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Abstract

Analysis of imaging mass cytometry (IMC) data and other low-resolution multiplexed

tissue imaging technologies is often confounded by poor single-cell segmentation and

suboptimal approaches for data visualization and exploration. This can lead to inaccu-

rate identification of cell phenotypes, states, or spatial relationships compared to ref-

erence data from single-cell suspension technologies. To this end we have developed

the “OPTimized Imaging Mass cytometry AnaLysis (OPTIMAL)” framework to bench-

mark any approaches for cell segmentation, parameter transformation, batch effect

correction, data visualization/clustering, and spatial neighborhood analysis. Using a

panel of 27 metal-tagged antibodies recognizing well-characterized phenotypic and

functional markers to stain the same Formalin-Fixed Paraffin Embedded (FFPE)

human tonsil sample tissue microarray over 12 temporally distinct batches we tested

several cell segmentation models, a range of different arcsinh cofactor parameter
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transformation values, 5 different dimensionality reduction algorithms, and 2 cluster-

ing methods. Finally, we assessed the optimal approach for performing neighborhood

analysis. We found that single-cell segmentation was improved by the use of an

Ilastik-derived probability map but that issues with poor segmentation were only

really evident after clustering and cell type/state identification and not always evi-

dent when using “classical” bivariate data display techniques. The optimal arcsinh

cofactor for parameter transformation was 1 as it maximized the statistical separation

between negative and positive signal distributions and a simple Z-score normalization

step after arcsinh transformation eliminated batch effects. Of the five different

dimensionality reduction approaches tested, PacMap gave the best data structure

with FLOWSOM clustering out-performing phenograph in terms of cell type identifi-

cation. We also found that neighborhood analysis was influenced by the method used

for finding neighboring cells with a “disc” pixel expansion outperforming a “bounding
box” approach combined with the need for filtering objects based on size and image-

edge location. Importantly, OPTIMAL can be used to assess and integrate with any

existing approach to IMC data analysis and, as it creates .FCS files from the segmen-

tation output and allows for single-cell exploration to be conducted using a wide vari-

ety of accessible software and algorithms familiar to conventional flow cytometrists.
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1 | INTRODUCTION

Single-cell suspension technologies have now advanced to the point

where we can measure thousands of parameters on millions of indi-

vidual cells at truly “multi-omic” scale. However, the digestion and

destruction of tissues to liberate single cells can affect the native cel-

lular states as well as obliterating all spatial context. As such, “space”
very much remains the “final frontier” with multiplexed single-cell tis-

sue imaging traditionally lagging behind suspension technologies due

to previously insurmountable technical issues around how many sig-

nals can be measured on the same sample/slide/section. Over the

past few years, these issues have been overcome by the use of cycli-

cal approaches to staining and imaging with fluorescent probes [1, 2],

or by moving away from fluorescence detection entirely with technol-

ogies such as “multiplexed ion beam imaging” [3] and imaging mass

cytometry (IMC). IMC uses a powerful 1-μm laser to raster scan the

metal-conjugated antibody-stained slide liberating small pieces of tis-

sue for analysis by “cytometry by time of flight” (CyTOF) technol-

ogy [4]. IMC has several advantages over cyclical fluorescence

detection such as no auto-fluorescence and no increase in measure-

ment time with an increasing number of signals. It does, however, lack

the same image resolution as optical systems (fixed at 10� magnifica-

tion) due to the 1 μm beam size of the ablating laser. While this is still

sufficient to detect individual cells for phenotyping and spatial analy-

sis the low image resolution can present challenges with subsequent

data analysis. Unlike suspension technologies, IMC, along with all tis-

sue imaging approaches with single-cell resolution, usually requires an

additional preprocessing step whereby single cells or objects are

identified using an image analysis technique called “segmentation.”
Segmentation algorithms are generally based on assessing variance at

the pixel level and then using commonalities and differences to group

individual pixels together as “super pixels” or “single-cell objects” via

machine learning approaches [5]. It is then possible to derive single-

object/single-cell features based on metal intensity (antibody/DNA

intercalator), morphometrics (area, circularity, etc.) as well as the x and

y centroid co-ordinates for every cell within each image. These fea-

tures can then be used to explore the data using classical single-cell

analysis approaches such as dimensionality reduction and clustering

[6, 7]. There is generally a need to validate any cell types/states iden-

tified within the tissue against reference data derived from tissue

digestion and suspension technologies, with usual caveats concerning

the effects on cells/markers caused by enzymatic and/or mechanical

disaggregation. As such, poor single-cell segmentation can have dra-

matic and confounding effects on accurate cell type/state identifica-

tion, akin to measuring doublets/aggregates of debris by conventional

flow cytometry or scRNAseq. There are a number of published “end
to end” pipelines for IMC data analysis [8–12] that utilize open-source

software for segmentation such as Ilastik [13] and CellProfiler

[14, 15], as well as StarDist [16] and IMC-specific approaches that uti-

lize deep learning [17]. There have also been attempts to use matched

fluorescent images of the nuclei using DAPI co-staining to improve

segmentation accuracy [18] as well as removing image noise [19, 20].

Nonetheless, it has been shown that, due to the nature of tissue imag-

ing, simple approaches to single-cell segmentation are often highly

effective [21]. Once single cells have been identified and exploratory

features created and assigned, analysis follows an analogous route to
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suspension technologies with various corrections being applied. This

includes a form of isotopic signal spillover correction [22], as well as

parameter transformation and batch effect normalization prior to the

use of dimensionality reduction techniques to visualize high parame-

ter data and clustering to identify resident cell types/states. There are

a number of existing approaches for visualizing and analyzing IMC

data such as HistoCat [9] and ImaCytE [23], both provide the ability

to perform spatial neighborhood analyses on the cell types and states

identified via clustering approaches. However, they lack the flexibility

to be able to optimize key steps and parameters of the pipeline in an

easy and accessible manner. Here, we present a novel framework we

call “OPTIMAL” (OPTimized Imaging Mass cytometry AnaLysis), which

provides metrics and benchmarks for each major step of IMC data

analysis including segmentation, parameter correction, normalization,

and batch effect removal, as well as dimensionality reduction, cluster-

ing, and spatial analysis. This is not a new analysis pipeline per se,

rather an exploration and optimization of existing approaches that

allows for democratized analysis of cellular phenotypes from multi-

plexed tissue imaging technologies such as IMC; especially, as we con-

vert all data to .FCS file format allowing it to be explored in an easy to

use, accessible software. To test OPTIMAL we stained, acquired, and

analyzed tissue microarrays (TMAs) from the same human tonsil sam-

ple over 12 temporally distinct batches using a panel of 27 metal-

tagged antibodies and IMC. We then investigated several different

cell segmentation approaches based on the previously described Bod-

enmiller method [10], open-source software (Ilastik and CellProfiler),

as well as deep learning (CellPose) [24] using cell type cluster “fidelity”
as our measure of success using the human tonsil “ground truth”
populations known to be identified by our 27-marker panel. Prior to

clustering, however, we used OPTIMAL to identify the optimum arc-

sinh transformation cofactor to maximize signal resolution and to

identify the use of a subsequent Z-score normalization factor as the

best method of batch effect removal. We also identified the most

effective dimensionality reduction and visualization method for IMC

data to be PacMap, and FLOWSOM to be the best performing clus-

tering algorithm for finding the expected cell types and states. Finally,

we developed an approach to optimize spatial neighborhood analysis

that used a more accurate method of finding neighboring cells than

existing approaches and benchmarked this against well-defined cell

types and structures in human tonsil. The OPTIMAL framework can

be applied to any existing and future IMC data analysis as it provides

a set of methods and metrics to empirically assess each stage in any

pipeline, moreover, by producing .FCS files from our segmentation

output we make exploration of the single-cell data highly democra-

tized and not reliant on further expert coding skills.

