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Abstract

The mitochondrial genome resides in the mitochondria present in nearly all cell types.

The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the

multimeric format in cells. Individual cell types have different numbers of mitochondrial

DNA (mtDNA) copy number based on their requirements for ATP produced by

oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell

type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient

copies are available to support subsequent developmental events. It also initiates a

program of epigenetic patterning that regulates, for example, DNA methylation levels of

the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish

synchrony to ensure that the embryo and fetus can complete each developmental

milestone. However, altering the oocyte's mtDNA copy number by mitochondrial

supplementation can affect the programming and gene expression profiles of the

developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive

impact on the embryo development rates and gene expression profiles. Furthermore,

mtDNA haplotypes, which define common maternal origins, appear to affect

developmental outcomes and certain reproductive traits. Nevertheless, the manipula-

tion of the mitochondrial content of an oocyte might have a developmental advantage.

K E YWORD S

genomic balance, mitochondrial DNA, mitochondrial supplementation, nuclear transfer,
oogenesis

1 | INTRODUCTION

In the last few years, the role played by the mitochondrial genome in

fertilization outcome and embryo development has gained increasing

interest. In this context, the pig (Sus scrofa) has largely been regarded

as a model of human embryology and development (Humpherson

et al., 2005) and as a model for conducting human preclinical testing

and trials (Bode et al., 2010; Larsen & Rolin, 2004) for which it has

been deemed to be excellent in both respects (Perleberg et al., 2018).

Nevertheless, the outcomes of these studies should be of significant

value to pig scientists, veterinarians, and breeders who seek to

maximize reproductive and other economic breeding traits to

produce superior animals for the food chain and other breeding

purposes. This review focuses on the role of the mitochondrial

genome from the perspective of the oocyte and how it can influence

fertilization outcome and development; and how its copy number is
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strictly regulated to ensure key developmental milestones are met.

We further highlight how the nucleus and mitochondrial genome

need to interact to ensure that development can progress.

2 | MITOCHONDRIAL DNA (mtDNA)

The maternally inherited mitochondrial genome (Giles et al., 1980),

otherwise known as mtDNA, resides in each of the large numbers of

mitochondria present within many cell types. It is a double‐stranded

circular genome that ranges from 16.2 kb (mice) to almost 16.7 kb

(pigs) in size across mammalian species (Anderson et al., 1981; Bibb

et al., 1981; Ursing & Arnason, 1998) (Figure 1a). It encodes 13 of the

greater than 90 subunits of the electron transfer chain, which

generates ATP through oxidative phosphorylation (OXPHOS), and is

essential for cells with high energy requirements, such as neurons,

and heart and skeletal muscle cells (Moyes et al., 1998). The

remainder of the genes encoding the other subunits of the electron

transfer chain and all other genes of the mitochondrion are encoded

by the nuclear genome. mtDNA also encodes 2 ribosomal RNA

(rRNA) subunits and 22 transfer RNAs (tRNAs) and has 1 noncoding

region, the D‐Loop (Figure 1b), which contains regulatory regions

that interact with the nuclear‐encoded mtDNA‐specific transcription

and replication factors (Kucej & Butow, 2007). The D‐Loop

also contains two hypervariable regions that are used by molecular

geneticists to map common maternal origins and migratory routes for

many species (Wallace et al., 1999). Based on their maternal origins,

individuals are grouped into mtDNA haplotypes that are character-

ized by similar mitochondrial genomes (Wallace et al., 1999).

