 54,049 35,518

Somebang et al. GSE175430 Traumatic brain injury 99,769 90,998 17,097

Abbreviations: 5xFAD, 5 familial AD mutations; EAE, experimental autoimmune encephalomyelitis; LPC, lysophosphatidylcholine; QC, quality control.
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Clustering and cell type annotation

To visualize the pre-processed and normalized scRNA-seq data in two-

dimensional space, Uniform Manifold Approximation and Projection

(UMAP) was performed using the first 29 principal components. We

used FindNeighbours() and FindClusters() functions in Seurat with default

parameters to perform graph-based clustering on a shared nearest-neigh-

bor graph. The optimal clustering resolution was determined by selecting

the lowest resolution separating distinct clusters by a decision tree. Cell

type annotation of clusters was performed using unbiased gene marker

analysis. We performed differential expression analysis using the FindAll-

Markers() function in Seurat with default parameters, which implements a

Wilcoxon rank-sum test comparing gene expression of cells within a

given cluster versus all other cells. For a given cluster, genes with

adjusted p < .05 and log2FC >0.25 were considered as markers for that

cluster. Cell type annotation for myeloid cells were made based on

expression of microglial- and MC-specific genes. For downstream inte-

gration with LIGER and RankProduct analysis, datasets were subsetted

so that only myeloid populations (“MC” or “microglial” clusters) were

present in the datasets.

Integration of myeloid cells using LIGER

Prior to integration, data sets from each disease model were down-

sampled to the limiting cell number (469 microglia from Mendiola

et al.) to ensure equal representation of each disease model in the

integrated data set. Absolute cell numbers for each disease model

prior to downsampling were 685 MCs and 1960 microglia in lysopho-

sphatidylcholine (LPC)-induced demyelination; 3234 MCs and 1468

microglia in experimental autoimmune encephalomyelitis (EAE); 182

MCs and 3620 microglia in 5xFAD; 72 MCs and 1136 microglia in

SOD1G93A; 14,243 MCs and 17,739 microglia in spinal cord injury

(SCI); and 612 MCs and 8434 microglia in traumatic brain injury (TBI).

Microglia from each of the six disease models were downsampled to

469 cells (2814 microglia total) and 469 MCs were selected from EAE,

TBI, SCI (1407 MC total), since MCs were not flow cytometrically

sorted or sequenced by the studies investigating 5xFAD, SOD1G93A,

or LPC-induced demyelination disease models (Table S1).

The R package rliger v0.5.0 (Welch et al., 2019) was used to align

and integrate the pre-processed and subsetted myeloid cells from

scRNA-seq datasets. Only samples from disease conditions were

included in this analysis. Data was integrated following a previously

described protocol by the Welch Lab (Liu et al., 2020). In brief, normaliza-

tion, variable gene selection, and scaling of individual genes were per-

formed with default parameters on the combined dataset. The function

suggestK (num.cors = 6, lamda = 5) was used to determine the optimal

number of factors (k), and suggestLamda was used to determine the opti-

mal regularization parameter, λ (Figure S1). Joint matrix factorization was

performed on the normalized and scaled dataset using integrative non-

negative matrix factorization with optimal parameters k = 12 and λ = 5

to define dataset-specific and shared metagenes (i.e., factors), which cor-

respond to genes that define particular cell types and subsets. The result-

ing factors were then used to jointly cluster cells and perform quantile

normalization by dataset, factor and cluster using the LIGER function

quantile_norm(). Clustering of cells were visualized graphically by UMAP

implemented in LIGER with default parameters. Cell type annotation for

the four MC clusters and eight microglial clusters were made based on

expression of known marker genes (Figure S1). The LIGER-integrated

dataset was converted to a Seurat object for downstream visualization

and differential expression analysis. All plots of integrated scRNA-seq

data were constructed using Seurat (v4.0.1) or rliger (v0.5.0).

Differential expression testing and GO analysis

Identification of differentially expressed genes (DEGs) and gene ontol-

ogy (GO) enrichment analysis was performed on myeloid clusters

identified in the LIGER-integrated dataset. To identify marker genes

for each cluster, the FindAllMarkers() function implemented in the Seu-

rat v4.0.1 package was implemented with default parameters. DEGs

for myeloid clusters were calculated using the Seurat function FindAll-

Markers() using and defined as positively enriched genes with an

adjusted p < .01 and log2FC >0.25 (Wilcox sum rank test), which rep-

resents genes enriched in the cluster versus all other clusters.

Functional GO enrichment analysis from DEGs of each population

(by cluster or by bulk cell population for each disease model) was per-

formed using the VISEAGO (v1.4.0) and topGO (v2.42.0) packages in

R. GO biological process term enrichment was performed using the

VISEAGO create_topGOdata() relative to the background gene expres-

sion, which was defined as the full list of genes expressed in the LIGER-

integrated data set. Enrichment tests were performed with Fisher's exact

test using both the “classic” and “elim” algorithms. Enriched GO terms

were defined as terms with a minimum of 10 genes mapping to a term

and an adjusted p-value greater than .01. For visualization of GO terms,

GO terms for each population were combined into a single matrix using

the ViSEAGO function build_GO_SS() (Brionne et al., 2019) and annotated

using the Bioconductor org.Mm.eg.db database package for the mouse

species (Carlson, 2019). UpSet visualization was performed on the signifi-

cantly enriched GO term matrices using the UpSetR package (v1.4.0)

(Conway et al., 2017), and the significance of intersections was calculated

using the SuperExactTest (v1.0.7) R package, which reports one-tailed

p values (Wang et al., 2015).

2.4.5 | Using a rank product statistic to generate
gene ranks

To compare datasets from different origins and sequencing platforms,

we applied a rank product (RP) statistic to genes common to all stud-

ies (319 genes). To increase our gene list (7804 genes) we excluded

the dataset with the limiting number of genes (Krasemann

et al., 2017) and reapplied the same RP analysis. A RP is a non-

parametric statistical test that ranks gene by their fold-change values,

adjusted p-value and percentage of false discovery (Del Carratore

et al., 2017; Hong et al., 2006). The RP output consists of two tables:

genes ranked in order of upregulation and genes ranked in order of

downregulation. Genes more likely to be up- or down-regulated in

each table have a lower RP value and thus are more highly ranked. A

RP was applied to normalized expression values using a two-class set-

ting (i.e., control vs disease) and a single- (samples originating from
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one study) function. Only studies with a minimum of two replicates

per condition could be included in this analysis (this necessitated the

exclusion of DePaula-Silva et al., 2019) (Table S1).

