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Summary

� Flowers are the complex and highly diverse reproductive structures of angiosperms.

Because of their role in sexual reproduction, the evolution of flowers is tightly linked to

angiosperm speciation and diversification. Accordingly, the quantification of floral morpholo-

gical diversity (disparity) among angiosperm subgroups and through time may give important

insights into the evolutionary history of angiosperms as a whole.
� Based on a comprehensive dataset focusing on 30 characters describing floral structure

across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity

and explore patterns of floral evolution through time and across lineages.
� We found that angiosperms reached their highest floral disparity in the Early Cretaceous.

However, decreasing disparity toward the present likely has not precluded the innovation of

other complex traits at other morphological levels, which likely played a key role in the out-

standing angiosperm species richness.
� Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a

portion of the possible floral trait combinations is observed in nature. The ANA grade, the

magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher dis-

parity), whereas nested groups occupy narrower regions (lower disparity).

Introduction

Disparity, or morphological diversity, is a quantification of the
morphological variation displayed by a group of organisms
(Foote, 1992a, 1993a, 1995, 1997; Wills et al., 1994; Ciampa-
glio et al., 2001; Erwin, 2007; Guillerme et al., 2020; Hopkins
& Gerber, 2021). Measures of disparity are based on the multi-
variate description of morphological traits and are often coupled
with the ordination of morphospaces that describe and relate the
phenotypic configurations of organisms (Foote, 1994; Mitter-
oecker & Huttegger, 2009; Smith & Donoghue, 2022). The var-
iation of disparity and morphospace occupation within and
among clades, populations, fossil assemblages, or time periods,
may provide useful information on a lineage’s morphological
evolution (Foote, 1994; Benton, 2015), on the evolutionary
constraints shaping phenotypes (Ciampaglio, 2002; Allen
et al., 2008), on the ecology and natural selection exerted on
populations (Benitez-Vieyra et al., 2010), and on the effect of
mass extinction on lineages (Brusatte et al., 2008a; Fried-
man, 2010; Korn et al., 2013; Puttick et al., 2020). In particular,

studying disparity through time (DTT) using fossils gives insight
into the evolutionary dynamics of lineages and the general pat-
terns of morphological evolution on Earth (McGhee, 1991;
Foote, 1993b; Hughes et al., 2013; Oyston et al., 2016).

Disparity has generally evolved nonuniformly and indepen-
dently from species richness throughout the history of lineages
(Foote, 1994, 1995; Slater et al., 2010; Benton et al., 2014;
Moon & Stubbs, 2020; Coombs et al., 2022). Two main trends
in the variation of DTT have been observed with respect to when
maximal disparity was reached. Most lineages reached maximal
disparity early in their evolution (‘early-disparity’, ‘bottom-
heavy’ distribution: Gould et al., 1987; Gould, 1989; Hughes
et al., 2013). These early-disparity trends result from abrupt and
wide morphospace exploration possibly due to the rapid coloni-
zation and exploitation of new environments, or of an ecological
niche that was left vacant after an extinction event (Foote, 1994;
Benton et al., 2014; Benton, 2015; Leslie et al., 2021). Alterna-
tively, new morphologies might accumulate slowly as clades
diversify so that disparity might reach its maximal levels late in a
clade’s evolution (‘late-disparity’, or ‘top-heavy’ distribution;
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Gould et al., 1987; Prentice et al., 2011; Hughes et al., 2013;
Puttick et al., 2020). Although disparity variation and morpho-
space occupation through time have been described for various
animal clades (e.g. Foote, 1991 for blastoids; Foote, 1994, 1999
for crinoids; Fortey et al., 1996 for several animal groups; Bru-
satte et al., 2008b for dinosaurs; Bapst et al., 2012 for grapto-
loids; Hill et al., 2018 for fishes), only few studies have quantified
DTT in angiosperms (e.g. Lupia, 1999; Jardine et al., 2022 for
pollen; Oyston et al., 2016; Clark et al., 2023 for general mor-
phology; Mart�ınez-Cabrera et al., 2017 for wood properties).