3 | mtDNA REPLICATION

mtDNA replication is dependent on a number of nuclear‐encoded

mtDNA‐specific transcription and replication factors that translocate

and enter the mitochondrion, many of which possess mitochondrial‐

targeting tags (Kucej & Butow, 2007). The key transcriptional factors

comprise the mitochondrial RNA polymerase (POLRMT) (Tiranti et al.,

1997), and mitochondrial transcription factors A (TFAM) (Fisher &

Clayton, 1988), B1 (TFB1M), and B2 (TFB2M) (Falkenberg et al.,

2002). mtDNA transcription precedes mtDNA replication, which is

essential as the transcript that is generated undergoes cleavage to

provide the primer (Hillen et al., 2017), used by the mitochondrial‐

specific replicase, DNA polymerase gamma (POLG), to initiate and

F IGURE 1 The porcine mitochondrial genome. (a) The porcine mitochondrial genome is 16.7 kb in size and encodes 13 of the subunits of the
electron transfer chain, namely ND1 to 6 and ND4L, CYTB, COX I to III, and ATP6 and ATP8. It also encodes 2 rRNAs (12S and 16S rRNAs), and 22
tRNAs. It contains two noncoding regions. The smaller region is located two‐thirds of the way around the genome and houses the origin of
L‐strand replication (OL). The major noncoding region is the D‐Loop, which contains the regulatory regions, the H‐strand promoter region (HSP),
the L‐strand promoter region (LSP), and the origin of H‐strand replication (OH). (b) The D‐Loop (mt. 15,434 to mt. 16,679) also contains two
hypervariable regions I and II, the central conserved domain, and three conserved sequence boxes (CSB1‐). rRNA, ribosomal RNA; tRNA,
transfer RNA.
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promote replication (Wernette & Kaguni, 1986). In mammals, the

polymerase consists of two components, a catalytic subunit (encoded

by POLG) and two accessory subunits (encoded by POLG2) which

anchor the catalytic subunit to its template (Carrodeguas et al., 1999)

(Figure 2). Replication is also dependent on the mtDNA‐specific

helicase, Twinkle (TWNK), and the mitochondrial single‐stranded

DNA binding protein (SSBP1) (Korhonen et al., 2003). To facilitate

replication of this double‐stranded molecule, the mtDNA‐specific

topoisomerase (encoded by TOP1MT) is responsible for cleaving and

religating one of the strands (Zhang et al., 2007).

4 | mtDNA COPY NUMBER

Each mitochondrion possesses between 2 and 10 copies of mtDNA

which are tethered to nucleoid structures comprising the nuclear‐

encoded mtDNA transcription and replication machinery and

anchoring proteins (Kucej & Butow, 2007). These copies of mtDNA

originate from an individual's mother's primordial germ cells, the very

first germ cells present just after gastrulation (Nguyen et al., 2019).

This population ranges from approximately 200 copies in mouse (Cao

et al., 2007; Cree et al., 2008; Wai et al., 2008) (Figure 3), possess

approximately 1130 copies (Tsai et al., 2017). During oogenesis, this

population increases exponentially resulting in the mature, fertiliz-

able, metaphase II oocyte possessing between 180,000 and 500,000

copies of mtDNA (Figure 3) across a number of mammalian species

including the pig (May‐Panloup, Chretien, et al., 2005; May‐Panloup,

Vignon, et al., 2005; T. A. Santos et al., 2006).

The population present in the metaphase II oocyte is considered

to be an investment in subsequent developmental events (St John,

2016). Indeed, the metaphase II oocyte possesses significantly more

copies of mtDNA than any other cell type and, when compared with

the nuclear genome at this stage of development, is an equal partner

in terms of genomic or DNA contribution on a per nucleotide basis

(St John, 2019). This investment is necessary as, apart from a minor

mtDNA replication event that takes place between fertilization and

the 2‐cell stage (McConnell & Petrie, 2004), there are significant

reductions in copy number per cell between the 4‐ and 16‐cell stages,

as evidenced in pig embryo development (Spikings et al., 2007) as

each newly formed blastomere divides and, thus, possesses fewer

copies of mtDNA (El Shourbagy et al., 2006) (Figure 3). These

decreases are matched by low levels of expression of the nuclear‐

encoded mtDNA‐replication factors which, again from studies in the

pig, demonstrates the strict regulation of this process (Spikings et al.,

2007). Furthermore, there appears to be an active process of

extrusion of mtDNA into the embryo's neighboring environment

(Hammond et al., 2017; Stigliani et al., 2014). As argued by others,

the developing embryo, thus, begins to increasingly rely on aerobic

glycolysis for energy production (Krisher & Prather, 2012), a

combination of low levels of oxygen consumption and glycolysis,

and a process that is also utilized by tumor cells and first proposed as

the Warburg Hypothesis (Warburg, 1956). In the pig, this is coupled

with an amino acid metabolism at the blastocyst stage that is similar

to the human embryo (Humpherson et al., 2005).

