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1  |  INTRODUC TION

Bacteriophages (phages) and bacteria coexist in every niche, where 
phages are estimated to outnumber bacteria by 10- fold. This strong 
selective pressure has led bacteria to evolve defence strategies that 
prevent phage replication and spread. In response, phages have 
adapted to these defence pathways, evolving counter- strategies and 
generating a continuous arms race that, over time, has shaped both 
bacterial and viral populations. Earlier research efforts on phage de-
fence have focused on the investigation of restriction- modification 
(R- M) systems, abortive infection systems and CRISPR- Cas and, 
later, on the Bacteriophage Exclusion (BREX) system and defence 

island system associated with restriction- modification (DISARM) 
(Barrangou et al., 2007; Goldfarb et al., 2015; Kinch et al., 2005; 
Ofir et al., 2018). However, in recent years it has become increas-
ingly clear that the diversity of phage systems is much higher than 
expected.

Antiphage systems are generally clustered in genomic loci, de-
fined as “defence islands” (Makarova et al., 2011; Picton et al., 2021). 
Defence islands are often encoded within various MGEs such as 
prophages, phage- inducible chromosomal islands (PICIs) and plas-
mids (Fillol- Salom et al., 2022; Hochhauser et al., 2022; Ibarra- Chávez 
et al., 2022; Vassallo et al., 2022). MGEs often drive the mobilisation 
and the resulting distribution of antiphage systems across bacterial 
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species. Recent bioinformatic studies have successfully employed a 
“guilt by association” approach to identify novel operons involved 
in defence against phages based on their frequent co- localisation 
with known antiphage systems. Greater than 100 new antiphage 
systems have been discovered in recent years, though their associ-
ation with defence islands and abundance in bacterial genomes can 
be variable (Doron et al., 2018; Gao et al., 2020; Millman et al., 2020, 
2022; Rousset et al., 2022; Vassallo et al., 2022). The discovery of 
such an abundance of novel defence systems has been followed by 
experimental verification of their involvement in bacterial immunity, 
prediction of protein domains and 3D folds for each component of 
the novel systems and, in some cases, determination of their mech-
anism of action.

These studies provided the unprecedented revelation that sev-
eral antiphage systems exhibit homology to components of the 
known innate immune system of plants and animals, and this has 
now been reversed, allowing the prediction of immunity genes 
within eukaryotes (Bernheim et al., 2021; Cury et al., 2022; Govande 
et al., 2021; Johnson et al., 2022; Millman et al., 2022). Furthermore, 
protein domain prediction has highlighted that components of vari-
ous antiphage systems have acquired domains of similar function, and 
these domains appear in various combinations (Doron et al., 2018; 
Gao et al., 2020; Millman et al., 2022; Rousset et al., 2022; Vassallo 
et al., 2022).

This Perspective Article reviews the range of protein domains 
that distinct antiphage systems have acquired. We begin by review-
ing the antiphage systems that share a common domain. We then 
discuss the advances in determining the details of their mode of 
action and the role of the shared domains in the defence process 
where established. Finally, we discuss the evolutionary implication 
of acquiring common domains by different antiphage systems and 
the potential advantages that could have driven their independent 
acquisition.

2  |  CONSERVED DOMAINS IN 
ANTIPHAGE PROTEINS

2.1  |  DUF262 and DUF1524

DUF262 and DUF1524 were first found in type IV restriction- 
modification (R- M) system GmrSD. GmrSD enzymes exhibit specific-
ity for glucosyl- 5- hydroxymethyl cytosine (glc- 5hmC) modifications 
and are active against T- even phages. Whilst the first GmrSD ex-
ample discovered was constituted by two distinct proteins, in 
most cases, GmrSD homologues are found as a single polypeptide 
(Machnicka et al., 2015).