2.4.6 | 2D visualization of gene ranks

Table 1 from the single-origin RP analysis on the common gene list A

(319 genes) were used for hierarchical clustering and heatmap visualiza-

tion, bubble plots and UMAPs. Clustered heatmaps were generated in R

Studio using the pheatmap package (v1.0.12) (Kolde, 2012). Rows and/or

columns were clustered on for hierarchical clustering using the complete

parameter for clustering_method() and Euclidean parameter for clustering_-

distance(). Bubble plots were made using the ggplots2 package (v3.3.3) in

R studio (Wickham, 2006; Wickham & Wickham, 2007). The R package,

Spectre (Ashhurst et al., 2021), was used to perform dimensionality

reduction by UMAP on data clustered by k-means clustering with Flow-

SOM (xdim = 5; ydim = 5; meta.k = auto) on the common gene list.

2.4.7 | GO analysis and UpSet visualization of gene
ranks

Functional GO enrichment analysis was performed on differentially

expressed or upregulated genes (log2FC >1, p value <.05). The enriched

biological process results were obtained using a Fisher's exact test with

elim algorithm developed in the topGO package. Significantly enriched

GO terms were defined as terms with a minimum of ten significantly

enriched genes mapping to a term and an enrichment p < .05 relative to

the gene background (all expressed genes in the population). For GO

analysis in Figure 3, GO terms for each population were combined into a

single matrix using the ViSEAGO function build_GO_SS() (Brionne

et al., 2019) and annotated using the Bioconductor org.Mm.eg.db data-

base package for the mouse species (Carlson, 2019). UpSet visualization

was performed on the significantly enriched GO term matrices using the

UpSetR package (Conway et al., 2017).

2.4.8 | Identification of differentially enriched
genes

To define cell type-enriched markers, only studies that processed RNA

from MCs and microglia in the same disease state were included in our

analysis. These included (1) Locatelli et al. (2018), (2) Mendiola et al.

(2020), (3) Werner et al. (2020), (4) Milich et al. (2021), (5) Somebang

et al. (2021) and (6) DePaula-Silva et al. (2019). For all bulk RNA-seq

datasets, differential expression analysis comparing MCs to microglia

was performed in DESeq2 on the online Galaxy platform from HISAT2

outputs (v2.11.40.6 + galaxy1) (Love et al., 2014). For the scRNA-seq

dataset, fold-change values from RP outputs were used, since scRNA-

seq data was incompatible with DESeq2 in the online Galaxy platform.

DEGs common to all studies were identified and filtered for genes with a

log2FC > 1 and p < .05. Membrane-expressed DEGs were identified by

annotating gene names in Uniprot (UniProt, 2021). Total enriched genes

were filtered for (1) the term cell membrane in the Uniprot category sub-

cellular location and (2) the terms integral component of plasma membrane

or cell surface in the Uniprot category Gene ontology. The expression of

identified DEGs by microglia and MCs was confirmed at the single-cell

level in the LIGER-integrated scRNA-seq dataset.

3 | RESULTS

3.1 | Integrating studies across CNS disease with
gene rank analysis

To determine how microglial and MC responses converge or diverge

across different pathological settings, we performed an integrative meta-

analysis on eight published studies from independent laboratories describ-

ing different disease models and/or different experimental approaches. In

our analysis, we included transcriptomic datasets from murine models of

acute inflammation and chronic neurodegeneration, including photo-

thrombosis (PT)-induced focal ischemia (Werner et al., 2020), spinal cord

injury (SCI) (Milich et al., 2021) and traumatic brain injury (TBI) (Somebang

et al., 2021) models of sterile injury, experimental autoimmune encephalo-

myelitis (EAE) (Krasemann et al., 2017; Locatelli et al., 2018; Mendiola

et al., 2020) and lysophosphatidylcholine (LPC)-induced demyelination

(Hammond et al., 2019) models of multiple sclerosis (MS), 5xFAD (Keren-

Shaul et al., 2017) and APP/PS1 (Krasemann et al., 2017) transgenic

models of Alzheimer's disease (AD), and the SOD1G93A model of amyo-

trophic lateral sclerosis (ALS) (Keren-Shaul et al., 2017; Krasemann

et al., 2017) (Figure 1a,b and Table S1). This data was obtained from three

different sequencing platforms, including nanostring, scRNA-seq or bulk

RNA-sequencing technologies (Figure 1b).

Direct comparison of gene expression or fold-change data

acquired from different sequencing technologies, laboratories and dis-

ease models is highly challenging, as global normalization often fails to

overcome lab-specific batch effects. To surmount this, we integrated

data sets from multiple origins using a rank product approach on

genes common to all studies (Figure 1c). This method employs a sim-

ple non-parametric test to generate a single-origin rank product (RP)

statistic, which ranks genes in order of upregulation and downregula-

tion for each study using fold-change, adjusted p-value and percent-

age of false predictions (Del Carratore et al., 2017; Hong et al., 2006).

Thus, a comparison of gene ranks or RP values across different studies

enables a reliable determination of which genes are likely to be regu-

lated across different CNS disease models.

We performed a single-origin RP analysis on transcriptomic data

sequenced from both microglia and MCs (Figure 1a–c). Within each

study, fold-change calculations were made between microglia from

disease (dMg) and homeostatic/control conditions (hMg) (Figure 1c).

However, the absence of peripherally-derived MCs in homeostatic

brains meant this control was unavailable for MCs in these studies.

Therefore, fold-change calculations were instead made between MCs

from disease conditions (dMC) and microglia from disease conditions

(dMg) (Figure 1c). While disease-related microglia are a suboptimal

WISHART ET AL. 911



control for disease-related MCs, such comparisons are used to assess

MC gene expression in the brain in most studies, as more suitable

controls (i.e., blood or BM-derived monocytes) are rarely included in

published work. However, this decision illustrates the intrinsic chal-

lenges underlying a comprehensive meta-analysis of published data.