At the blastocyst stage, the final stage of preimplantation

development, mtDNA replication is initiated but this is restricted to

the trophectoderm (Houghton, 2006; Spikings et al., 2007) (Figure 3),

which gives rise to the placenta. This most likely supports the

metabolic requirements of these cells to both provide the inner cell

mass with its required nutrients, and to promote implantation, and

once the blastocyst implants, it is able to feed on the metabolites

produced by its neighboring environment to promote OXPHOS and

provide nutrients throughout fetal development. Unlike nuclear DNA,

the mitochondrial genome is replicated multiple times per cell cycle.

This process does not take place uniformly in all mitochondria but

rather in a limited number and is likely focal (Chatre & Ricchetti,

2013), which may account for the disparity in the assessment of

mtDNA copy number in trophoblast biopsies and its relevance to

aneuploidy and implantation rates (Fragouli et al., 2015;

Treff et al., 2017).

F IGURE 2 The mitochondrial replication machinery mtDNA replication is dependent on nuclear‐encoded mtDNA‐specific transcription and
replication factors that translocate to the mitochondrion. Firstly, mtDNA transcription is initiated, which is a pre‐requisite for replication to
proceed. The key factors involved in mtDNA replication are POLGA, POLGB, TWNK, TOP1MT, and MTSSB. Each is specific to mtDNA
replication only. ETC, electron transfer chain; mtDNA, mitochondrial DNA.
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MtDNA replication is quiescent in the inner cell mass, which

contains undifferentiated, pluripotent cells (Spikings et al., 2007) that

progress through gastrulation, differentiate, and give rise to the

fetus (Figure 3). The persistent dilution of mtDNA copy number

before gastrulation establishes the “mtDNA set point,” which is the

population of mtDNA, that is, the founder population of mtDNA,

that contributes to the offspring's somatic cells (Facucho‐Oliveira

et al., 2007; Kelly et al., 2013). Therefore, when cells initiate

specialization during organogenesis, they use this founder popula-

tion of mtDNA as the template for replication. Replication then

proceeds in a cell‐specific manner to provide individual cell types

with sufficient copies of mtDNA to support their requirements for

OXPHOS‐derived ATP. This, thus, enables mature cells to meet the

energy requirements associated with their specialized functions

(St John et al., 2010) (Figure 3). For example, human skeletal

muscle and cardiac cells will acquire approximately 6800 and 3650

copies per cell, respectively (Miller et al., 2003). Similar studies in

mini pigs show wide‐ranging differences in mtDNA copy number

among tissues (G. Cagnone et al., 2016). Nevertheless, with tissue‐

specific studies, it must also be remembered that the cell types

within tissues would have varying numbers of mtDNA copy based

on their specific requirements for OXPHOS‐derived ATP. Interest-

ingly, the regulation of mtDNA copy number in a cell‐specific

manner is best exemplified by the differences between mature

human sperm (purified populations) that have fertilization potential

and their mtDNA copy number limited to approximately 10 copies

per cell (Amaral et al., 2007) and mature oocytes (stripped of

their cumulus cells) which possess more than 200,000 copies.

Ultimately, mtDNA copy number in oocytes and resulting

embryos is critical for embryo development and resulting

fetal development.

5 | THE MITOCHONDRIAL GENETIC
BOTTLENECK

At gastrulation, some pluripotent cells give rise to primordial germ

cells which are populated with copies of mtDNA that are transmitted

to the next generation through the metaphase II oocyte. It has been

proposed that these copies pass through a filtering or purifying

process, described as the mitochondrial genetic bottleneck

(Marchington et al., 1998) that would normally weed out mutant

copies of the mitochondrial genome to ensure that the recycling of

this maternal only inherited genome passes the least deleterious

effects to the next generation of offspring. However, when the

mutant load is high in these cells, mtDNA disease can ensue

(McFarland et al., 2007). Indeed, mtDNA disease is well‐

documented in humans and is likely to have existed in other species

but has been eradicated due to breeding selection programs where

only the fittest or commercially most beneficial lineages survive.

Nevertheless, the bottleneck appears to exist in livestock species.