DUF262 is found to be associated with the GmrS component and 
is typically related to the ParB/Srx- like fold. Bioinformatic analysis 
and modelling showed that the GmrS DUF262 contains a conserved 
(I/V)- D- G- Q- Q- R domain that forms an NTP binding pocket and is 
likely responsible for NTPase activity. Conversely, GmrD contains 
the DUF1524 domain, part of the His- Mer finger endonucleases 

superfamily. Accordingly, GmrD modelling showed a fold similar to 
HNH nucleases and the presence of a conserved DHIYP domain 
(Machnicka et al., 2015). In vitro testing of the Eco94GmrSD homo-
logue showed that it digests T4 DNA in the presence of Mg2+ or 
Mn2+ but not with other divalent cations. Additionally, ATP and TTP 
promote Eco94GmrSD activity, whilst no changes were detected in 
the presence of CTP and GTP (He et al., 2015).

Recently, a GmrSD homologue with low sequence similarity, 
BrxU, was found to be associated with a BREX system within a de-
fence island (Picton et al., 2021). Despite the low sequence similarity 
BrxU possesses both the DUF262 and DUF1524 domains. Picton 
et al. showed that, unlike GmrSD, BrxU activity is indiscriminately 
promoted by all NTPs, dNTPs and a wide set of divalent metal cat-
ions. BrxU was also shown to have a more relaxed specificity for 
various types of cytosine modifications (5mC, 5hmC or glc- 5hmC) 
compared to GmrSD (Picton et al., 2021). Interestingly, Picton 
et al., demonstrated that BrxU and the associated BREX system con-
certed action provides complementary resistance to modified and 
non- modified phages (Picton et al., 2021). The BrxU structure rep-
resents the first solved structure of the GmrSD family and intrigu-
ingly showed that BrxU proteins normally exist as dimers. Upon NTP 
binding, BrxU transitions to a monomeric form and it is hypothesised 
that, following NTP hydrolysis, BrxU protomers re- associate to form 
a dimer before recognising modified DNA and completing its cleav-
age (Picton et al., 2021).

SspE proteins, part of SspABCD– SspE phosphorothioation- 
sensing bacterial defence systems, also contain predicted DUF262 
and DUF1524 domains. Nevertheless, the reported role of SspE 
appears distinct from that observed for GrmSD and BrxU (Gao 
et al., 2022; Xiong et al., 2020). The SspE structure highlighted the 
DUF262 retains the conserved DGQQR motif in the nucleotide- 
binding pocket (Gao et al., 2022; Xiong et al., 2020). As per BrxU, 
SspE DUF262 can hydrolyse GTP, CTP, UTP and ATP indiscrim-
inately. Gao et al., further demonstrated that an N- terminal hy-
drophobic patch on SspE surface recognises the 5′- CPSCA- 3′ PT 
modification and triggers NTPase activity. Fluorescence resonance 
energy transfer (FRET) measurements demonstrated that DUF262 
NTPase activity, upon PT recognition, triggers a conformational 
change that activates the DUF1524 domain (Gao et al., 2022). 
Whereas DUF1524 of GmrSD and BrxU causes cleavage of modi-
fied DNA, within SspE the DUF1524 promotes DNA nicking (Gao 
et al., 2022; Xiong et al., 2020).

Finally, DUF262 domains were also found in recently- identified 
systems PD- T4- 2, Menshen and Dazbog (Millman et al., 2022; 
Vassallo et al., 2022). None of these systems, however, contains 
a DUF1524 domain. Mutation or deletion of genes harbouring 
DUF262 abolished phage resistance for both Menshen and Dazbog. 
In Menshen, the DUF262 gene is associated with a predicted OLD 
nuclease, and thus, its role could include NTPase activity to regulate 
its associated nuclease, similarly to other DUF262 harbouring pro-
teins. Furthermore, a high- throughput analysis of phage factors that 
drive sensitivity to antiphage systems highlighted that the DUF262 
in Dazbog likely allows recognition of methylated DNA (Millman 
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et al., 2022; Stokar- Avihail et al., 2022). Future work will confirm 
whether, in these systems, the role of the DUF262 component is 
similar to that observed for GmrSD and BrxU, and establish their 
nucleotide selectivity.