2 | MATERIALS AND METHODS

2.1 | Tonsil tissue preparation and antigen retrieval

Formalin-fixed paraffin-embedded (FFPE) 2-mm human tonsil tissue

cores were obtained from the Novopath Tissue Biobank (Royal

Victoria Infirmary, Newcastle upon Tyne) and embedded into a three-

core TMA. TMA blocks were constructed manually using medical

biopsy punches (PFM Medical, UK). Cores were selected using hema-

toxylin and eosin-stained slides to guide suitable areas in the donor

blocks. Cores were placed in a paraffin embedding mold, heated to

65�C and embedded in molten wax before cooling to set. Eight-

micrometer serial sections were cut using HM 325 Rotary Microtome

(Fisher Scientific, USA) and mounted onto SuperFrost Plus™ Adhesion

slides (Epredia, CAT#10149870).

2.2 | Antibody panel design, conjugation, and
validation by immuno-fluorescence

A 27-plex antibody panel was designed to identify the immune, signal-

ing, and stromal components in the surrounding microenvironment.

All antibodies used in this study were first validated for performance

using the chosen single-antigen retrieval methods outlined previously

(Tris EDTA pH “Heat-Induced Epitope Retrieval”) for IMC using sim-

ple two-color immunofluorescence (IF). All relevant antibody details

are shown in Table S1 including the choice of metal tag based on the

relative staining intensity of each marker by IF using the rules of “best
practice” for CyTOF panel design [25]. Unless stated otherwise, fol-

lowing verification of staining pattern and performance quality,

approved antibodies were subject to lanthanide metal conjugation

using a Maxpar X8 metal conjugation kit following manufacturer's

protocol (Standard Biotools, CAT#201300). Antibodies conjugated to

platinum isotopes 194 Pt and 198 Pt were conjugated as described in

Mei et al. [26]. Conjugated antibodies were validated by firstly check-

ing the recovery of antibody postconjugation. Second, we checked for

successful metal conjugation by binding the antibody to iridium-

labeled antibody capture beads AbC™ Total Antibody Compensation

Beads (Thermo Fisher, USA, CAT#A10513) and acquiring on a Helios

system (Standard Bio-tools, USA) in suspension sample-delivery mode.

Finally, we checked that the antibody had refolded and retained the

ability to recognize antigen by using the postconjugation antibody in

either a two-layer IF with a fluorescently labeled secondary antibody

recognizing the primary antibody species or directly by IMC using the

Hyperion imaging module (Standard Bio-Tool) connected to

the Helios. A gallery of IMC-derived gray scale images for each stain

(Ab and DNA) is shown in Figure S1B. Test tissue sections were then

stained with the 27 marker antibody cocktails as outlined in Table S1.

2.3 | Hyperion (IMC) set up, quality control, and
sample acquisition

Prior to each sample acquisition, the Hyperion Tissue Imager was cali-

brated and rigorously quality controlled (QCe'd) to achieve reproduc-

ible sensitivity based on the detection of 175Lutetium. Briefly, a

stable plasma was allowed to develop prior to ablation of a single

multielement-coated “tuning slide” (Standard Biotools). During this

ablation, performance was standardized to an acceptable range by
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optimizing system parameters using the manufacturer's “auto-tune”
application or by manual optimization of XY settings whilst monitoring

175Lutetium dual counts. After system tuning, tonsil sections were

loaded onto the Hyperion system in order to create Epi-fluorescence

panorama images of the entire tissue surface to guide region of inter-

est (ROI) selection. Two ROIs of approx. 500 μm2 encompassing lym-

phoid follicles and surrounding structural cells were selected for

ablation per batch run. Small regions of tonsil tissue were first tar-

geted to ensure complete ablation of tissue during the laser shot with

ablation energies adjusted to achieve this where required. Finally,

ablations were performed at 200 Hz laser frequency to create a resul-

tant MCD file containing all data from ROIs. Correction of “spillover”
between isotopes was performed as per the protocol described at

Spill over correction j Analysis workflow for IMC data (https://

bodenmillergroup.github.io/IMCDataAnalysis/spillover-correction.

html) without deviation [22].

2.4 | Image QC and export

MCD files from the Hyperion system were opened using MCD™

Viewer v1.0.560.6 software (standard bio-tools) in order to perform a

qualitative, visual QC of the staining intensity and pattern with the ini-

tial IF images as a benchmark. Pixel display values (max/min and

gamma) were set to optimize the display of the 16-bit pixel range

from the Hyperion detector (0–65,535) to the 8-bit display (0–255).

Multi-pseudo-colored, overlaid images were built for figures with a

scale bar included and the option to export as an 8-bit TIFF with

“burn in” was used. The digital magnification was also set to “1�” so

that each signal was carefully balanced for display purposes to aid

qualitative visual interpretation. All images were exported as 16-bit

single multilevel TIFFs using the “export” function from the “file”
menu. For ease of use, all open collection channels from the experi-

mental acquisition template (in this case, 60, including several “Blank”
channels for QC purposes) from all ROIs were left ticked and any

image/channel removal was dealt with later in the analysis. This

avoided having to repeatedly deselect image channels for each ROI in

the MCD file. These multilevel 16-bit TIFF images were then input

in to our pipeline as shown in Figure 1A.

2.5 | Cell segmentation, feature extraction,
parameter correction/normalization, and FCS file
creation

Cell segmentation was based on the previously described method of

Zantonelli et al. [10], which uses a combination of random forest pixel

classification using Ilastik (Version 1.3.2 or later) [13] and helps to

inform single-cell segmentation and feature extraction using CellProfi-

ler (Version 4 or later) [15]. Ilastik models were created to distinguish

nuclear versus non-nuclear pixels based on partial labelling of multi-

plexed images of tonsil tissue or “Vero” monolayer cell culture. An

additional run using unprocessed input Iridium 193 (DNA channel 51)

was also trialed for comparison to Ilastik processing. Output nuclear

probability maps were input into CellProfiler, enabling instance seg-

mentation of cell nuclei, which were subsequently used as seeds for

cell segmentation. Cell boundaries were determined using a seeded

watershed algorithm either to EPCAM (channel 29) signal, or a maxi-

mum intensity projection of multiple membrane markers (see supple-

mental notes, Section S2.5.3). Following cell segmentation, individual

cells were measured for mean intensity in each of the labeled chan-

nels. Intensity measurements were compensated for spillover accord-

ing to a previously described approach [22]. Arcsinh transformation

was trialed using values from 0.1 to 120 using the Fisher Discrimina-

tion Ratio (Rd) to determine the optimum value for positive versus

negative signal distribution (see supplemental notes). Following opti-

mization, arcsinh transformation was applied to all experimental data-

sets with a value of 1. In addition, a second set of metal intensity

parameters were derived whereby an additional subsequent Z-score

normalization step was applied to the previously arcsinh cofactor (c.f.)

1 transformed values. This additional Z-score normalization was used

to remove batch effect as well as to normalize marker intensities rela-

tive to one another for subsequent optimized heat map display. At

this stage, any additional metadata was included in the files such as

batch number in order to be an accessible and plot-able parameter for

subsequent analysis. Final matrix data were converted to .FCS file for-

mat within the MATLAB pipeline for preparing for clustering. More

details on our method and tests can be found in the supplemental

method section (S2.5 and also visual guide at the end of the supple-

mental notes).