Early studies in cattle reported a large drift of mtDNA genotypes

across generations of maternally related cows (Laipis et al., 1988;

Olivo et al., 1983).

In the pig, naturally occurring mtDNA variants (somatic muta-

tions and deletions), some of which might be deleterious, can persist

at high levels in oocytes and preimplantation embryos, and be

transmitted from one generation to the next through the female

germline (G. Cagnone et al., 2016). To this extent, we identified four

naturally occurring mtDNA variants (single base pair deletions) in a

mini pig population. Each of the four variants indicated different

levels in oocytes and embryos but their levels were suppressed in

somatic tissues, especially those with a high requirement for

OXPHOS‐derived ATP. Consequently, the levels did not surpass

F IGURE 3 The strict regulation of mtDNA copy number during development During oogenesis, mtDNA copy number exponentially
increases to reach a peak at fertilization. Failure of the maturing oocyte to increase mtDNA copy number above the threshold (dotted blue line)
can result in fertilization failure or early embryo arrest. mtDNA copy number per cell progressively decreases during preimplantation
development until the blastocyst stage when replication is initiated in the trophectoderm only. The inner cell mass cells continue to reduce
mtDNA copy number and the “mtDNA set point” is established, which is essential for mature cells to acquire the required numbers of mtDNA
copy as their precursor cells undergo differentiation into their mature, fully functional forms. mtDNA, mitochondrial DNA.
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the threshold associated with the phenotypic onset of mtDNA

disease (Russell & Turnbull, 2014; Wei & Chinnery, 2020). For

example, the onset of Leber's hereditary optic neuropathy requires

over 60% of the mtDNA molecules to be mutated in the affected

tissue (Chinnery et al., 2001) while 85% mutant mtDNA load is

necessary for the onset of Myoclonic epilepsy with ragged red fibers

syndrome (Boulet et al., 1992). Interestingly, there were gender‐

specific differences for heart and liver tissues for one variant and

generational differences for several tissues for the same variant (G.

Cagnone et al., 2016). Indeed, the consensus opinion is that mtDNA

point mutations associated with mammalian aging are insufficient to

cause a phenotypic response (Moore et al., 2020). For example, in

hair, the exponential increase in mutation with age ranges from 0 to

1.436 ± 0.2086% of total mtDNA content (Zheng et al., 2012), which,

in the context of mtDNA copy number per cell suggests little if no

impact on health and well‐being. However, there is evidence from

mouse models generated through ooplasmic transfer, where cyto-

plasm, which includes mitochondria and mtDNA, is transferred from

one oocyte into a recipient, suggesting that there are differences in

levels of heteroplasmy (the mixing of two genotypes) between

generations (Burgstaller et al., 2018) and that the divergence of

heteroplasmic molecules in germ and somatic lineages take place

early in development (Johnston et al., 2015).

Nevertheless, analysis of the breeding lines of commercial pigs in

Australia showed that there was no correlation between the total

number of mtDNA variants harbored by each of the mtDNA

haplotypes investigated and developmental competence, maturation

to metaphase II, fertilization rates, blastocyst rates, and litter size

(Tsai et al., 2016). However, when individual variants were assessed

at a presence of greater than 25%, there was a negative correlation

with oocyte developmental competence; and more specifically with

the number of variants present at greater than 25% in the

Cytochrome B gene. Furthermore, the level of a variant at position

16,383 in one of the regulatory regions, conserved sequence box II

(Figure 1b), correlated positively with mtDNA copy number for

developmentally competent oocytes. This particular variant is within

the site of interaction for the Mitochondrial Transcription Elongation

Factor (Jiang et al., 2019). Termination at this site results in the

production of a primer that enables mtDNA replication to proceed.

In all, there is no clear‐cut evidence to suggest that the presence

of naturally occurring variants in oocytes is indicative of oocyte

quality or the potential of any given oocyte to give rise to offspring.