2.2  |  Domains involved in DNA- binding and DNA- 
degradation

The association of DUF262 and DUF1524, a trait shared by GmrSD, 
BrxU and SspE, represents a well- characterised example wherein 
one or more proteins that form either a whole or component part of 
an antiphage system, harbour a domain that is involved in binding, 
modification or degradation of nucleotides and nucleic acids. Indeed, 
domain prediction approaches employed in recent studies that re-
ported the discovery of new antiphage systems have highlighted the 
high frequency of occurrence of such domains (Doron et al., 2018; 
Gao et al., 2020; Millman et al., 2022; Rousset et al., 2022; Vassallo 
et al., 2022).

In some cases, one or more components of different antiphage 
systems possess predicted domains that share the same PFAM iden-
tifier. Therefore, a clear link between their independent acquisition 
by distinct antiphage systems is readily detectable (Table 1). For 
these domains, it is easy to speculate that they may provide an effi-
cient strategy to arrest phage infection, leading to their independent 
acquisition by different antiphage systems. For example, the GajA 
component of the Gabija system is a DNA- nicking endonuclease, 
and its ATPase domain regulates GajA activity through ATP (and 
GTP)- mediated inhibition (Cheng et al., 2021, 2022). PFAM domains 
PF13175 and PF3245, both with predicted AAA+ ATPase activity, 
were associated with GajA but are also found in several other anti-
phage systems, such as PARIS subtypes, PD- T4 and Old- tin (Doron 
et al., 2018; Rousset et al., 2022; Vassallo et al., 2022) (Table 1). The 
role and regulation of PF13175 and PF3245 in other antiphage sys-
tems remain to be established. GajA also presents a topoisomerase- 
primase (TOPRIM) domain of OLD family nucleases (PF20469) at 
its C- terminus, which is responsible for its nicking activity acting on 
both phage and chromosomal DNA (Cheng et al., 2021). Domains 
of the same family are also associated with one of the compo-
nents of the Menshen system and in the Retron+TOPRIM system, 
but their roles remain unknown to date (Gao et al., 2020; Millman 
et al., 2022). An OLD nuclease family TOPRIM domain was also pre-
dicted with a weaker score in the AriB member of PARIS systems 
(Rousset et al., 2022). Furthermore, GajB exhibits a UvrD- like he-
licase (PF00580 and PF13361) and was recently shown to bind to 
DNA termini produced during replication and recombination events 
and hydrolyses (d)ATP or (d)GTP to promote GajA activity (Cheng 
et al., 2022; Doron et al., 2018). PF00580 and PF13361 were also 
detected in PARIS1 and the Helicase+ DUF2290 antiphage systems 
(Doron et al., 2018; Rousset et al., 2022) but in this cases, their role 
was not explored.

Finally, another example of a nuclease domain shared by dis-
tinct defence systems is the nuclease NucC, an effector protein first 

associated with several subtypes of the CBASS systems and is also 
found as accessory proteins in type III CRISPR- Cas systems. In the 
CBASS system, upon activation by a cyclic second messenger, NucC 
was shown to assemble into homohexamers to elicit cleavage of 
double- stranded DNA, leading to the depletion of bacterial chromo-
somal DNA and cell death (Lau et al., 2020). NucC homologues asso-
ciated with type III CRISPR- Cas systems can also induce cell death in 
response to jumbo phage infection (Mayo- Muñoz et al., 2022).