2.6 | Visualization, clustering, and exploration of
single-cell IMC data

For this study, we used the commercially available “FCSExpress” soft-
ware for all single-cell data analysis (Version 7.14.0020 or later,

Denovo software by Dotmatics, USA). More extensive information

can be found in supplemental notes. Briefly, the FCS files created

from the segmentation pipeline shown in Figure 1A for all 24 tonsil

images across 12 batches were loaded as a single merged file. We

then created a set of batch gates using a simple density plot of batch

number (x-axis) versus iridium signal (Z-normalized parameter version)

and selected contrasting colors for each and used the “pipelines”
function within the “tools” menu to create UMAP parameters derived

from the arcsinh c.f. 1 transformed and Z-score normalized antibody

channels. In addition, we created UMAP parameters from the arcsinh-

only versions in order to verify for the presence of batch effect and

subsequent correction by Z-score normalization (see Figure 1B). Next,

we used the same fully transformed and corrected parameters for

FLOWSOM clustering using the default settings (see supplemental

notes S2.6.5) with a merging of the 100 SOMs to 30 consensus clus-

ters (cSOMs) based on hierarchical clustering and created a set of

uniquely colored cSOM gates using the “plate heat map” and “well

gates” function. We also created a PacMap dimensionality reduction

plot using the same parameters using the Python interface within the
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FCS Express pipeline module (see supplemental notes S2.6.4). At this

stage, after validation of results, we exported the data as both a single

merged and a set of individual “Data stream” (.DNS) files. These con-

tained the new clustering and visualization parameters (SOMs and

PacMap x/y co-ordinates) as well as all the original .FCS file metadata

but in a smaller, compressed, and easier to work with file format.

Next, we loaded the merged .DNS file in to a new incidence of FCS

Express and conducted a much more extensive analysis of the data by

(re)-constructing all the necessary meta-data and SOM gates as well

as a heat map of transformed and normalized antibody-derived signals

(rows) versus the 30 cSOMs (columns). The median values were nor-

malized by column (cluster) to aid interpretation of the heat map on a

per cluster per marker basis. Using the information on the panel in

Table S1, we assigned broad cluster identities to these SOMs. We

then used simple x/y centroid plots as well as further a priori legacy

knowledge to manually merge any highly similar clusters with basic

spatial verification. Finally, we exported the clustered data in two for-

mats. First, as a .CSV file only containing the minimum information

needed for neighborhood analysis, namely the ROI/Sample/Image ID,

the cell ID within the ROI and the final cluster assignment for each

cell. The second export file contained the ROI/Sample/Image name,

the total cell count in the ROI and the percentage and/or cell number

in each of the final cSOMs. The latter step can easily be performed

using the individual .DNS files for each ROI/Sample/Image and using

the FCS Express “batch export” function (see supplemental notes

Section S2.6).

2.7 | Neighborhood analysis

Neighborhood analysis was performed with slight adaptations to the

method outlined by HISTOCAT [9] and ImaCytE [23]. Cell identities

were determined by cluster analysis and saved, along with all other

cell data, into a single large .CSV file. A separate excel file was used to

store the cell type information as a biologically relevant name. Cell

masks, stored from the cell segmentation stage, were input and

cell identity transposed onto this data. Each cell was assessed for the

number of unique cell identities within a pixel-defined threshold dis-

tance from the cell edge. The original HISTOCAT code was used, in

addition to a modification using a “disc” element to determine the

F IGURE 1 Summary workflow diagram for the OPTimized Imaging Mass cytometry AnaLysis (OPTIMAL) analysis pipeline. Briefly, input
multilevel TIFF images created from MCD file export were segmented using a combination of the nuclear channel via an Ilastik random forest
pixel classification to generate a probability map (p-map). Then single- or multiple-membrane channel images were used in conjunction with the
p-map to create single-cell objects via CellProfiler and to create features sets based on intensity, morphometry, and spatial location. Additional
metadata were also incorporated at this stage and included batch number. Metal intensity values were corrected for bleed through and two sets

of subsequent parameters were created (i) arcsinh c.f. 1 transformed and (ii) a subsequent Z-score normalized set. This data matrix was converted
in to .FCS file format (collectively MATLAB code I) and analyzed using FCS Express to explore things like batch effect normalization,
dimensionality reduction (DimRedux) for visualization and clustering via FLOWSOM and heat map creation/interpretation. Cluster annotation
was performed using a combination of hierarchical consensus merging and expert a priori knowledge combined with a basic spatial validation
using x/y centroid plots. Once all cells in all images were assigned a cluster membership, a master .CSV file was created with the minimal
necessary metadata to perform a neighborhood interaction analysis using MATLAB code II with the results visualized using MATLAB code III.
[Color figure can be viewed at wileyonlinelibrary.com]
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nearest-cell neighbors to each start point cell to investigate. We also

tested the use of and automated edge cell removal as well as cells of

extreme areas (<20 and >200 μm2) to account for any possible seg-

mentation errors. The cell identities for analysis were then mapped at

random onto the cell masks, according to the number of each cell type

identified by clustering for each image. This was repeated to create

100 iterations of randomly organized cell types on the underlying tis-

sue. The interaction between cell types (i.e., the neighbor breakdown

by cell type) was compared between these iterations and the original

data, to determine if a difference can be identified between the origi-

nal data and the randomly organized iterations. If differences are

detected in the original data compared to a 90% threshold of the ran-

dom iterations, then a significant difference is listed for that cell type

for that image. These positive, neutral, and negative interactions were

then collated to create the overall proportion heatmap for the condi-

tion (i.e. pathology, region, etc.) ranging from 1 (100% of images

showed positive interaction) to �1 (100% of images showed negative

interaction). A cluster “occupancy” cut-off percentage value of 0.01

was used for all analyses; however, this was unimportant as all final

consensus clusters were present in all 24 ROIs.

3 | RESULTS

3.1 | Ilastik-derived nuclear probability maps and a
single “pan” membrane signal provides the optimal
segmentation of single cells in human tonsil

We began by generating an IMC data set using TMA tissue from seri-

ally sectioned FFPE human tonsil tissue that had been stained with a

panel of 27 metal tagged antibodies targeting well-characterized cell

types/states as detailed in Table S1 over 12 temporally distinct

batches (staining and acquisition). In each case, ROI selection was

designed to capture as much structure as possible, including lymphoid

follicles, germinal centers, and epithelium in order to provide high like-

lihood of positive staining for all 27 markers in all ROIs selected (see

Figure S1A,B). Tonsil tissue was also selected for its dense cellularity

in order to present a genuine challenge to segmentation but with clear

a priori knowledge concerning what cell types our panel should find

and where. It should be noted that while EPCAM is not biologically

expressed across all cells in the Tonsil, due to some degree of

non-specific staining, it was judged to show the most uniform

and comprehensive ability to identify cell membranes across the

entire tonsil tissue, far superior to using combination of tonsil-specific

markers (see Figure S1C). Figure 2A shows a representative ROI from

batch 3 with sequential composite images to mark distinct cell types

such as T cells (CD3+), B cells (CD79a+), and macrophages (CD68+).