However, it is worth noting that mutations to POLG can result in a

host of deleterious mtDNA mutations in oocytes, as demonstrated in

the Polg mutator mouse model (Ma et al., 2019). Nevertheless, these

should be seen in the context of the mutations associated with the

nuclear‐encoded mtDNA replication factors that can give rise to

mtDNA disease (Fekete et al., 2019; Rahman & Copeland, 2019;

Remtulla et al., 2019). Likewise, it is important to note that high

mutant loading of pathogenic variants can lead to spontaneous

abortions even at the late stages of gestation (Monnot et al.,

2011). Indeed, the persistence of mtDNA in humans might be

explained by the high numbers of carriers of mtDNA

rearrangements (Elliott et al., 2008) and efficient medical practice

to support affected individuals; and the likely elimination in

livestock species since affected animals would have been selected

against, based on their lack of commercial viability.

6 | ALTERING mtDNA COPY NUMBER IN
THE OOCYTE

Autologous mitochondrial supplementation primarily arose from the

refinement of another assisted reproductive technology, namely

cytoplasmic transfer (Cohen et al., 1997), due to the necessity to

determine if the cytoplasmic factors introduced into the oocyte that

enhanced development were specifically mitochondrial or not. A

study employing a pig model used purified populations of mitochon-

dria isolated from mature oocytes and introduced these into oocytes

deficient in mtDNA (El Shourbagy et al., 2006). The initial findings

showed that fertilization rates were enhanced to match those of

oocytes possessing sufficient copies of mtDNA. These experiments

highlight the clinical data that showed a relationship between passing

a putative threshold (>150,000 copies; Figure 3) for mtDNA copy

number and fertilization outcome and subsequent development

(May‐Panloup, Chretien, et al., 2005; May‐Panloup, Vignon,

et al., 2005; T. A. Santos et al., 2006). Further work has shown that

supplementation of mtDNA deficient oocytes not only results in

improved fertilization outcomes, but also enhanced blastocyst rates

(G. L. M. Cagnone et al., 2016). A similar outcome has been observed

when adding the growth factor neuregulin 1 to the oocyte in vitro

maturation media (Mao et al., 2012), as was also the case with

supplementation of the glycoside mogroside V to the maturation

media (Nie et al., 2020). Both resulted in increased mtDNA copy

number in mature oocytes and improved embryo developmental

competence. There were also significant changes in gene expression

profiles of the nuclear genome (approximately 190 genes) at the

blastocyst stage of development to the extent that the supplemented

populations exhibited gene expression profiles more similar to those

of blastocysts from oocytes that had appropriate levels of mtDNA (G.

L. M. Cagnone et al., 2016). Moreover, these changes appeared to

occur throughout preimplantation development (Tsai & St John,

2018) and arose from differences in gene expression for metaphase II

oocytes deficient in mtDNA compared to those with sufficient levels

(Tsai et al., 2018).

The outcomes of these studies open the debate as to whether

the supplementation process is a cellular, metabolic or genomic

event. This has arisen in the context of the use of mitochondria

isolated from oogonial stem cells or egg precursor cells (White et al.,

2012). The proponents of the approach argue that the additional

mitochondria are added to fuel development (Woods et al., 2018),

that is, they are adding extra units of energy. However, the process

only introduces approximately 780 copies of mtDNA (G. L. M.

Cagnone et al., 2016). Normally mtDNA deficient oocytes possess

approximately 50,000 copies of mtDNA. If each mitochondrion

possesses two copies of mtDNA per mitochondrion (Wai et al., 2008),
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increasing the mitochondrial number by 390 mitochondria is likely to

have very little impact. The more likely outcome is that the addition

of extra copies of mtDNA from sister oocytes transformed the minor

replication event between fertilization and the 2‐cell stage into a

major replication event (G. L. M. Cagnone et al., 2016). Indeed, this

replication event increases mtDNA copy number by 4.4‐fold in

mtDNA‐deficient oocytes and ensures sufficient mtDNA is present at

the blastocyst stage to support subsequent developmental events. A

similar outcome was also observed at the blastocyst stage in the

aforementioned studies using neuregulin 1 and mogroside V (Mao

et al., 2012; Nie et al., 2020); and through a protease inhibitor

MG132 and resveratrol on in vitro matured oocytes (Sato et al.,

2014). Furthermore, the DNA methylation profiles in the CpG island

of POLG are altered with increases in expression for this gene during

this short window of mtDNA replication (Tsai et al., 2018). These

events take place before the major round of embryonic genome

activation in the pig at the 4‐cell stage (K. Lee et al., 2014). In

addition, knockdown of POLG2 leads to reduced maturation and

blastocyst formation in pig oocytes along with reduced mtDNA copy

number (S. K. Lee et al., 2015).