Flowers are a relatively recent evolutionary innovation and yet
they have evolved remarkable morphological and functional
diversity (Endress, 2011; Sauquet et al., 2017, 2022). Because
floral morphology is directly linked to angiosperm reproductive
success, flowers are under strong selective pressures and studying
their morphological diversity is crucial to understand trends of
lineage divergence and evolutionary success (Harder & Bar-
rett, 2006; Endress, 2011; van der Niet & Johnson, 2012; Char-
tier et al., 2014; Sauquet & Magall�on, 2018). The diversity of
flowers has been extensively discussed qualitatively, based on the
development and comparative morphology of various extant
groups (Endress & Igersheim, 1997, 1999, 2000; Matthews &
Endress, 2002, 2005, 2006; Sch€onenberger & von Baltha-
zar, 2006; Endress, 2010, 2011; Sch€onenberger et al., 2010).
Based on these studies, it is for example widely recognized that
floral organization (Bauplan) is relatively labile among the ANA
grade lineages, magnoliids, and early-diverging eudicots, all of
which exhibit, for instance, high variability in merism (organ
number) and phyllotaxis (the arrangement of floral organs). By
contrast, floral organization is more stable in large clades such as
the monocots with almost exclusively trimerous, whorled flowers,
or in Pentapetalae with mostly pentamerous, whorled flowers
(Endress, 2010, 2011; Sauquet et al., 2017).

The first study using a morphospace approach to analyze floral
morphology across angiosperms is the theoretical morphospace
created by Stebbins (1951). A theoretical morphospace allows
describing the entire spectrum of theoretically possible morphol-
ogies for a group of organisms and, therefore, determining limits
in the evolution of biological forms and identifying areas of possi-
ble high vs low fitness (Raup & Michelson, 1965; Raup, 1967;
McGhee, 1991, 2015; Avena-Koenigsberger et al., 2015). Using
this approach, Stebbins determined a set of floral trait combina-
tions that were unlikely to occur in angiosperms and others that
were particularly successful (common; Stebbins, 1951). A later
quantitative re-analysis of Stebbins’ dataset confirmed the quali-
tative observations of plant morphologists that the highest floral
disparity is present in the ANA grade, magnoliids, and early-
diverging eudicots, whereas the lowest disparity was found in the
nested clades such as lamiids, campanulids, and malvids (Chartier
et al., 2014). The shortcoming of these two studies is that Steb-
bins’ original dataset only included eight binary floral characters
and was coded at the family level based on a now largely outdated
classification of angiosperms. The study of floral evolution
and diversity during the last decades and the reconstruction of
ancestral floral morphologies (e.g. Sauquet et al., 2017) allow
us to study disparity and morphological trajectories using

unprecedently large datasets through time at the level of angios-
perms as a whole. In addition, the recent description of numerous
fossil flowers provides information about past floral diversifica-
tion (e.g. Crepet et al., 1991; Endress, 2006; Endress &
Doyle, 2009; Friis et al., 2010, 2011; Doyle & Endress, 2014)
and makes it possible to study DTT in angiosperms. Most fossil
flowers stem from Cretaceous sediments and include predomi-
nantly three-dimensionally, well-preserved, charcoalified meso-
fossils (e.g. Sch€onenberger & Friis, 2001; Gandolfo et al., 2004;
Friis & Pedersen, 2011, 2012) while a few are preserved as per-
mineralizations (e.g. Atkinson et al., 2015), impressions/com-
pressions (e.g. Dilcher & Crane, 1984; Mohr & Eklund, 2004),
and amber inclusions (e.g. Gandolfo et al., 2018).

In this study, we use an extensive morphological dataset
describing characters at the level of floral organization (Bauplan;
sensu Endress, 1994). We include most of the best-preserved fos-
sil flowers known and a broad representation of living species to
investigate the large-scale temporal and phylogenetic patterns in
the evolution of angiosperm flowers. First, we quantify and
describe the changes in disparity and morphospace occupation
through geologic time. Second, we explore the position of living
species (split into 11 taxonomic groups) in a theoretical floral
morphospace, and test for the correlation between disparity,
clade age, and clade species richness in these groups.