Ki67 was included to help denote follicles/germinal centers by virtue

of a proliferative signature. The selection of these markers was delib-

erate as CD3, CD79a, and CD68 should all be mutually exclusive and

not co-expressed by any single cell. Moreover, the spatial location/

segregation of several populations that our panel was designed to

identify should follow a well-established pattern. As such this

provided us a qualitative way to assess the potential signal overlap in

each ROI that would likely be due to the dense cellular nature of the

human tonsil combined with the lack of Z plane information afforded

by IMC (see Figure S2 for CD3/CD79a/DNA composite images for all

24 ROIs). We next sought to test our different segmentation

approaches on these images to determine which was optimal. To do

this, we constructed probability maps (p-maps) using the Random For-

est pixel classifier within Ilastik using only the DNA (Iridium 193)

channel image from either our tonsil TMA tissue or from an embed-

ded “irrelevant” suspension cell line (Vero cells) using two pixel clas-

ses: “nuclear” and “background”. Figure 2B (upper panel) shows the

Vero and Tonsil-derived probability maps (p-maps). The final step of

our segmentation approach was to use the nuclear objects derived

from the p-maps as “seeds” to anchor a marker-controlled watershed

approach to expand out and delineate the boundaries for each single

cell. In this case we compared the use of a single-membrane signal

(EPCAM) for both models versus using the sum of several membrane

signals (tonsil p-map model only) and the cell segmentation bound-

aries for the same representative ROI are shown in Figure 2B (lower

panel). As an example of suboptimal segmentation we also used an

approach that was not based on an Ilastik machine learning model,

but instead directly attempted to segment objects within CellProfiler

using the DNA (Iridium 193) channel. The segmentation outputs for

all 24 tonsil ROIs derived from the Tonsil Ilastik—EPCAM membrane

approach are shown in Figure S3 and the same for the Nucleus-only

model in Figure S4. To provide some quantifiable metric to assess

each approach we plotted the intensity of CD3 versus CD79a and

looked for double-positive (DP) “nonsense cells” and included the

total number of objects identified (Figure 2C). For the representative

ROI shown in Figure 2B, we noted that the Vero cell p-map identified

fewer objects than the Tonsil-derived p-map (5039 vs. 5839) with

the nucleus-only approach identifying far fewer (3551). Moreover, the

frequency of CD3/CD79a DP cells was also similar regardless of the

p-map model (tonsil vs. Vero) or the approach used to delineate cell

boundaries (EPCAM alone versus a multimarker signal approach) with

�21% of events within the gates. There was, however, an increase in

the frequency of DP cells in the nucleus-only plot (�29%) but it was

surprisingly modest considering the gross under segmentation using

this method. Bivariate plots of CD3 versus CD79a on all segmented

objects are shown for the Tonsil Ilastik—EPCAM membrane approach

in Figure S5 and for the Nucleus-only approach in Figure S6 for com-

parison and again show that there was minimal impact on the percent-

age of DP cells as a result of clearly suboptimal segmentation. To

provide some basic spatial context we also plotted the x and

y centroid values for each segmented object colored by membership

of each gate (B cells, T cells, and DP cells, see figure 2D). These data

showed very little differences in the arrangement of CD3+, CD79a+,

and DP cells between segmentation approaches but did highlight the

fact that without the use of a p-map approach, the cells were grossly

under segmented. Collectively, these data suggested that an effective,

yet straightforward approach to cell segmentation is the use of ran-

dom forest pixel classifier trained on the same or similar sample/tissue

type with a single widely expressed membrane marker to delineate
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F IGURE 2 Assessment of segmentation approaches for accurate single-cell identification in complex tissues using a 28 parameter
(27 antibody) imaging mass cytometry (IMC) panel on human FFPE tonsil. (A) Multi-parameter pseudo-colored images from a representative
human tonsil ROI with well-separated B- and T-cell areas. The first image column (left to right) shows DNA staining with iridium (red pseudo
color), the next column images include CD79a as an overlay (green) with iridium (red), the next shows CD3 (blue) overlaid with iridium (red). The
next set of images combine the CD3 (blue), CD79a (green), and iridium (red) as a triple overlay. The final image panel shows the addition of two
further parameters, CD68 (teal) and ki67 (yellow). (B) Segmentation maps for the four different segmentation models tested in this study showing
the same region of interest (ROI) as in (A). The upper panels show (where used) the probability map outputs from the indicated Ilastik model
(derived from either the same tonsil data set or from Vero cells). The lower panels show the segmentation boundaries generated using CellProfiler
alone (far left image) or from the indicated Ilastik p-map. Various approaches to delineate the cell boundary are indicated and include using a
single-membrane signal (EPCAM) or a combination of multiple markers (multisignal). (C) Bivariate single-cell-level intensity plots for each of the
four segmentation approaches shown in (A) and (B) with CD3 intensity displayed on the x-axis and CD79a intensity displayed on the y-axis. In
both cases the arcsinh c.f. 1 transformed, Z-score normalized values have been used. Gates have been set to quantify the percentage of cells that
express CD3 or CD79a alone as well as biologically impossible double-positive (DP) cells that may indicate a failure in accurate segmentation. The

total number of single-cell events is also shown on each plot. (D) x/y cell centroid maps of the same tonsil ROI in (A) to (C) colored by the gated
population shown in (C) for each of the four individual segmentation approaches colored as indicated in the legend. [Color figure can be viewed at
wileyonlinelibrary.com]
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cell boundaries. We hypothesized that more profound differences

between segmentation methods may be revealed by clustering, how-

ever, before moving to this stage, we needed to optimize other ele-

ments of the data set.

3.2 | IMC data structure and batch effect removal
benefits from optimal parameter transformation, Z-
score normalization and optimal dimensionality
reduction approaches

Having determined that the optimal cell segmentation approach we

tested used the Tonsil Ilastik p-map combined with watershed detec-

tion of the EPCAM membrane boundary, we next wanted to deter-

mine the optimal parameters for transformation, batch effect

normalization and multiparameter data visualization. We began by

evaluating the most suitable cofactor for arcsinh transformation of the

metal signal parameters. Single-cell data variance increases with

parameter value meaning that distances at higher (positive) values are

less significant than distance from lower (negative) values. This is not

suitable for dimensional reduction or clustering algorithms as most

assume distances are of equal importance/weight. It is therefore

essential to use special scaling formulas to stabilize variance. One of

the most effective and widely utilized approaches is the hyperbolic

arcsine (arcsinh) transformation [27]. It is widely used in fluorescence-

based flow cytometry and suspension-based mass cytometry [28].

The choice of cofactor has a profound influence on the

post-transformation data structure and values of between 100 and

150 have been recommended and are widely used for fluorescence-

based detection whereas a lower value of 5 is routinely used for mass

cytometry in suspension. To our knowledge, however, there have

been minimal attempts to empirically prove why these values

have been used in either technology [29] or, importantly, any

attempts to determine what co factor is optimal for IMC data. Values

of 5 have been used to simply mirror suspension based mass cytome-

try [9] or values of 5–15 have been proposed [30]. To this end, we

performed a titration of arcsinh c.f. values spanning a range from

150 to 0.1 and used the “fisher discrimination ratio” (Rd), also known

as the “linear discriminate analysis” (LDA) [31] to determine the statis-

tical separation between a gated low and high signal distribution

(Figure 3A) and then created UMAP plots from each c.f. values param-

eter set. By plotting the arcsinh c.f. versus the Rd value we were able

to empirically determine that a value of “1” was optimal for achieving

the maximal resolution of IMC-derived metal signal parameters (see

Figure 3B). This was the same for all 28 metal isotope parameters in

the panel.