Taken to together, these events, along with changes in nuclear

gene expression, suggest that these are genomic rather than

metabolic events, although certain gene networks associated within

metabolism are affected (G. L. M. Cagnone et al., 2016). Indeed, the

use of a model that employs nonselected pig metaphase II oocytes

(i.e., does not discriminate between mtDNA deficient and mtDNA‐

normal oocytes) shows that mitochondrial supplementation alone

induces significant changes in DNA methylation and nuclear gene

expression by the blastocyst stage (Okada et al., 2022). Conse-

quently, it appears that mitochondrial supplementation triggers a

resetting of the genomic balance that was established between the

two genomes during oocyte maturation (St John, 2019). Interestingly,

though, it does not appear to affect genes associated with imprinting

(Okada et al., 2022).

7 | mtDNA REPLICATION AND DNA
DEMETHYLATION PROFILES DURING
OOGENESIS AND IN THE EARLY EMBRYO

In the context of oogenesis, it appears that the regulation of the

synergy between the two genomes is a key to the developmental

outcome. During the proliferation and migration of primordial germ

cells, DNA methylation is globally erased (Smallwood & Kelsey,

2012). Large‐scale de novo DNA methylation takes place during

oogenesis coupled with the significant increases in mtDNA copy

number. Following fertilization, there is differential genome‐wide

DNA demethylation that takes place in the newly formed embryo

based on paternal and maternal contributions (Smallwood & Kelsey,

2012; Stewart et al., 2016). Indeed, early development is marked by

significant changes to DNA methylation, other epigenetic regulators

and gene expression (von Meyenn et al., 2016). For example, during

preimplantation development, theTET family of enzymes ensures the

erasure of parental DNA methylation patterns up to the blastocyst

stage and the de novo methyltransferases, that is, DNMT3a and

DNMT3b, mediate de novo DNA methylation during preimplantation

and postimplantation development. At the same time, DNMT1

maintains the predestined profiles (Guo et al., 2014; F. Santos

et al., 2002).

The synchronous changes between the nuclear and mitochon-

drial genomes are key to the concept of cells achieving “genomic

balance” (Figure 4) in order that cells function effectively at different

stages of development and when mature (St John, 2019). Perturbing

genomic balance could result in disease, as shown in models of

tumorigenesis with cells being unable to mediate differentiation

which requires replication of mtDNA copy to support advanced

cellular function (Dickinson et al., 2013). However, genomic balance

can be reset through DNA methylation agents such as 5‐Azacytidine

and Vitamin C, which can prevent tumorigenesis and allow cells to

undergo differentiation with expected increases in mtDNA copy

number (Dickinson et al., 2013; Sun & John, 2018; Sun et al., 2018).

Likewise, failure of oocytes to acquire sufficient copies of mtDNA

leads to fertilization failure or developmental arrest during pre-

implantation development (May‐Panloup, Chretien, et al., 2005; May‐

Panloup, Vignon, et al., 2005; T. A. Santos et al., 2006) though this

can be countered through mitochondrial supplementation (G. L. M.

Cagnone et al., 2016). Interestingly, the addition of homocysteine, an

intermediate in the one‐carbon metabolism that donates methyl

groups for methylation processes involved in epigenetic gene

regulation, results in reduced mtDNA copy number and affected

the quality of porcine oocytes which then recovered through the

addition of 5‐Azacytidine (Jia et al., 2019).