Whilst predicted domains for antiphage genes frequently ex-
hibit different PFAM identifiers, their predicted activity (e.g. AAA+ 
ATPase, nuclease and helicase) often remains similar (Table 1). 
These examples may therefore represent instances where an enzy-
matic activity such as DNA or RNA degradation was acquired inde-
pendently, given the evolutionary advantage it may confer. Indeed, 
nucleic acid degradation can both provide the first line of defence by 
swiftly arresting phage infection but can also be used for simultane-
ous chromosome degradation, leading to the death of infected cells 
(Doron et al., 2018; Gao et al., 2020; Millman et al., 2022; Rousset 
et al., 2022; Vassallo et al., 2022). It must be also noted that in some 
cases, further phylogenetic and evolutionary analysis of frequently 
associated domains in defence proteins (i.e. DUF262- carrying pro-
teins with either a nuclease, TOPRIM or ATPase) could reveal distant 
but nevertheless phylogenetically- linked families of defence pro-
teins (Rousset et al., 2022). As some of these defence proteins may 
belong to the same family upon closer inspection, it is possible that 
they have diverged early in response to the evolutionary pressure 
posed by phage predation and counter- defences.

Several studies suggest that AAA+ ATPase and helicase domains 
are involved in regulation and phage sensing (Cheng et al., 2021; Gao 
et al., 2020, 2022; Millman et al., 2022). Like nuclease domains, many 
predicted AAA+ ATPase and helicase domains are found in dispa-
rate antiphage system components, albeit only sometimes exhibit-
ing the same PFAM identifier (Doron et al., 2018; Gao et al., 2020; 
Millman et al., 2022; Rousset et al., 2022; Vassallo et al., 2022) 
(Table 1). Similar to GajA, BrxU, SspE and GmrSD, other types of 
NTPase (AAA+ ATPase) domains may provide a sensing mechanism 
that regulates the downstream nuclease activity. Helicase domains 
of different families were also suggested to represent sensing mod-
ules in several newly- discovered antiphage systems (Table 1) (Cheng 
et al., 2021; Gao et al., 2020, 2022; Millman et al., 2022). A com-
plete mechanistic characterisation of many of these antiphage sys-
tems has yet to be performed, and therefore, the exact role these 
domains play, perhaps either as sensors or effectors, remains to be 
discovered.

2.3  |  TIR and Sir2 domains

Toll/interleukin- 1 (IL- 1) receptor (TIR) domains and Silent informa-
tion regulator 2 (Sir2) proteins, or sirtuins, are found in all domains 
of life (Wang et al., 2022). The recent spike in interest in bacterial 
immunity strategies led to the striking discovery that TIR and Sir2 
domains can be involved in phage defence, and have been co- opted 
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by several different antiphage systems, leading, in all cases, to the 
programmed death of infected cells through the depletion of NAD+ 
(Wang et al., 2022).

TIR and Sir2 domains were first discovered in the antiphage 
system Thoeris, composed of ThsA (Sir2 domain) and ThsB (TIR do-
main). In this case, the Sir2 domain- mediated NADase activity pro-
duces a signalling molecule that activates ThsB, which is responsible 
for NAD+ depletion through its TIR domain (Ofir et al., 2021).

In other instances, TIR and Sir2 domains are found separately 
as effector modules associated with other genes. This is the case 
for CBASS and pycSAR systems, wherein TIR domains are associ-
ated with nucleotide cyclases (Govande et al., 2021;Morehouse 
et al., 2020; Tal et al., 2021) and for the Retron+TIR system found by 
Gao et al., where the TIR- harbouring component is associated with 
a reverse transcriptase (Gao et al., 2020). Upon production of a cy-
clic nucleotide that functions as a signal, cyclic- di- GMP for CBASS 
and cyclic- UMP for pycSAR, TIR domains are activated and lead to 
cell death through NAD+ degradation (Morehouse et al., 2020; Tal 
et al., 2021). TIR domains are also associated with NACHT module- 
containing proteins in bacteria. NACHT- containing proteins are also 
part of the bacterial innate immunity arsenal against phages and 
display a tri- modular structure with a central NACHT domain, a C- 
terminal sensor and an N- terminal effector region. In many cases, 
the effector region harbours a TIR or Sir2 domain, likely mediating 
abortive infection (Kibby et al., 2022).