Materials and Methods

All analyses were performed in R v.4.1.2 (R Core Team, 2022;
Supporting Information Dataset S1). In the following, function
names and packages are referred to as function name {PACKAGE
NAME}.

Analyses overview

We performed three different analyses. For each analysis, a dis-
tance matrix (see Distance matrices in the Materials and Methods
section) containing the taxa of interest (see Morphological dataset
in the Materials and Methods section) was computed and then
used to calculate disparity (see Estimating disparity in the Materi-
als and Methods section), then an ordination was generated to
visualize the morphospace (see Ordination in the Materials and
Methods section).

Disparity through time We compared disparity and morpho-
space occupation among four stratigraphic time bins: the
Early Cretaceous (145–100.5Ma), the Late Cretaceous (100.5–
66Ma), the Paleogene (66–23.03Ma; Cohen et al., 2013), and
living species (present time). Detailed morphological descriptions
were only available for two species from the Neogene (23.03–
5.333Ma; Casta~neda-Posadas & Cevallos-Ferriz, 2007; Hern�a-
ndez-Dami�an et al., 2018; Cohen et al., 2013); Neogene fossils
were thus excluded from the statistical analyses.

Angiosperm trajectory in the morphospace We placed ancestral
flowers reconstructed for the crown nodes of 15 key angiosperm
clades (see Ancestral state reconstructions in the Materials and
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Methods section) in the floral morphospace and compared their
position with that of living and fossil angiosperms.

Disparity among living angiosperms We compared disparity
and morphospace occupation among living angiosperms split into
11 groups (including clades and grades) and tested for the correla-
tion among disparity, age, and species richness for these groups.
We split species into the following six clades: magnoliids, commeli-
nids, fabids, malvids, campanulids, and lamiids (sensu APG IV,
2016), and five grades: ANA (Amborellales, Nymphaeales, and
Austrobaileyales), other monocots (all monocot lineages except
commelinids), other eudicots (Ranunculales, Proteales, Trochoden-
drales, and Buxales), other superrosids (Saxifragales and Vitales),
and other superasterids (Santalales, Berberopsidales, Caryophyl-
lales, Cornales, and Ericales; Dataset S2). The orders Chlor-
anthales, Ceratophyllales, Gunnerales, and Dilleniales were
excluded from the statistical analyses as they contained only two to
four species in our sampling and because they cannot be assigned
to any previously specified group.

Morphological dataset

The dataset includes 30 categorical floral characters scored for
1201 living angiosperm species (36 030 matrix cells) sampled
from all currently accepted families from APG IV (2016), as well
as 121 fossil flowers (3630 matrix cells), which represented most
of the best-preserved fossil flowers described to date. The final
data matrix used in analyses and the complete list of fossils and
information on their stratigraphic age, mode of preservation,
locality, and corresponding references are available in Dataset S2.

Morphological data and references were recorded in the PRO-
TEUS database (Sauquet, 2019). One character describes the
whole flower, eight describe the perianth, 11 the androecium,
eight the gynoecium, and two the pollen (Sauquet et al., 2017;
Sch€onenberger et al., 2020). Data for the 1201 living species were
previously scored by L�opez-Mart�ınez et al. (2023). Data for 24 of
the 121 fossil species were obtained from Sch€onenberger
et al. (2020) and L�opez-Mart�ınez et al. (2023), and 97 fossils
were additionally scored for this study. A complete extraction of
PROTEUS data for the fossil dataset (2442 data records linked
to 125 explicit references) is provided as Dataset S3 and the data-
set used here is provided as Dataset S2.

The proportion of missing data, including inapplicable charac-
ters, is 32% (11 573 matrix cells) for the living species (Fig. S1) and
36% (1305 matrix cells) for the fossils (Fig. S2). Additionally, there
were 3% (1310 matrix cells) polymorphic entries for the living spe-
cies and 2% (74 matrix cells) for the fossils. As most of our analyses
do not support polymorphic data, we randomly sampled one of the
polymorphic states (with equal probabilities) for each polymorphic
entry before each analysis following Chartier et al. (2017). Our
results did not change among these analyses.