Thus, while this approach aligns with previously published work

(DePaula-Silva et al., 2019; Schlachetzki et al., 2018; Yamasaki

et al., 2014), accurately understanding MC biology will require con-

sensus MC controls to be included by future investigators.

Integrating data sets by genes common to all eight studies nar-

rowed our gene list to 319 genes (Common Gene set A). This limited

number of genetic candidates was dictated by the small dataset pub-

lished by Krasemann et al., 2017. Thus, to broaden the scope of our

analysis, we performed a parallel analysis where we excluded the

smallest data set (Krasemann et al., 2017, n = 411 genes), thereby

increasing our gene list 24-fold (n = 7804 genes) (Common Gene set

B), but reducing the number of studies to 7 (Figure 1c).

3.2 | Cell type-specific programs are dependent on
disease-specific perturbation for microglia and MCs

To compare the disease signature of microglia and monocyte-derived

cells to the nominal universal microglial signature, as defined in

Krasemann et al., 2017 we first used the Common Gene set A (n = 319

genes). Strikingly, we observed few similarities between disease-specific

signatures. This is shown by the minimal overlap in the top 10 highest

and lowest ranked genes and the trajectory of gene ranking, as visualized

by the plateau phases and slopes of the bubble plots (Figure 2a). Notably,

no commonly upregulated genes were identified across diseases

between either microglia or MC populations. This suggests that microglia

and MCs adopt separate, highly specific responses to unique disease set-

tings, with minimal overlap across pathologies that is distinct from the

universal microglial signature identified in Krasemann et al., 2017.

Next, to confirm these disease-specific responseswe coupled our gene

rank analysis with an unbiased approach using unsupervised dimensionality

reduction, k-means clustering and hierarchical clustering (Figure 2b–f).

Importantly, clustering analysis of individual myeloid populations showed

intermixing of different studies and sequencing platforms, suggesting little

or no bias specific to sequencing technology or laboratory in this analysis

(Figure 2d–f and Table S2). Notably, MC and microglial populations did not

cluster by cell type or by diseasemodel (Figure 2b,c,f), supporting the notion

thatmyeloid populations adopt unique profiles.

We confirmed disease-specific signatures in Common Gene set B

(n = 7804 genes) (Table S3), demonstrating that these differences are

not specific to the smaller dataset. We then assessed functional simi-

larities between these unique transcriptional profiles by gene ontol-

ogy (GO) enrichment analysis on the upregulated genes (log2

fold-change >1, p-value <.05) from the larger gene set (Common Gene

set B, n = 7804 genes) and evaluated overlap in GO terms between

diseases using an UpSet plot (Figure 3). We observed no significant

overlapping biological functions between any two microglia popula-

tions in any diseases. Significant overlap in these functions, however

existed between microglia and MCs in TBI and between MCs in both

TBI and stroke (Figure 3, and Table S3). This emphasizes that the tran-

scriptional profiles of microglia and MCs are contingent upon the dis-

ease environment, but may converge in a disease-dependent manner.

Overall, however, the limited set of significant intersecting lines

between populations indicate more uniquely-enriched than shared

functions across diseases (Figure 3).

(a) (c)(b)

F IGURE 1 Integrating studies across CNS disease with gene rank analysis. (a–b) Summary of datasets used in the single origin rank product
(RP) analysis including cell type, disease and disease model, number of samples, study origin and sequencing modality used. (c) Flow chart of
analysis pipeline. Single origin RP analysis was performed on normalized expression values on a common gene list from eight datasets (n = 319
genes, Common Gene set A) or seven datasets (n = 7804 genes, Common Gene set B), including or excluding Krasemann et al., 2017, respectively.
Microglia fold-change calculations were made between microglia from disease (dMg) and homeostatic/control conditions (hMg). MC fold-change
calculations were made between MCs from disease conditions (dMC) and microglia from disease conditions (dMg)
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3.3 | Integration of scRNA-seq data connects
myeloid signatures across disease

We next wanted to evaluate whether these disease-specific signa-

tures were reflected at the single cell level. We therefore used LIGER

(Liu et al., 2020; Welch et al., 2019) to integrate myeloid populations

from six scRNA-seq datasets investigating LPC-induced demyelination

(Hammond et al., 2019), EAE (Mendiola et al., 2020), 5xFAD,

SOD1G93A (Keren-Shaul et al., 2017), TBI (Somebang et al., 2021) and

SCI (Milich et al., 2021) (Figure 4a). This approach enabled us to

(1) assess gene expression data independent of gene ranking, (2) assess

MCs independently of their comparison to disease-related microglia,

and (3) examine microglia and MC subpopulations that may be unique

to, or conserved across, multiple disease states, which may be missed

at the bulk population level. Prior to data integration, all scRNA-seq

studies underwent the same pre-processing, normalization, and

clustering workflow. Microglia and MCs were defined by their expres-

sion of microglia-specific genes, P2ry12, Tmem119, Sparc, Hexb, Fcrls,

Siglech and monocyte-specific/enriched genes, Ly6c2, Plac8, Vim,

Cd44, respectively, and the lack of expression of border- and

CNS-associated macrophage-specific genes (e.g., Cd163, Cd206)

(Figure S1) and other cell lineage markers. Identified cell populations

did not cluster by anatomical region, suggesting these populations are

not spatially-dependent (Figure S1). Pre-defined myeloid populations

from the above disease conditions were then integrated into a single

dataset and downsampled to the limiting cell number. Joint matrix fac-

torization, quantile normalization, dimensionality reduction and joint

clustering were then performed on 2814 microglia and 1407 MCs

(Figure 4a and Figure S1) in our integrated dataset.