8 | mtDNA HAPLOTYPES

Over millions of years, different maternal lineages have evolved and,

based on their mtDNA sequences, they cluster into groupings known

as mtDNA haplotypes (Ruiz‐Pesini et al., 2004). Consequently, a

single mtDNA haplotype is defined by groups of mtDNA sequences

from individuals that cluster together and define a group's common

maternal origins. mtDNA haplotypes can confer advantages and

disadvantages to the individual (Gerber et al., 2001; Innocenti et al.,

2011). They are thought to predispose individuals to disease (Blanco

et al., 2018; Fuku et al., 2007; Koo et al., 2019; Liou et al., 2016;

Marom et al., 2017; Shen et al., 2022); influence tolerance to warm

and cold climates (Ruiz‐Pesini et al., 2004; Wallace et al., 2003) and

high altitude (Ji et al., 2012); sperm motility (Ruiz‐Pesini et al., 2000);

the size of the ovarian reserve (May‐Panloup et al., 2014); and overall

reproductive capacity and fertility (Sutarno et al., 2002; Tsai et al.,

2016). They also influence growth and physical performance (Nagao

et al., 1998), milk quality (Brown et al., 1989), and key economic

breeding values (EBVs) associated with animal production (St John &

Tsai, 2018).

In the context of reproductive capacity, Australian commercial

pigs belong to one of five mtDNA haplotypes (A–E) indicative of their
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origins arising from one of five female founders (St John & Tsai, 2018;

Tsai et al., 2016). Three of these founders originated from Asia while

two were of European origin. Between the five mtDNA haplotypes,

there are approximately 200 single nucleotide variants, which affect

both protein coding genes and noncoding regions. These genomic

variations result in differences in litter size based on mtDNA

haplotypes. Females from haplotypes A and B were predisposed to

producing fewer piglets per litter than C, D, and E, while females from

haplotypes C (p < 0.05), D (p < 0.01), and E (p < 0.05) were more likely

to produce at least three litters of ≥15 piglets per parity than A (Tsai

et al., 2016). Furthermore, there were differences in developmental

efficiencies among the mtDNA haplotypes. By determining the

efficiency of each developmental stage relative to the number of

piglets born, haplotype C was the most efficient at converting mature

and fertilized oocytes into offspring, and haplotype D was the most

efficient at blastocyst conversion. However, haplotypes A and B were

the least efficient at converting mature and fertilized oocytes and

blastocysts into live offspring. In addition, given the relationship

between mtDNA copy number and the ability of an oocyte to mature

and develop once fertilized (Spikings et al., 2007), developmentally

competent oocytes from each mtDNA haplotype exhibited differences

in mtDNA copy number (Tsai et al., 2016). Haplotype D had the highest

copy number and haplotype B had the lowest. Similarly, others have

seen differences between female pigs having either high or low levels of

mtDNA (K. Lee et al., 2014), which suggests a haplotype effect. In all,

these outcomes indicate that each haplotype has a different

reproductive strategy that impacts on litter size across generations,

and is, thus, a heritable trait. In addition, other EBVs such as fat density,

muscle depth, fat to leanness ratios, lifetime daily gain, and teat quality

were influenced by mtDNA haplotype. There were also gender‐specific

effects on teat quality (St John & Tsai, 2018).

9 | NUCLEAR TRANSFER AND mtDNA
TRANSMISSION

Nuclear transfer primarily involves the transfer of a nucleus, often

within a cell, that is required to be propagated into an enucleated

oocyte and the reconstructed oocyte is activated (Campbell, 1999).

The reconstructed oocyte will then progress to an embryo and divide

in much the same manner as a fertilized oocyte. This concept

originated from the work of Gurdon and colleagues who were the

first to use nuclear transfer to produce frogs with a somatic cell

(Gurdon et al., 1958), and, thus, gave rise to the term somatic cell

nuclear transfer (SCNT) (Figure 5). This was followed by the transfer

of cultured embryonic‐derived (Campbell et al., 1996) and somatic

cells to produce the first mammalian offspring, namely Dolly the

Sheep (Wilmut et al., 1997); and blastomeres to produce rhesus

macaque monkeys (Meng et al., 1997), cattle (Bondioli et al., 1990;

Prather et al., 1987), and pigs (Prather et al., 1989).