Sir2 and TIR domain- containing proteins are sometimes encoded 
next to prokaryotic argonautes (pAgos). These represent two anti-
phage systems: SPARTA (two- partner system with TIR- APAZ and 
pAgo) and SPARSA (two- partner system with Sir2- APAZ and pAgo). 
In SPARTA, invading nucleic acids are recognised by pAgos using 
guide RNA or DNA, causing the formation of SPARTA heterodimers 
and triggering the TIR- APAZ NADase activity (Koopal et al., 2022).

Finally, Sir2 domains are found in Defence- associated sirtuin sys-
tems DSR1 and DSR2, the Sir2- HerA systems, PD- T7- 2 and Avast 
type V (Gao et al., 2020; Garb et al., 2022; Vassallo et al., 2022). 
DSR2 unleashes NADase activity of the Sir2 domain upon recog-
nition of a tail tube protein, leading to proposed abortive infection. 
Curiously, unlike other Sir2 and TIR- containing antiphage systems, 
DSR1 inhibits phage replication without leading to cell death (Garb 
et al., 2022).

3  |  FINAL REMARKS

The studies discussed above highlight how different antiphage sys-
tems can sometimes co- opt the same domains, resulting in a vari-
ety of different combinations. The frequent acquisition of certain 
domains by several distinct antiphage systems could denote an im-
mediate fitness advantage conferred by that domain, presumably in 
response to phage assault.

TIR and Sir2 domains are found together, singularly or in com-
bination with other domains in several defence systems. The exam-
ples discussed above suggest that several antiphage systems have PF
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independently acquired TIR and Sir2 domains, and thus their NADase 
activity likely represents an efficient strategy to combat phage infec-
tions. This is not surprising given the widespread distribution of Sir2 
and TIR domains in all domains of life and the central roles that NAD+ 
or NADH play in maintaining cellular homeostasis (Wang et al., 2022). 
The recent reports that TIR domains of plant immune receptors can 
also catalyse NAD+ depletion further suggest that NAD+ depletion 
represents a widespread and efficient antiviral strategy that can 
quickly lead to death of the infected cells (Yu et al., 2022).

Aside from TIR and Sir2 domains, one of the most interesting but 
perhaps not surprising observations is the high number of antiphage 
systems that harbour at least one component with a predicted nucle-
ase or nicking activity, many of which share the same PFAM identifier 
(Doron et al., 2018; Rousset et al., 2022; Vassallo et al., 2022) (Table 1). 
From an evolutionary point of view, acquisition of the same domain 
by antiphage systems could represent a disadvantage, facilitating the 
evolution of phage counter- measures. However, it is also easy to en-
vision how an effector protein that alters or degrades DNA and RNA 
represents one of the most efficient means to wipe out a phage infec-
tion, whether this is provided through degradation of phage nucleic 
acids or simultaneous cleavage of phage and bacterial nucleic acids, 
to cause the death of infected cells. As reported above, BrxU, GmrSD 
and SspE all contain similar components but exhibit different spec-
ificities either for NTPs or in their nuclease activities. This variation 
ultimately leads to broader protection against a more diverse range of 
phages (He et al., 2015; Picton et al., 2021; Xiong et al., 2020).

Indeed, we can now readily observe how multiple factors com-
bine to diversify the spectrum of targeted phages and potentially 
reduce the development of phage counter- defences. This now in-
cludes the frequent recurrence of some nuclease- like domains in 
many different antiphage systems, the variation in the combination 
of sensing and effector modules, the different specificity of the 
sensing modules for cyclic nucleotide signals, NTPs or phage fac-
tors and differences in the fold and activity of the effector modules. 
No doubt as efforts continue towards expanding the discovery and 
characterisation of bacterial immunity systems we will increasingly 
note functional overlaps, which may in turn help to broaden our un-
derstanding of immunity in higher organisms.
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