We next sought to address the issues of batch effect normaliza-

tion. While every attempt was made to eliminate and control batch

effect by using the same donor tonsil tissue across all batches, the

same lot of conjugated antibodies, the same person carrying out

the staining protocols and a well maintained/QCe'd Hyperion instru-

ment, the nature of working with FFPE tissues often generates signifi-

cant variation. We began by firstly assessing whether there were

batch effects in our data set that could influence the data structure

and thus any biological interpretation. By plotting all 109,535 cells

derived from the Tonsil-EPCAM segmentation model as a UMAP, we

could see that our 28 arcsinh c.f. 1 transformed metal signal parame-

ters (27 antibodies plus iridium) gave us very well structured data.

However, when we introduced coloration to these events based on

batch membership, we could see that the majority of the data struc-

ture came from batch effects rather than true underlying biology (see

Figure 3C upper panels). To attempt to correct for batch effect we

tried a number of approaches such as “Batchelor” [32], “Har-

mony” [33], and “Seurat” [34]; however, we found that they were not

easily compatible with our data files. As such, we found that Z-score

normalization of the arcsinh c.f. 1 transformed metal signal parameters

to be most effective (Z-score normalization is available in the FCS

Express pipelines feature). When we created a UMAP plot using the

Z-score normalized version for all 28 of the metal signal parameters,

while the global data structure did collapse somewhat, coloration of

each event by batch membership revealed an almost complete

removal of batch effect (Figure 3C lower panels). We also tested the

method of “0–1 scaling” as described by Ashhurst et al. [30] but this

did not eliminate the batch effect in our data (see Figure S7).

Having established the optimal transformation c.f. and normalized

for batch effects, we next wanted to determine if UMAP was indeed

the optimal algorithm for presenting the underlying structure of IMC

data. To this end, we assessed five different dimensionality reduction

methods in all cases uses the recommended hyper-parameter settings

(see Figure 3D upper panel); UMAP (as described previously),

fltSNE [35], tSNE [6], PacMap [36], and Tri-Map [37]. Typically, tSNE

is widely to visualize IMC data, however, it is often the case that it

projects very little data structure. There is some argument that UMAP

performs better for data with parameters that are poorly resolved and

does a better job of projecting both local and global data struc-

tures [38]. Our data support this concept as tSNE representation of

our IMC data lacked any discernible structure and moreover, density-

based overlay of fiducial phenotyping markers such as CD3

(Figure 3D, middle panel) and CD68 (Figure 3D, lower panel) showed

very little focus of events expressing these markers in defined areas

of the map. The fltSNE algorithm performed as poorly as tSNE with

triMAP giving by far the most suboptimal results. Interestingly though,

PacMap performed very well and gave better data structure than

UMAP in our hands, with very clear islands with mapping of the fidu-

cial markers to defined areas. As such we decided to use PacMap to

visualize our IMC data using the arcsinh c.f. 1 and subsequent Z-score

normalized metal parameter feature set.

3.3 | Suboptimal segmentation has a detrimental
impact on the ability to confidently identify all
expected tonsil-resident phenotypes using clustering
approaches

Although the segmentation approach did not seem to create overtly

inferior or superior single-cell-level data outputs as judged by our

HUNTER ET AL. 43



simplistic CD3 and CD79a DP “nonsense” cell frequency analysis

(Figure 2B, S5, and S6), we wanted to assess whether clustering and

cell type identification would be more affected. To this end we used

the FLOWSOM clustering algorithm [39] to partition the single cells

into initially 100 SOMs (clusters) based on “similarity” over the

27 antibody-derived metal signal parameters. We used the arcsinh c.

f.1 and Z-score normalized versions as previously reasoned. Figure 4A

shows the 100 SOMs for the output of the 109,535 single-cell objects

generated by the “Tonsil Ilastik–EPCAM membrane” segmentation

approach in the form of a radial spanning tree with the mean

F IGURE 3 Legend on next page.
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expression of the fiducial markers CD79a and CD3 used as the radial

statistic for each of the three plots respectively. In Figure 4B we pre-

sent the same visualizations but this time using the 84,268 single-cell

objects derived from the “Nucleus-only” segmentation approach. A

qualitative comparison between the two sets of data suggests that

the suboptimal segmentation output (Nucleus-only model) leads to

more SOMs (clusters) that seem to have higher expression of CD3

and CD79a but also less radial spanning structure compared to the

“Tonsil Ilastik–EPCAM membrane” model SOMS. To further investi-

gate these potential differences we compressed the 100 SOMs to

30 cSOMs using the standard hierarchal approach [39]. We then

sought to annotate the clusters based on the heat map outputs and

marker expression pattern on a per-SOM, per-marker basis using heat

maps. Figure 4C shows that the majority of “Tonsil Ilastik–EPCAM
membrane” model consensus SOMs could be assigned a biological

identity (27 out of 30) using expert a priori knowledge whereas for

the 30 cSOMs derived from the “Nucleus-only” segmentation model

we were only able to confidently assign identities to 23 (Figure 4D).

Interestingly, we also noted a reduction in T-cell and macrophage

cluster heterogeneity in the data derived from the “Nucleus-only”
segmentation model with no evidence of naïve CD8 T cells or mature

macrophages as well as an over-clustering of B cells. Overall these

data collectively suggested that suboptimal segmentation did have a

negative impact on phenotypic identification based on clustering

approaches where all “n dimensions” are considered. While FLOW-

SOM has been widely used for suspension cytometry data analysis,

we are not aware of a study using it for IMC data analysis. IMC data

clustering tends to be done using the Phenograph algorithm [9,

23, 40, 41]. As such we wanted to also test this approach on our

“Tonsil Ilastik–EPCAM membrane” data set. Again we used the opti-

mal arcsinh c.f. 1 transformed, Z-score normalized metal signal param-

eter feature set and selected a “k nearest neighbor” value of 17 to

generate a similar number of Louvain communities (clusters) to our

FLOWSOM consensus approach (30 clusters). Figure 4E shows the

Phenograph output as a heat map with attempts to assign cell identi-

ties to the clusters. In this case we could only confidentially annotate

18 out of the 30 clusters and as a result several populations were

totally absent compared to the equivalent FLOWSOM approach

(Figure 4C). It was also of note that Phenograph found several non-

classified (NC) clusters that were of very low frequency also suggest-

ing a suboptimal performance compared to FLOWSOM as our panel

was not designed to find any rare cell types in tonsil.

3.4 | FLOWSOM clustering combined with expert
cluster merging is able to identify cell types/states
with high spatial accuracy

Having established the optimal clustering approach for correctly

transformed and batch normalized IMC data we wanted to further

refine our clusters in terms of biological meaning. Several of the anno-

tated cSOMs from the FLOWSOM approach were still phenotypically

identical to one another and thus were unlikely to represent truly

unique cell types or states. We also wanted to combine out final

annotated cSOMS with the use of PacMap dimensionality reduction.

To this end, we manually merged any of the 30 cSOMs from the heat

map shown in Figure 4C based on highly similar marker expression

patterns. This left us with 21 unique clusters, all of which could be

biologically annotated with a high degree of confidence apart from

one cluster of cells with high CD56 expression present as a majority

in a single image (see Figure S2). Figure 5A shows the heat map of the

21 manually merged cSOMS with biological annotations and the rela-

tive frequencies of each. The clusters were also mapped back on to

the same PacMap plot constructed from all 109,535 cells as shown in

Figure 2B. The follicular B and T cells formed a distinct structure as

did the non-follicular immune cells and the macrophages/structural

cells (endothelium and epithelium). The real power of IMC and other

high parameter tissue imaging approaches is that spatial context of all

cell phenotypes/clusters can be mapped back in to the tissue space.