To compare our integrated scRNA-seq dataset to our gene rank

analysis on bulk populations, we first created pseudo-bulk microglia/

MC populations by grouping single cells into cell type, study and

(b) (c)

(e)(d)

(f)

(a)F IGURE 2 Clustering analysis
connects the transcriptomic
responses adopted by microglia
and MCs in disease. (a) Bubble
plots showing gene ranking using
Common Gene set A by order of
upregulation (x-axis) with
associated p-values (y-axis), fold-
change (bubble size) and

percentage of false predictions
(pfp) values (bubble color) for
selected MC (the cell type
indicated by orange boxes) and
microglia (indicated by green
boxes) populations. The top- and
bottom-ranked genes are listed in
these boxes, placed at the top
right of each plot, for MC (orange
boxes) and microglia (green
boxes). (b–e) UMAP plots of
18 microglia and 12 MCs samples
pseudocolored by cell type (b),
disease (c), sequencing
technology (d) or study (e).
UMAPs were run on gene rank
values for the 319 genes of
Common Gene set A. See also
Table S2 for a list of populations
used with their study and disease
origins. (f) Heatmap showing gene
rank values for the 319 genes of
Common Gene set A in order of
upregulation for MC and
microglial populations. Clustering
was performed on both rows
(genes) and columns (populations).
See also Table S2 for a list of
populations used with their study
and disease origins in order of the
clustering arrangement shown in
the heatmap
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disease model. Differential gene expression and GO term enrichment

analysis was then perfomed on these pseudo-bulk populations

(Figure 4b). This revealed a similar pattern to our gene rank approach,

demonstrating overall that the majority of bulk myeloid populations

had more unique than shared biological functions across pathology.

When more shared than unique processes existed, these were

between microglia and MCs in the same disease setting, e.g., microglia

and MCs in EAE, TBI and SCI (Figure 4b). Supporting our RP analysis,

this suggests that microglia and MC responses are principally disease-

and disease model-specific, with the disease environment bearing an

important role in shaping similar profiles of these cells within the same

disease.

3.4 | Differing proportions of unique myeloid
subtypes drive disease-specific signatures in bulk
populations

To understand what drives the identified disease-specific signatures,

we performed clustering analysis on individual single-cells in the

LIGER-integrated scRNA-seq. This enabled us to identify myeloid sub-

populations that are shared across or unique to each of the six disease

models (Figure 5a).

This revealed a core set of microglia and MC clusters, determined by

their differential expression of subset-defining markers (Figure 5b) and

enriched GO pathways (Figure 6 and Table S4). Among the 8 microglial

clusters, we identified interferon-related (Mg2), inflammatory (Mg3,Mg8),

phagocytic (Mg4) and DAM-related (Mg6) microglia, each of which dis-

played unique genetic and functional programs (Figure 6a,c). Although

we identified the DAM-related cluster (Mg6) (Figure S2), argued to be a

universal microglia disease state, this was only one of 8 microglia sub-

populations that was shared across diseases, suggesting that there are

other signatures that are conserved. For MCs, we identified four clusters

that included inflammatory (MC3), antigen-presenting (MC4), and

lipopolysaccharide (LPS)-responsive (MC2) states. Importantly, these clus-

ters were consistently detected in each disease model (Figure 5c), dem-

onstrating that microglia and MCs can acquire a variety of functionally

different and unique states throughout the course of a disease. However,

the proportions of these clusters differed in each disease (Figure 5c,d),

suggesting functionally distinct populations are individually expanded in

response to different disease settings.

We observed that the expansion of individual myeloid subtypes was

highly specialized to microenvironmental cues in each disease model. For

instance, Mg4 (phagocytic Mg) was the most prevalent microglial subset

in 5xFAD (35.1% of all myeloid cells), which was shared with LPC-

induced demyelination (28.6%) and TBI (19.5%) (Figure 5c,d), potentially

representing a cell state important for debris clearance in these disease

models. In contrast, Mg3 (inflammatory Mg) was the most common

microglia population (18.8%) (Figure 5c,d) in SOD1G93A, pointing to

important differences between this model and other neurodegenerative

diseases, such as the 5xFAD model of AD that may induce a more

phagocytic cellular state. Mg2 clustered separately from the other micro-

glia (Figure 5a) and was enriched for interferon-related genes (Ifit3, Ifit2,

Ifit1, Irf7) (Figure 5b) and genes related to the negative regulation of viral

genome replication, response to bacterium, cellular response to LPS, cel-

lular response interferon-γ, and defense response to protozoan

(Table S4), potentially suggesting that this population may be uniquely

expanded in response to infectious stimuli (e.g., viruses, bacteria, and

protozoa), but persists at low levels in neurodegeneration, sterile injury,

and demyelinating disorders. Despite filtering out low quality cells

F IGURE 3 Cell type-specific programs are dependent on disease-specific perturbation. UpSet plot showing shared and unique gene ontology
(GO) biological processes associated with genes significantly upregulated (p > .05, log2 > 1) by microglial and MC populations out of the 7804
genes of the Common Gene set B. Populations are colored by cell type and disease-model membership and arranged in order of increasing to
decreasing number of biological processes associated with each population. The number of shared or unique GO biological processes (p < .05) are
shown by the bar graph and the corresponding population(s) are indicated by the dot plot panel below. Lines connecting populations indicate
shared GO processes. Individual populations are indicated by a singular dark circle with no intersecting lines. Significant intersections are shown
in red and were determined using the SuperExact test. See Table S3 for a list of the GO terms and significance of each intersection shown
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(i.e., cells with high mitochondrial gene expression and low relative RNA

content), microglial populations, Mg1 and Mg7 show a high differential

expression of ribosomal genes (Figure 5b). These populations could rep-

resent cells important for transcriptional regulation of terminal cell

differentiation.

In contrast to microglia, the four MC clusters demonstrated overlap

in their transcriptional and functional states, despite unique MC clusters

dominating each disease model (Figure 5c,d). In TBI, for instance, MC4

was the most prevalent MC population (17.6% of all myeloid cells) and

was enriched for genes related to antigen processing and presentation

of exogenous peptide antigen, a functional state partially shared with

MC3, represented at much lower numbers in in TBI (Figure 5c,d and

Table S4). MC2, on the other hand, was the most prominent MC subset

in EAE (16.1% of all myeloid cells) and was enriched for genes related

to cellular response to interferon-β and LPS (Figure 5c,d and Table S4).