Theoretical combinations

To visualize the distribution of achieved morphologies among
possible ones in the ordinations, we added a background of

theoretical combinations to the combinations displayed by the
sampled angiosperm species (empirical data). Such an approach
is helpful for categorical data like ours, where the nature of the
space is discrete rather than continuous (Gerber, 2019). The the-
oretical morphospace contains all combinations of traits that can
be obtained from the study character set. In our data, the total
number of possible combinations is the product of the number of
states for each character: 2179 389 439 52 = 1.389 1012. To
display a subset of the theoretical morphospace in the ordina-
tions, we randomly sampled 2000 of these theoretical combina-
tions without replacement each time we created an ordination.
We did not sample theoretical combinations containing inapplic-
able or impossible combinations of character states (e.g. perianth
merism in flowers without perianth); in these cases, the inapplic-
able character state was treated as missing data. Inapplicable and
impossible combinations are listed in Methods S1.

Distance matrices

For each analysis, a distance matrix was computed by calculating
the mean character difference (here noted D) for each pair of taxa
following Sneath & Sokal (1973 p. 135) and Foote (1999). The
mean character difference is a version of the Gower index, suited
for datasets like ours containing categorical ordered and categori-
cal unordered characters. It ranges from zero (no difference) to 1
(largest difference in the dataset). Its calculation is detailed in
Methods S2.

Estimating disparity

Disparity was estimated for each group (clade, grade, or pool of
species belonging to the same time bin) based on four metrics
capturing different aspects of morphospace occupation:

The mean pairwise difference (here meanD) reflects the density
of taxa within a group; it is the mean character difference (D,
stored in the distance matrix) averaged among each pair of taxa
(Foote, 1999). This metric is moderately sensitive to sample size
(Ciampaglio et al., 2001), and since the data present large differ-
ences in sample size in some instances (e.g. 22 species in the
Paleogene vs 1201 extant angiosperms), we additionally rarefied
it. For the rarefaction analysis, n species were randomly sampled
without replacement in each group (with n the size of the smallest
group minus one); then, the distance matrix was computed and
meanD calculated. This was repeated 1000 times.

The range (here noted R) gives information about the size of a
group in the morphospace (Foote, 1992b); we calculated it as the
maximum pairwise distance (maxD) in a group. The range is sen-
sitive to sample size (Ciampaglio et al., 2001), and we thus rare-
fied it as described above (we only compared rarefied values).

MeanD, rarefied meanD, and rarefied R were compared among
groups with Kruskal–Wallis tests for nonparametric data (Krus-
kal & Wallis, 1952) using the functions kruskal {AGRICOLAE} (de
Mendiburu & Yaseen, 2020) and kruskalmc {PGIRMESS} (Girau-
doux et al., 2018).

We also computed a measure of the contribution of a group to
total disparity (here noted Ddelta; Foote, 1993a). We measured
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Ddelta for group i (Ddeltai), as the difference between meanD for
the dataset without group i, and meanD for the total dataset
(Dtot). When using meanD as an estimate of disparity, a positive
value of Ddeltai indicates that adding group i contributed to an
increase in Dtot, while a negative value of Ddeltai indicates that
adding group i contributed to a decrease in Dtot. The magnitude
of this contribution is proportional to the absolute value of
Ddeltai.

Finally, to detect the living species with the most distinct floral
combinations, we estimated the divergence of each species from
the average morphology (we called it eccentricity following Oys-
ton et al., 2015) by averaging D for each living species in the
dataset. This was done by averaging each line of the distance
matrix. Species with the highest eccentricity are placed at the edge
of the occupied morphospace ordination.