We chose human tonsil, the antibody panel, and the specific ROIs pre-

cisely as they should identify well-known cell types that also possess

well-defined spatial co-ordinates with respect to anatomical struc-

tures but also in relation to one another. To validate our final 21 manu-

ally merged cSOMs, we used the fact that each of the 109,535 cell

objects identified by Tonsil–EPCAM segmentation within the 24 ROIs

retained their x and y centroid co-ordinates as part of the FCS file cre-

ation (see Section 2 and Supplemental Methods). This meant we could

simply plot the X and Y centroid features for any ROI as bivariate dot

F IGURE 3 Optimization of data scaling co-factors, batch effect correction and dimensionality reduction for imaging mass cytometry (IMC)
data analysis. (A) The impact of arcsinh cofactor (c.f.) values on parameter/channel resolution. Left panel shows histograms of CD3 expression
intensity derived from segmented single cells within the human tonsil tissue with decreasing arcsinh c.f. values down the rows (100, 1, and 0.1).
The right panels show the same analysis for CD79a expression intensity levels. “Negative” and “positive” gates are set on each plot to derive the
population statistics (median and rSD) required to calculate the “Fisher ratio” (Rd) resolution metric (see Section 2). (B) The graph shows the
relationship between Rd (y-axis) as a function of arcsinh c.f. (x-axis) for CD3 and CD79a. (C) Batch effect in data can be eliminated by correct

normalization approaches. UMAP plots of 27 antibody-based parameters of arcsinh c.f. 1 transformed data only (upper panels) and arcsinh c.f. 1
transformed, Z-score normalized data (lower panels) showing all 109,535 single cells. From left to right, the first UMAP plots are colored by cell
density. The middle UMAP plots are standard black and white dot plots and the third UMAP plots are colored by batch (see key). (D) The choice
of dimensional reduction algorithm impacts on the representation and interpretation of underlying IMC data structures. The indicated
dimensionality reduction algorithms were run on the same 27 arcsinh c.f. 1 Z-score normalized parameters as in (B). The upper row shows general
cell density, the middle row is density weighted by CD79a expression and the lower panel by CD3 expression. [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 4 FLOWSOM clustering performs better on imaging mass cytometry (IMC) data than Phenograph but is affected by suboptimal
segmentation. (A) Radial spanning trees of the original 100 SOMs generated by the FLOWSOM clustering algorithm from single-cell outputs
generated by the “Tonsil EPCAM” segmentation model with the mean expression of the “fiducial” markers CD79a and CD3 used as the radial
statistics as indicated. (B) The same plots as in A but for the output of FLOWSOM clustering on the single-cell data from the “Nucleus-only”
segmentation model. (C) Heat map of the 30 consensus cluster (SOMs) derived from the original 100 SOMs for the “EPCAM” model. The
frequency of each cluster is indicated by the bar chart below each column (cluster). Specific as well as broad cluster annotations are provided for
T cells, B cells, macrophages (Macs), endothelial cells (Endo), and epithelial cells (Epi). Where a cluster could not be confidently identified, they
were labeled “NC” (not classified). The heat map is showing the median of the arcsinh c.f. 1 transformed, Z-score normalized 27 antibody marker
signals as indicated on the y-axis (rows) and have been further normalized by column value (by cluster). (D) An analogous heat map as shown in
(C) but for the 30 consensus cluster (SOMs) derived from the original 100 SOMs for the “nucleus-only” segmentation model. (E) A heat map as
shown in (C) but for the 30 Louvain communities (clusters) derived from analyzing the single-cell outputs generated by the “Tonsil–EPCAM”
segmentation model using the Phenograph clustering algorithm with a “K-nearest neighbor” value of 17 (see Section 2). [Color figure can be
viewed at wileyonlinelibrary.com]
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plot and color by the selected cSOMs. Figure 5B shows the spatial

mapping of six annotated cSOMs from the heat map in 5A for two

representative ROIs. Reassuringly, the spatial locations of each cluster

followed the expected biological patterns with the follicular T and B

cells mapping to follicular structures and the endothelial cells mapping

to the inner walls of the vessels/tonsillar crypt. These observations

F IGURE 5 Legend on next page.

HUNTER ET AL. 47



were further verified by the original staining patterns in IMC images

(Figure 5C) with cells in the follicles Ki67 positive as they are undergo-

ing aggressive proliferation. As a final level of validation, we mapped

all 21 clusters using unique colors on to the cell object maps derived

from the segmentation pipeline (Figure 5D). These were also in agree-

ment with the expected spatial patterns of locations. The colored clus-

ter maps for all 24 ROIs are shown in Figure S8. Overall, the

combination of manual merging of FLOWSOM-derived cSOMs, Pac-

Map visualization, and validation by spatial mapping confirmed our

analysis approach to be optimal and accurate with respect to

our panel and tonsil tissue.

3.5 | The choice of pixel expansion approach
combined with removal of edge cells has a negative
impact on neighborhood mapping

Having established that our analysis approach could reliably identify

cell types and states in tonsil tissue with high accuracy both pheno-

typically and spatially, we wanted to use these data to benchmark

our neighborhood analysis. Our method was based on the previously

described approach from HistoCat [9] and is based on a defined pixel

outgrowth that creates a bounding box in which significance of

interaction or avoidance is tested using a permutations-based

approach with a significance cut off (typically 100 permutations and

a 10% cut off). There is also a threshold parameter that can filter out

clusters that only appear in a certain percentage of the images/ROIs

(see Figure S9A). A threshold of 0.1% means that clusters have to be

present in over 10% of all ROIs to be considered in the neighbor-

hood analysis. This was not a function relevant to our data set, how-

ever, as all final 21 cSOMs were present in all 24 ROIs (see

Figure S9B). We would also caution against using this feature as it

could lead to removal of a key, biologically defining cluster from one

sample group in a large batch analysis. A further important consider-

ation is the removal of any partial and fragmented cells around the

edge of the image as well as size-based filter for removing under and

over-segmented objects. We set a gate on our data that would

ignore cells/objects less than 20 μm2 (5 μm2 diameter) and more

than 200 μm2 (16 μm2 diameter) as shown in Figure S9C. We could

then compare the outcomes and results of using this filtering

method with edge cell removal versus analyzing all objects. First, we

wanted to compare the results of conducting a spatial analysis on a

defined, well characterized ROI (ROI 23 in this example) using the

“bounding box” approach versus a “disc”-based method of pixel out-

growth (see Figure 6A). Our first metric of assessment was the

median nearest neighbor number (median NN) versus the pixel out-

growth value (see Figure 6B). As expected for all approaches,

increasing the pixel distances led to an increase in the median NN

with the largest values coming from the original bounding box

approach. However, based on the physical geometry of the cells in

the tonsil tissue we reasoned that a median NN value between

6 and 8 would be indicative of an optimal area for “true” neighbor-

hood analysis. The usual recommended pixel outgrowth for this

approach is 5 [9, 23]; however, the data in Figure 6B showed that

the original bounding box method gave a median NN of �11 cells at

this distance. This suggests that the bounding box created was sam-

pling an area greater than the area occupied by the immediate near-

est neighboring cells. Both the “disc”-based approaches at 5 pixels

gave NN values of 8 regardless of any object filtration suggesting

that it was more accurately finding “true” immediate neighbor cells

compared to the original “bounding box” approach. Finally, we

wanted to generate heat maps for each of the 12 combinations and

focus on the accuracy of the interactions and avoidances at the clus-

tering level. We first considered the general “qualitative” appear-

ance of the heat maps with regard to how much red (significant

interaction), blue (significant avoidance) and white (indifference) we

observed. Figure 6C shows that in qualitative terms, only the disc

method with object filtration (first column) produced heat maps over

the entire pixel range tested [3–15] that were not dominated by red

(significant interactions), rather the majority of cluster relationships

were “indifferent” or random (white). Based on the “ground truth”
image of ROI 23 in Figure 6A, the majority of clusters were not