MC1 was the most prevalent population in SCI (18.0% of all myeloid

cells) and was enriched for genes related to cell redox homeostasis and

aerobic respiration (Figure 5c,d and Table S4). Notably, UpSet analysis

on enriched GO terms for each cluster demonstrated 48 shared func-

tional pathways between the four MC clusters, which included

interferon-responsive, oxidative stress, innate immune responses, cyto-

kine production, and inflammatory signaling cascade pathways

(Figure 6b,c, Tables S4 and S5). We observed small variations in this

core MC state between clusters, often with pathway overlap between

two or more clusters (Table S5), possibly indicating a continuous popu-

lation rather than a series of distinct MC subtypes.

Together, this work suggests that the microenvironment drives

the expansion of unique myeloid subtypes that drive disease-specific

signatures in bulk populations.

3.5 | Cross-disease comparison reveals CD81 as a
microglia-enriched marker in neuroinflammation

Considering that some nominal microglia-specific markers are down-

regulated during pathology (Krasemann et al., 2017; Spiteri

(a)

(b)

F IGURE 4 Single-cell RNA-sequencing integration workflow with LIGER. (a) Myeloid cells from six disease models from five separate studies
were integrated using LIGER. Data sets were downsampled prior to integration to ensure equal representation across disease models
(469 microglia from each six disease models, 469 MCs from EAE, TBI, and SCI). Optimal k and lambda values were determined prior to clustering
(Figure S1). Datasets were then integrated with LIGER and subjected to joint matrix factorization (k = 12, lambda = 5), quantile normalization,
dimensionality reduction and joint clustering (data set alignment = 0.878). UMAPs of the LIGER-integrated dataset show representation of both
cell types intermixed across the six disease models. (b) UpSet plot showing overlap in the number of enriched GO terms for microglia and/or MCs
from six disease models from the LIGER-integrated dataset. GO term enrichment was performed on the differentially expressed genes on
pseudo-bulk cell populations from each disease versus every other disease. Samples are colored by disease-model membership and arranged in
order of increasing to decreasing number of biological processes associated with each population. Populations that share GO terms are indicated
by connecting lines in the dot plot. Individual populations are indicated by a singular dark circle with no intersecting lines. Significant intersections
are shown in red and were determined using the SuperExact test.

WISHART ET AL. 915



LPC

SCI TBI

EAE

5xFAD SOD1G93A

MC1

Klrd1   
Flt3    
Cd209a  
Jaml    
Cd7     

Clec10a 
Napsa   
Kmo     
Dpp4    
P2ry10

MC2

S100a4  
Vcan    
S100a6  
Ccr2    
S100a11 

S100a10 

Anxa2   
Crip1  

MC3

Nos2    
Inhba   

Upp1    
Irg1 

Cfb     
Ass1    
Il1rn   
Slc7a2  
Slc7a11

MC4

Klrd1   
Flt3    
Cd209a  
Jaml    
Cd7  

Clec10a 
Napsa   
Kmo     
Dpp4    
P2ry10 

Mg1

Apoe   
Rpl18a 
Rpl32  
Rpl23  
Rps14  

Rps9   
Rps5   
Rpl4   
Rpl10  
Rps15 

Mg2

Rsad2 

Usp18 

Cmpk2 
Mx1   
Pydc4 
Irf7  
Oasl1

Mg3

Ms4a7     
Rapsn     
Cib2      
Lipa      
Serpinb6a

Wdfy3     
Idh1      
Acp5     
Gna12     
Slc17a5 

Mg6

Cst7   
Ctsd   
Lpl    
Cd9    
Ctsz  

 Grn    
C1qa   
Cadm1  
C1qc   
Syngr1

Mg8

Egr1     
Nfkbiz   
Jun      
Ppp1r15a 
Junb

Ccl4     
Atf3     
Ier5     
Tnf 
Btg2   

Mg4

Cst3    
P2ry12  
Selplg  
Hexb    
Olfml3  

Gpr34   
Cd81    
Cx3cr1  
Sparc   
Tmem119

Mg5

 X1110038B12Rik
1rbgT2hsSr1fsC

Macf1       Arhgap5
Srgap2          Rhob
Cx3cr1   Ndufb1.ps

Mg7

Impdh2     
Ccl12      
Ranbp1
Srm        
Ncl 

105

28

49

13

134

18

65

33
10

14 110

32

87

105

77

15

131

34

28

151

131

37

69

5

58

164

71

54

24

42

59

24

88

73

86

64

5
22

2
37
9

119

6

81

169

90

46

175

82

30

97

12
31

75

16

85

52

183

124

84

11

45

92

6

165

0

250

500

750

5x
FA

D

SO
D
1
G
93

A

LPC
EA

E
SC

I
TB

I

A
b

s
o

lu
te

 c
e

ll
 n

u
m

b
e

r

Mg1
Mg2
Mg3
Mg4
Mg5
Mg6
Mg7
Mg8

MC1
MC2
MC3
MC4

Myeloid cluster

Mg4 35.1% Mg3 18.8%

Mg4 28.6%

Mg6 18.7% Mg4 19.5%

Mg6 14.0%
MC2 16.1%

MC4 17.6%MC1 18.0%

Microglia and MC

Mg1

Mg2

Mg3Mg6

Mg5

Mg4

Mg7

Mg8

MC1

MC3

MC2

MC4

UMAP1

U
M

A
P

2

Microglia

Mg1

Mg2

Mg3Mg6

Mg5

Mg4

Mg7

Mg8

UMAP1

U
M

A
P

2

MC

MC1

MC3

MC2

MC4

UMAP1

U
M

A
P

2
UMAP1

U
M

A
P

2

Nop56
Rps26.ps1   
Ran
Rps18.ps3
Rpl23a.ps3     

(a)

(b)

(c) (d)