A key problem is that the mtDNA present in the somatic or

embryonic cell accompanies the nucleus (sometimes referred to as

F IGURE 4 Genomic balance. At key stages in development, a cell strikes a balance between its two genomes in order that it can progress to
the next stage of development. This process is mediated by the constant exchange of regulatory information between the nucleus and the
mitochondrial genome. This ensures that the cell at any given stage acquires sufficient copies of mtDNA in order that the cell can undertake its
specialized function using as much or as little ATP derived through OXPHOS. At the same time, the nuclear genome contributes to genomic
balance through epigenetic changes by altering, for example, the levels of DNA methylation, that control gene expression. Other factors include
DNA rearrangements, such as mutations and deletions, and copy number variants that will have an impact on phenotype. The mitochondrial
genome will contribute through the levels of mtDNA copy number available that will influence the means of cellular metabolism available to the
cell, which, is also influenced by the cell's mtDNA haplotype. This results in metabolic factors being released that regulate DNA methylation and
other epigenetic modifiers, which act on both the nuclear and mitochondrial genomes. mtDNA, mitochondrial DNA; OXPHOS, oxidative
phosphorylation.
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“mtDNA carryover”) and, once fused to the enucleated oocyte, it is

incorporated into the reconstructed oocyte and can be potentially

transmitted to the offspring (Steinborn et al., 1998). The levels of

transmission of accompanying mtDNA are random. In large animal

models of SCNT, namely sheep, pigs, and cattle, the offspring can

inherit from 0% to 59% of their total mtDNA content from the

somatic cell (Burgstaller et al., 2007; Takeda et al., 2003, 2006).

Where there is a mixing of two diverse mtDNA genotypes

(heteroplasmy), there is the potential for the offspring to inherit

two mtDNA genomes, namely from the donor cell and recipient

oocyte and, thus, from two individuals. If they are of the same or very

similar mtDNA haplotypes, the issue of compatibility is not

necessarily significant. However, if the genotypes are more distant

then compatibility between the haplotypes is an issue (St John et al.,

2005; St John et al., 2010). This arises, as within a species, there is

variability in the sequences from different mtDNA haplotypes for the

encoding genes. This would result in the amino acids contributing to

each of the 13 mtDNA‐encoded subunits of the electron transfer

chain having different configurations, as shown in a study of pig serial

nuclear transfer (St John et al., 2005). Consequently, when two

mitochondrial genomes are present, electron transfer chains can be

assembled that have different efficiencies for generating ATP

through OXPHOS as demonstrated in a pig model of SCNT where

discordant interaction between the nucleus and mtDNA affected

OXPHOS gene expression (Park et al., 2015); and mouse cybrid (cells

derived from the fusion of an mtDNA depleted cell with an

enucleated cell) (McKenzie et al., 2003) and pig cybrid (Yu et al.,

2015) models.

The question that needs to be addressed is whether mtDNA

carryover can be completely avoided. In SCNT, it is possible to

deplete the somatic cell's mtDNA using an mtDNA depletion agent to

produce embryos (Lloyd et al., 2006; Srirattana & John, 2017) and live

offspring that inherit their mtDNA from the oocyte only (J. H. Lee

et al., 2010), as in the case with natural conception (Figure 5).

Consequently, it is possible to generate animals with a mixture of

traits present in the nuclear genome and match these with desired

traits associated with the mitochondrial genome that would give

enhanced breeding lines. In the pig, this might constitute an animal

with desired meat quality that would be transmitted through the

nuclear genome and matching with an mtDNA haplotype associated

with enhanced oocyte quality and litter size (Figure 5). In countries

where the import of new pig genetics through breeding lines is not

allowed, for example, Australia, this offers an opportunity to increase

and diversify breeding lines and expand pig genetics by alerting

genomic combinations that might require large numbers of breeding

rounds to achieve.

10 | CONCLUSION

In the context of understanding the role of the mitochondrial genome

in the oocyte and embryo, the pig has proven to be an invaluable

model. It has shown how mtDNA copy number is strictly regulated in

the oocyte and developing embryo and the importance of oocyte

mtDNA copy number and variants to the developmental outcome.

Furthermore, it highlights how mtDNA haplotypes influence the

developmental outcome and how the association of mtDNA

haplotypes and traits could be exploited to produce animals with

enhanced phenotypes. Nonetheless, the knowledge gained from the

pig oocyte and embryo with regard to mtDNA variants and genetics

is not only relevant in terms of generating human preclinical models.

It has specific relevance to pig reproductive capacity. In many

respects, the outcomes are waiting for the pig industry to use them to

enhance pig production, capacity, and quality.
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