interacting with one another suggesting that the disc with object fil-

tering method was more accurate in reflecting the actual spatial

arrangement of cells in the tissue. Finally, we focused on the four

cell types (clusters) highlighted in Figure 6A, namely follicular B cells,

memory CD4 T cells, memory CD8 T cells and B cells and looked at

the heat maps for each up to a 10 pixel expansion. The only condi-

tion where we noted significant avoidance (blue) between follicular

B cells as the central cluster (row) with respect to memory CD4/CD8

T cells and epithelium as well as an acceptable median NN value was

the disc approach with filtering and a 5-pixel outgrowth. Overall

these data support the idea that this was the optimal approach for

finding “true” neighbors.

F IGURE 5 Cell type/state verification using the original imaging mass cytometry (IMC) images and spatial mapping visualization tools. (A) A
heat map (left panel) of the 21 final manually merged populations created from the 30 consensus clusters for the “EPCAM” segmentation model
shown in Figure 3C. Cluster frequencies are shown by the colored bar charts below each cluster column and the map intensity has been derived

from the arcsinh c.f. 1 transformed, Z-score normalized markers as indicated in each row with further normalization down each column
(by cluster). A PacMap dimensionality reduction plot (right panel) of the 109,535 segmented single cells from all 24 tonsil ROIs across the
12 staining batches as shown in Figure 2C but now colored by the final 21 FLOWSOM clusters as per legend. (B) x/y centroid maps for two
representative tonsil ROIs with six different unique cell (see legend) clusters displayed. (C) Pseudo-colored IMC images of the same
representative tonsil ROIs as in (B) showing six fiducial stains as indicated in the legend (nuclear plus five antibodies) that support classification of
the cell types in (A) and (B). (D) Cluster maps of the same two representative tonsil ROIs as shown in (B) and (C) with all 21 final consensus
clusters shown (see legend). [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

The analysis of IMC data has historically been challenging with limited

attempts made to develop accurate, scalable, and accessible solutions.

Moreover, approaches tend not to be very accessible and require

expert knowledge of programming languages such as R, Python or

MATLAB [12, 42]. This has resulted in significant frustration in the

community, contributing to inaccurate single-cell data and unconvinc-

ing biological conclusions. There are several issues with existing analy-

sis pipelines, namely the approaches used to segment single cells

accurately from low-resolution, often “noisy” data. They often lack

any real appraisal of how successful the segmentation is in terms of

how well they find known/expected cell types/states in a given tissue.

To this end, the “OPTIMAL” framework for analyzing IMC-derived

multiplexed image data provides several recommendations for testing,

optimizing and benchmarking key steps in any pipeline. First, we show

using the currently most established approach for IMC data segmen-

tation [10] that object identification is improved by the use of an

Ilastik-generated probability map constructed using only nuclear and

background signal but that the p-map does not necessarily need to be

derived from the same cell or tissue type as an embedded cell line

(Vero cells) performed comparably. Of note, we only utilized two clas-

ses of pixel classification for Ilastik learning (nucleus and background)

and not membrane as this reduced the computational burden and

showed no benefit over using three pixel-class Ilastick learning to

define cell boundaries (Figure S10). When we also looked at the

frequency of so called “nonsense” CD3/CD79a DP cells we found a

minimal increase as a result of under segmentation in the absence of a

p-map input. While this seemed surprising, it likely reflected the fact

that T cells and B cells are often in quite distinct anatomical locations

F IGURE 6 Optimization of spatial “neighborhood” analysis of human tonsil tissue reveals the importance of edge cell removal and the
method of pixel expansion. (A) A cluster map for ROI 23 (see Figure S8) only showing 5 of the final consensus clusters (see legend) with clear and
expected spatial relationships. The teal dotted line denotes the optional removal of edge cells prior to neighborhood analysis. The area of tissue
within the solid teal square has been magnified to show the two methods of pixel expansions for finding neighboring cells to the central cell (X); a
“bounding box” (BB) approach (i) or a disc approach (ii). (B) A graph showing the relationship between the selected pixel expansion/distance value
(x-axis) and the median number of nearest neighbors (NN) for each of the three conditions tested (see legend). (C) Interaction heat maps for the
different input options shown in B (columns) versus pixel expansion distance (rows, 3, 5, and 10 pixels). The rows for each heat map denote the
central cell cluster (marked as X in (A)) and the columns denote the potential neighboring cell types (clusters). The color of each square in the grid
relates to the nature of the spatial relationship with red denoting a significant interaction, blue a significant avoidance and white indifference as
per legend (i). The clusters in x and y are denoted by color as per legend (ii). The violet dashed boxes highlight the interactions and avoidances of
the follicular B-cell population with the memory CD4 and memory CD8 T-cell populations. All maps were created using significance cut off of
10% and 100 permutations. [Color figure can be viewed at wileyonlinelibrary.com]
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in human tonsil [43]. Perhaps unsurprisingly, however, when we took

the data to the clustering stage, we did see dramatic effects on the

fidelity and identity of the cell types and states derived from poorly

segmented images. As such, we would recommend always assessing

any segmentation approaches using a clustering-based metric against

a known “ground truth.” We saw no measurable benefit to using an

approach for cell boundary detection that used the sum of multiple

membrane signals over a single-membrane marker such as EPCAM;

even considering that EPCAM was labeling membranes in a non-

specific fashion. Moreover, IMC is not an optical imaging technology

and has a relatively low resolution (1 μm per pixel, equivalent to

around 10� magnification on an optical imaging system). The ablation

laser that also “drills” in to a defined depth of tissue in order to liber-

ate sufficient material to achieve suitable metal ion detection and sig-

nal resolution [1]. It is therefore highly likely that information from

cells located in different z planes are mixed together. As such, one

could argue that segmentation will always be flawed to an extent.

Certainly, there are numerous approaches that do not attempt to seg-

ment cells but instead work with the pixel level data in the image [44].

To this end, several groups are working on 3D imaging of cleared

tissues [45] or by modifying the IMC approach to achieve Z-stack

information [46]; however, at present, these techniques either lack

the parameter space or throughput. We also tested the deep learning-

based segmentation approach CellPose [17, 24] as well as an

approach that only segmented nuclei and saw no measurable benefits

(Figure S10). Nonetheless, we propose that OPTIMAL provides a

framework for benchmarking any segmentation approach.

Post-segmentation but prior to any further single-cell analysis

using dimensionality reduction and clustering techniques it is essential

to apply various transformations and corrections to the data in order

to remove noise, background, maximize signal resolution, and remove

any batch effects. Any form of semi-quantitative tissue imaging is by

nature composed of quite poorly resolved signals due to the fact that

we are never measuring a whole cell, unlike flow cytometry or suspen-

sion mass cytometry. Moreover, IMC is around fivefold less sensitive

than fluorescence-based detection (our unpublished observation). As

such, it is imperative to ensure that the resolution of signal is opti-

mized in order to provide the very best overall data structure prior to

going in to both dimensionality reduction (DimRedux) and clustering.