F IGURE 5 Integrative analysis of single-cell RNA-sequencing datasets identifies conserved and disease-specific MC and microglial clusters
across six disease models. (a) UMAPs of myeloid cells from the downsampled LIGER-integrated dataset overlaid by either microglia (2814 cells)
and/or MC clusters (1407 cells). See also Figure S1 for the expression of cell type-specific genes used to annotate cell types. (b) Top
10 differentially expressed genes per cluster. Differentially expressed genes were defined as genes enriched in a cluster versus all other clusters
(log2 fold-change >0.25, p value <.01) by Wilcoxon rank sum test. (c) Absolute cell numbers of microglial and MC clusters across the six disease
models. Datasets were downsampled prior to integration to ensure equal representation across disease models (469 microglia from each six
disease models, 469 MCs from EAE, TBI, and SCI). Absolute cell numbers for each disease model prior to downsampling were 685 MCs and 1960
microglia in LPC-induced demyelination; 3234 MCs and 1468 microglia in EAE; 182 MCs and 3620 microglia in 5xFAD; and 72 MCs and 1136
microglia in SOD1G93A, 14,243 MCs and 17,739 microglia in SCI; and 612 MCs and 8434 microglia in TBI. (d) Highest proportional representation
of MC (blue) and microglia (red) clusters for each disease model overlaid onto UMAPs of myeloid cells from each disease model. Numbers
represent the relative percentage of each of the myeloid clusters of the total myeloid pool in each disease model. Disease models 5xFAD,
SOD1G93A, and LPC-induced demyelination contain only microglia (469 cells per disease model), whereas EAE, TBI and SCI contain both microglia
and MCs (938 cells per disease model)
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et al., 2021; Vankriekelsvenne et al., 2022), we sought to find a novel

and stably-expressed microglia marker to reliably identify these cells

in disease at both RNA (Werner et al., 2020) and protein level. We

performed differential expression analysis on individual bulk and

scRNA-seq studies to evaluate the genes highly enriched in microglia

versus MCs across CNS disease (Figure 7a). For this analysis only

studies that examined both microglia and MCs in the CNS simulta-

neously were used. This included the additional infectious disease

model, using Theiler's encephalomyelitis virus.

This analysis identified 192 and 119 genes differentially enriched in

MCs and microglia, respectively, that were conserved across five models

of CNS pathology, including EAE, SCI, TBI, PT and Theiler's encephalo-

myelitis virus infection (Figure 7a and Table S6). Filtering these genes by

their cellular localization on the plasma membrane revealed 12 and

22 MC and microglia differentially enriched membrane markers, respec-

tively (Figure 7a–c), including previously identified MC markers Cxcr4

and Cd44 that have been used to distinguish these cells from microglia

in stroke (Werner et al., 2020) and EAE (Lewis et al., 2014) (Figure 7c).

Of interest, Cd81 was stably expressed by microglia across all models of

CNS inflammation, with a 25-fold higher median expression relative to

MCs (Figure 7c). This marker is a species-conserved microglial-enriched

tetraspanin gene (Geirsdottir et al., 2020) expressed on the cell surface,

reagents for which are commercially available for flow cytometric and

RNA detection, making this a potentially suitable marker for detecting

these cells multimodally across species.

We confirmed the differential expression of Cd81 at the single-

cell level in our LIGER-integrated scRNA-seq dataset and observed

that Cd81 remained highly expressed by all microglial clusters

(i.e., Mg1 to Mg8), but remained expressed only at low levels by MCs

during neuroinflammatory conditions (Figure 7d,e). Importantly, previ-

ously identified membrane markers for yolk-sac-derived microglia

(e.g., P2ry12, Tmem119) showed variable expression in all microglia

clusters relative to Cd81 expression (Figure 7e). Although genes such

as Sparc (Jordão et al., 2019) and Hexb (Masuda et al., 2020) were also

enriched in all microglia populations (Figure 7e), the intracellular local-

ization of their encoded protein products do not allow antibody bind-

ing in live cells without lethal cell permeabilization, thus precluding

downstream live cell experimental approaches (e.g., after flow cyto-

metric sorting) in the absence of specific genetic manipulation

(Masuda et al., 2020). As CD81 is a surface expressed protein, this

marker can be used for live cell sorting, providing an advantage over

the previously identified microglial-enriched genes, Sparc and Hexb.

F IGURE 6 Differing proportions of unique myeloid subtypes drive disease-specific signatures in bulk populations. (a and b) UpSet plot
showing overlap in the number of enriched GO terms for each of the (a) eight microglia (n = 2814 single cells) or (b) four MC (n = 1407 single
cells) clusters identified in the LIGER-integrated scRNA-seq dataset from six disease models. GO term enrichment was performed on the
differentially expressed genes for each cluster (log2FC >0.25, p value <.01) and enriched GO terms were defined as terms with more than
10 genes mapping to a term and a p value less than .01 (Fisher's exact test, elim algorithm). Populations that share GO terms are indicated by
connecting lines in the dot plot. Individual populations are indicated by a singular dark circle with no intersecting lines. Significant intersections
are shown in red and were determined using the SuperExact test. See also Table S5 for a list of the significance of each intersection shown.

Samples are colored by cell cluster and arranged in order of increasing to decreasing number of biological processes associated with each
population. (c) Heatmap showing the top three GO terms for each microglia and MC cluster. See also Table S4 for a list of all GO processes.
Clustering was applied to columns only
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(a)

(b) (c)

(d) (e)

F IGURE 7 Cross-disease
analysis reveals Cd81 as a
microglial-enriched gene in
neuroinflammation. (a) Flow chart
analysis pipeline used to identify
differentially enriched microglial
and MC genes in the inflamed
brain. Six studies that
simultaneously analyzed microglia

and MCs in the CNS were used to
identify 192 and
119 differentially enriched
(p > .05, log2 > 1) MC and
microglia genes, respectively. This
gene list was filtered in Uniprot to
identify membrane expressed
genes, which were subsequently
validated with expression data
using an integrated scRNA
dataset. (b) Volcano plots showing
all genes differentially enriched by
microglia and MCs in EAE, SCI,
TBI, PT and TMEV. The top
35 differentially enriched genes
are annotated. See also Table S6
for a list of these genes. (c) Box
plots showing differentially
enriched surface/plasma
membrane-expressed genes for
microglia and MCs. (d) UMAPs
showing single-cell gene
expression overlays for Cd81 in
MC and microglial clusters
identified in the integrated
scRNA-seq dataset. (e) Violin
plots showing the expression of
Cd81 relative to nominal
microglia-specific genes in the 12
myeloid clusters
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To validate Cd81 as a microglia-enriched marker for flow cytome-

try during pathology, we investigated the expression of CD81 protein

on microglia and CNS-infiltrating MCs in a mouse model of flaviviral

encephalitis (Figure 8). Since many microglia-specific markers are

either downregulated by microglia or upregulated by MCs during

inflammation, we used a highly inflammatory model of CNS disease

with a significant monocytic infiltrate to validate the differential pro-

tein expression of this marker on these cells. West Nile virus (WNV)

encephalitis causes a severe inflammatory response characterized by

a �10-fold increase in the number of leukocytes in the brain, with

approximately 50% of this infiltrate comprising Ly6Chi inflammatory

macrophages (Getts et al., 2007; Getts et al., 2008; Getts et al., 2012;

Getts et al., 2014; Spiteri et al., 2021; Spiteri & Wishart et al., 2022;

Terry et al., 2012; Terry et al., 2015). Examination of CD45+ cells in

the virus-infected brain on day 7 post-infection confirmed that CD81

was expressed at high levels only on microglia (Figure 8b–e) and not

on Ly6Chi MCs or microglia-like MCs (i.e., myeloid cells of non-

microglial origin present in the infected brain with a CD45+,

CX3CR1+ and CD11b+ profile similar to microglia, but absent in the

homeostatic brain) (Spiteri et al., 2021). Interestingly, CD81 was not

detectable on microglia during homeostasis (Figure 8f), despite the

homeostatic expression of RNA for this molecule (Geirsdottir

et al., 2020), suggesting that the induction of protein expression

occurs during inflammation. Furthermore, while CD81 is microglia-

enriched out of all CNS resident and infiltrating leukocytes, this pro-

tein is expressed by a number of cells in the bone marrow and spleen,

suggesting that CD81 is downregulated by infiltrating cells upon entry

into the CNS (Figure 8b, Figures S3 and S4). Taken together, while

other disease models need to be investigated, this data suggests that

under highly inflammatory conditions, the differential expression of

CD81 in combination with previously reported CD45, Ly6C, CX3CR1

or P2RY12 (Spiteri et al., 2021) in the CNS, enables a novel and simple

method for discriminating microglia from other leukocytes by flow

cytometry, as well as for live cell sorting and imaging.

4 | DISCUSSION

Despite decades of research and recent technical advances, the differ-

ential and shared contributions of microglia and MCs to disease and

disease resolution are still poorly understood. While their immense

functional and phenotypic diversity make this problem intrinsically

complex, this is further exacerbated by the wide range of technologies

and analytical approaches used to describe these cells in different

(a)

(d)

(b) (c)

(f)(e)

F IGURE 8 CD81 is a microglial-enriched protein expressed in neuroinflammation. (a) tSNE plot showing West Nile virus-infected brains with
resident and infiltrating CD45+ leukocyte populations overlaid. (b) Violin plots showing the expression of CD81 on cell populations identified on
the tSNE plot. (c) Histogram showing the expression of CD81 by microglia relative to infiltrating macrophage populations and fluorescence minus
one (FMO) for CD81 in infected brains. See also Figures S3 and S4 showing CD81 expression by leukocyte populations in the bone marrow and
spleen, respectively. (d) Heatmap showing the expression of markers on cell populations shown in (a). (e) FACs plot showing the expression of

CD81 and CD45 on microglia and other CD45+ leukocytes in infected brains. (f) Histogram showing the expression of CD81 on microglia from
mock and infected brains at day 7 post infection
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fields of research. To address this problem, we have systematically

integrated the transcriptional and functional profiles of resident and

CNS-infiltrating myeloid cells obtained from demyelinating, neurode-

generative, ischemic, traumatic and infectious conditions across three

sequencing modalities. Concatenating the gene expression profiles

across these models identified a quorum of genes and their associated

functions that were principally disease-specific.

In contrast to the proposed universal microglia signature, we

observed that individual disease environments drive microglia to

adopt highly specialized signatures with minimal overlap across CNS

conditions. Analysis of bulk microglia populations demonstrate limited

overlap in gene expression profiles and biological functions between

diseases. More detailed examination of scRNA-seq populations sug-

gest that these disease-specific bulk populations may be a result of

the distinct composition of differing proportions of unique subpopula-

tions in each disease setting, including interferon-related, inflamma-

tory, phagocytic, and DAM-related microglia identified in this report.

Indeed, concatenating microglia populations from each scRNA-seq

study demonstrated more unique than shared biological functions

across pathologies, confirming that although each disease state shared

these subpopulations, the differing proportions drove unique signa-

tures when pooled together. While these disease-specific microglia

populations showed limited overlap across pathologies, they demon-

strated convergence with MC populations in the same disease, sug-

gesting that various activation states are regulated by the disease

setting. The notion of diverse myeloid activation signatures has been

previously proposed by other studies including a meta-analysis inte-

grating various animal disease models (Friedman et al., 2018) and in

human AD, where they identified homeostatic, interferon-, LPS-,

neurodegeneration- or proliferation-related modules (Olah

et al., 2020), closely resembling the activation states reported here. It

remains an important task to understand the signaling pathways driv-

ing the distinct functional specialization of microglia. This could help

restore beneficial functions such as phagocytic functions in the han-

dling of myelin debris associated with senescence (Safaiyan

et al., 2016) or amyloid plaques that arise during AD (Ennerfelt

et al., 2022; Grubman et al., 2021), or prevent maladaptive responses

such as the production of reactive oxygen species or reactive nitrogen

species that may underlie tissue damage in MS (Mendiola et al., 2020)

or viral encephalitis (Getts et al., 2012), respectively.