As described previously [22], we applied spillover correction to all of

the mean pixel values for all metal ion channels. This has been shown

to improve data interpretation. We also removed any “hot” pixels by

capping at the top and bottom 5% for analogous reasons. However,

probably the most important step is the use of data transformations

such as the hyperbolic arcsine (arcsinh). Without applying such a

transformation, comparatively high parameter values with greater var-

iance will have a lower weighting in any subsequent dimensionality

reduction or clustering compared to lower values with greatly reduced

variance. Using a very simple approach based on the Fisher discrimi-

natory ratio (also known as the LDA) we used our OPTIMAL approach

to determine the best arcsinh cofactor value for IMC data to be “1,”
not between 5 and 15 as reported by others [30]. We show that

values greater than or less than 1 do not project the IMC data

structure in an optimal fashion. While previous attempts have been

made to try and develop frameworks for optimizing parameter trans-

formations for fluorescence-based flow cytometry data [47], to our

knowledge OPTIMAL is the first for IMC data.

After parameter transformation, the next important step of data

preprocessing is to look for, and if necessary, correct for batch effects.

While we purposefully attempted to minimize and where possible

eliminate all sources of batch effect by the same person staining

TMAs from the same FFPE human tonsil section with the same panel

of 27 metal tagged antibodies on 12 separate occasions and acquiring

data on a well maintained and consistently QCe'd Hyperion IMC sys-

tem, the nature of FFPE tissue analysis remains highly variable. As

such it was no surprise that a UMAP-based analysis of our 27 arcsinh

c.f.-transformed antibody-metal parameters revealed measurable

batch effect in the data structure and presented us with the perfect

opportunity to develop an OPTIMAL solution for correction. As with

parameter transformation, there has also been a lack of exploration as

to what the best approach is for batch effect normalization, and while

several approaches exist for cytometry and single-cell data often

these are not tested using actual dedicated, empirically generated

batch controls. We did test a number of these approaches on our data

set, including the “0–1” scale compression proposed by Ashhurst

et al. [30] but found that a simple Z-score normalization after arcsinh

transformation was sufficient to remove all measurable batch effect

from our data without eliminating biological relevance.

Having formulated the OPTIMAL approach for empirically deter-

mining the necessary transformations and corrections to achieve the

very best resolution from our IMC data we next assessed the suitabil-

ity of five different dimensionality reduction algorithms to determine

which provided the best representation of our data structure. As Dim-

Redux approaches are used to present multidimensional single-cell

data in a way that can aid interpretation it is essential that the right

approach is used. The use of widely available software such as FCS

Express of FlowJo that requires little to no knowledge of coding

means that using our OPTIMAL approach, researchers can easily

explore what DimRedux method is best for their data. To our knowl-

edge, existing analysis methods such as HistoCat and ImaCyte do not

offer the same flexibility of choice and ability to also alter the hyper

parameters for these algorithms (iteration, seed, neighbors, perplexity

etc.). In this case, we found that PacMap performed the best with

UMAP a close second. PacMap generated more discrete structures as

well as showing improved mapping of fiducial markers back on to

these whereas other approaches lacked any discernible structures and

fiducial markers were more diffuse in mapping. Of note, PacMap also

clearly identified the follicular structures in the tonsil driven by Ki67,

CD57, CD3, and CD79a expression and has been proposed to handle

weakly resolved signals better than other DimRedux approaches [36],

making it highly suitable for IMC data.

The use of clustering approaches to identify cell types and states

based on marker expression levels/patterns is well established in

single-cell analysis. There are several different approaches and one of

the best performing is the FLOWSOM algorithm [7]. To date, few if

any IMC analysis approaches have reported the use of FLOWSOM
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for cell type and state identification, but rather have used Phenograph

as part of HistoCat or IMaCYte [9, 23]. Our data were conclusive in

that FLOWSOM, in conjugation with the Tonsil-EPCAM segmentation

model, arcsinh c.f. 1 parameter transformation and subsequent Z-

score normalization could identify the majority of expected cell types

and states within the human tonsil. Phenograph performed poorly,

missing several expected cell types as well as generating a large num-

ber of low-frequency, unidentifiable clusters. While it may be possible

to try and optimize the Phenograph algorithm to improve the outputs,

in all cases we deliberately used the default hyper-parameters for

both clustering algorithms we tested to mainly reflect that we want

the OPTIMAL framework to be accessible to non-specialists in data

analysis.

Finally, having arrived at a set of cell clusters that we could anno-

tate with phenotypic, functional, and spatial confidence, we wanted

to assess whether we could benchmark and optimize the commonly

used neighborhood analysis method used in HistoCat [9]. We pur-

posely ensured that we selected quite varying areas within the tonsil

tissue sections over the 12 batches, to introduce variance at the spa-

tial level (but not at the cell type or marker level). We selected exam-

ple ROIs where there was clear spatial definition of different cell

types so that we could always compare any interaction-based neigh-

borhood analysis with what we could observe to be true in the image.

We also restricted our analysis to only a few cell types such as follicu-

lar B cells and memory CD4 and CD8 T cells. We tested a number of

different tune-able parameters for detecting immediate neighboring

cells from a central cell phenotype and used two metrics to determine

which was best; the median NN and the significance of either interac-

tion or avoidance as a heatmap. The median NN values as a function

of pixel outgrowth was very interesting as it showed the original

script's “bounding box” approach to be including cells that were not

true neighbors. We found that a better approach was to use a radial

“disc”-based pixel outgrowth and that filtering of edge cells as well as

small and large cells from the images was essential to generate the

expected interactions and avoidances. Moreover, this was optimal at

5 pixels, as recommended by HistoCat and ImaCytE by default but

only when using the “disc”-based outgrowth method. While this

approach was simple and informative, we did notice that the struc-

tural heterogeneity we purposefully collected in our data set meant

that if we created interaction heatmaps from the average of all

24 ROIs, the data were almost un-interpretable (data not shown). As

such analysis of structurally heterogeneous tissue may benefit from

other spatial analysis methods that the one we tested.

In conclusion, we show using the OPTIMAL approach that

methods for segmenting single cells in IMC data can be assessed using

well characterized tissues and antibody panels followed by cluster

analysis to verify that the expected cell types/states are identified.

However, prior to any clustering analysis, IMC data structure can be

optimized by transforming all metal parameters with an arscinh c.f. of

1, and this can be empirically tested using the Rd approach, and also

corrected for batch effect using a an additional Z-score normalization.

We also found that PacMap was the best dimensionality reduction

approach for visualizing IMC data and that FLOWSOM was the best

performing closeting algorithm. Finally, we show that the OPTIMAL

approach for conducting neighborhood analysis of the resident cell

types/states is to use a “disc”-based radial pixel outgrowth rather

than a “bounding box approach”. We have further validated and uti-

lized the OPTIMAL approach to analyze several other tissues using

similar and distinct panels of antibodies to the ones used in this study.

These include COVID-19 postmortem lung tissue (manuscript submit-

ted), gut tissue from various inflammatory conditions (manuscript in

preparation) and inflamed synovial tissue from rheumatoid arthritis

patients (manuscript in preparation). Furthermore, the OPTIMAL

framework has been used to analyze data from other multiplexed tis-

sue imaging technologies that are fluorescence-based such as the Mil-

tenyi MACSima with a high degree of success. As stated previously,

we do not describe OPTIMAL as a new pipeline per se for analyzing

IMC and other multiplexed imaging technology data sets, but we do

argue that it offers a framework for assessing, optimizing and bench-

marking existing and future approaches.
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