Intriguingly, microglia and MCs adopt more distinct than shared

expression profiles and functions across pathologies, despite being

exposed to similar inflammatory settings. This may relate to their

unique ontogenies and regulatory signaling patterns (Bennett

et al., 2018; Butovsky et al., 2014; Buttgereit et al., 2016). In contrast

to microglia, MCs showed more similarities across models of acute

neuroinflammation, potentially relating to the limited time spent in

the CNS, compared to microglia, that would normally be required for

adaptation and specialization to environmental cues. Previous single-

cell studies show multiple transcriptionally diverse MCs within a single

disease (Giladi et al., 2020; Jordão et al., 2019; Mendiola et al., 2020).

The accumulation of CNS-infiltrating monocytes in anatomically dis-

tinct CNS compartments may contribute to this previously reported

transcriptomic heterogeneity (Ivan et al., 2021; Jordão et al., 2019;

Locatelli et al., 2018). Alternatively, these distinct transcriptional pro-

grams may represent a trajectory of maturation within the CNS,

where MCs adapt more subtly in response to changes in the local

microenvironment with disease progression (Locatelli et al., 2018)

from an initially conserved, functional program that generally enables

rapid, if generic, control of an acute insult (Sanin et al., 2022).

Single-cell transcriptomics has uncovered nominally microglia-

specific markers. However, several of these markers are downregu-

lated during inflammation (Jordão et al., 2019; Keren-Shaul

et al., 2017; Krasemann et al., 2017) or also expressed by peripherally-

derived cells (Chen et al., 2020; Spiteri et al., 2021), making them

unreliable for the unambiguous identification of microglia in the

inflamed CNS. Highlighting the practical value of our cross-disease

analysis, we here identified Cd81 as a novel and conserved RNA

marker distinguishing microglia from MCs during neuroinflammation.

Indeed, interrogation of other publicly available human and mouse

datasets showed a stable expression of Cd81 across disease states (Li

et al., 2018; Srinivasan et al., 2020; Zhang et al., 2014). Notably, Cd81

is a microglial marker conserved at least across the evolutionary span

of sheep, mice and humans (Geirsdottir et al., 2020). It is not upregu-

lated by monocytes that engraft the brain (Cronk et al., 2018), sug-

gesting that Cd81, in combination with other microglia-enriched

genes, is a robust marker for distinguishing microglia from MCs under

a range of disease conditions.

Importantly, of all the CD45+ cells in the inflamed brain, CD81

protein was highly expressed only on microglia. While other disease

models require further investigation, this work validates the use of

CD81 along with other differentially expressed microglia proteins for

cytometric identification of these cells during severe inflammatory

conditions, such as WNV encephalitis. While other cells also express

this tetraspanin (Maecker et al., 1997), its function appears to be cell

type-specific (Dijkstra et al., 2000; Mordica et al., 2009). The upregu-

lation and expression of CD81 by microglia in the WNV-infected brain

(Figure 8), human AD (Mathys et al., 2019) and in spinal cord injury in

the rat (Dijkstra et al., 2000), may relate to their activation/

transformation (Dijkstra et al., 2000), enhanced proliferative capacity

(Dijkstra et al., 2001; Geisert et al., 2002; Ma et al., 2010) and mobility

(Maecker et al., 1997) and/or the release of extracellular vesicles

(Clayton et al., 2021; Muraoka et al., 2021; Paolicelli et al., 2019) dur-

ing disease.

While our analysis is informative, it has several limitations.

Firstly, we were unable to dissect the contribution of gender or

mouse strain per se to the identified gene profiles. Secondly, given

our stringent criteria for data incorporation (see methods and

Table S1), several studies were not included, restricting our evalua-

tion of other cell types and diseases. For example, the unexplored

contribution of border-associated macrophages to disease (Ivan

et al., 2021) and how their gene expression profiles may relate to

those of microglia and MCs remains unclear. Thirdly, we were

unable to investigate microglia or MCs in certain diseases either

due to the lack of the relevant homeostatic controls or due to a sta-

tistically insufficient number of biological replicates. Fourthly,
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further characterization of these myeloid clusters is still required,

including functional analyses, to determine the biological impor-

tance of these subsets. It is also critical to determine whether spe-

cific myeloid clusters identified here are spatially localized and/or

timepoint dependent. Lastly, to translate these findings into a clini-

cally relevant setting, parallel analysis of human data would be

required, however the potential discordance of animal models and

human disease will require further integrative techniques that can

accurately align biological differences between humans and mice.

While additional characterization is required, we believe this work

provides a cornerstone for building a consensus to enable more

accurate classification of myeloid populations in pathological

settings.

Additionally, the technical and methodological discrepancies

between incorporated datasets have limited more direct comparisons.

This argues for a unified approach in processing, sorting, and analysis

of these cell types to enable integration across broader, often segre-

gated disease research fields. For instance, the use of standard tissue

processing procedures, standard gating strategies to identify and sort

populations for subsequent transcriptomic analysis, and in the

absence of appropriate controls, the use of homeostatic, peripheral

blood monocytes as standardized controls for CNS-infiltrating popula-

tions in the inflamed brain, would resolve many of these issues. A con-

sensus defining a set of standards for the field to unify experimental

and analytical procedures would go a considerable way to begin this

process, as previously attempted for macrophage activation nomen-

clature, transcriptomic profiling of brain barriers and flow cytometry

standards (Cossarizza et al., 2019; Francisco et al., 2020; Murray

et al., 2014).

Together, our meta-analytical approach integrates data across

fields of research and technology to enable comparison of myeloid

behavior in different experimental models of neuroinflammation. As a

resource, this work highlights the importance of cross-disease com-

parison to better characterize the conserved and divergent microglial

and MC responses in CNS disease and contributes to the creation of a

unified perspective of the behavior of these cells across CNS condi-

tions. We demonstrate that microglia and monocyte transcriptomes

are disease-dependent, with differing proportions of unique myeloid

subpopulations driving these bulk population signatures. These

include 8 microglia clusters and 4 monocyte clusters that were func-

tionally-defined and conserved across disease settings, identifying a

core set of myeloid responses. This paves the way for identifying

myeloid “archetypes” across CNS pathologies, which may enable us

more precisely to dissect the influence of disease environments on

functional programs. This is also crucial to inform the ongoing devel-

opment of targeted therapeutic approaches.
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