Ordination

We visualized morphospaces with nonmetric multidimensional
scaling (nMDS) using the function metaMDS {VEGAN} (Oksanen
et al., 2020), setting the number of dimensions (k) to two and
the maximum number of random starts (trymax) to 20 (default
value). For each group (time bin or taxonomic group), the posi-
tion of the centroid was added to the graphs by averaging the
coordinates of each point for each axis. Floral morphologies were
compared among groups with a nonparametric multivariate ana-
lysis of variance (npMANOVA) with the function adonis2
{VEGAN} (Oksanen et al., 2020). Post hoc tests consisted of pair-
wise npMANOVAs with a Bonferroni correction.

Correlations

For living species, we investigated the correlations between dis-
parity (meanD) and species richness of clades/grades (extracted
from the World Flora Online; WFO, 2023), between meanD
and clade age (crown age for six clades from Ram�ırez-Barahona
et al., 2020), and between meanD and Ddelta. Finally, we verified
that sample size was positively correlated with species richness.
We used Pearson correlation tests using the function cor.test
{VEGAN} (Oksanen et al., 2020).

Ancestral state reconstructions

We employed maximum likelihood (ML) and stochastic charac-
ter mapping (SM) methods to reconstruct ancestral states for
each floral trait at 15 angiosperm key nodes corresponding to
broadly recognized major angiosperm clades (sensu Cantino
et al., 2007; APG IV, 2016). All ancestral state reconstructions
(ASR) were conducted using the maximum clade credibility
dated tree from the relaxed calibration complete (RC-complete)
strategy from Ram�ırez-Barahona et al. (2020). Maximum likeli-
hood reconstructions were performed implementing the equal
rates (ER) and all rates different (ARD) models of discrete mor-
phological evolution with the function rayDISC {CORHMM}
(Beaulieu et al., 2013; Dataset S4). We subsequently compared
model fit based on the Akaike information criterion. SM

reconstructions were then conducted using the best-fitted model
obtained with ML. For SM analyses, we first dropped the tips
with missing data, nonapplicable, and polymorphic data from
the tree using the function drop.tip {PHYTOOLS} (Revell, 2012).
We then inferred ancestral states using 500 simulations along the
tree with the function make.simmap {PHYTOOLS} (Revell, 2012)
and summarized with the function describe.simmap {PHYTOOLS}
(Revell, 2012). Dropped tips were removed from the trees show-
ing ASR with SM (Dataset S5). To display ASR in the morpho-
space, we included the most probable combinations of ancestral
states for each node in the dataset before computing the distance
matrix, according to Gerber (2019).

Results

Morphospace and disparity through time

Fossil floral disparity significantly differed among the four time-
bins (Kruskal–Wallis test: v2 = 207.29, df = 3, P = < 2.2e�16;
Fig. 1b). Angiosperm flowers showed the highest disparity in the
Early Cretaceous (meanD = 0.372� SD 0.14) followed by a
decrease toward the Late Cretaceous (meanD = 0.316� 0.143)
and the Paleogene (meanD = 0.241� 0.13). Disparity for living
species reached values intermediate between Late Cretaceous and
Paleogene (meanD = 0.29� 0.137; Fig. 1b). This pattern was
confirmed by the rarefaction analyses of meanD (Fig. S3a) and of
R, with the exception of the Paleogene group showing a range as
high as in the Early Cretaceous (Fig. S3b). Note that this pattern
applies to angiosperms as a whole and that disparity within sub-
groups might vary differently (Fig. S3c–e).

The morphospace area occupied by fossil floral morphologies
significantly varied in time (npMANOVA: F = 21.583 P < 1e�4;
Fig. 1a), with the position of the centroid showing a displace-
ment from the middle bottom part to the right middle side of the
morphospace (Figs 1a, 2). Although all reconstructed ancestors
analyzed here dated from the Jurassic to the Early Cretaceous
(Table S1), they followed the same trajectory as the position of
the centroid for fossils through time and were mostly restricted to
the area densely occupied by living species (Fig. 2).

Morphospace and disparity for living angiosperms

Ninety-five percent of living species occupied a restricted area of
the morphospace ordination (as a rough indication, the corre-
sponding convex hull covered 36% of the total morphospace;
Fig. S6) and the remaining 5% of the living species with the
highest eccentricity were distributed in otherwise largely empty
areas of the theoretical morphospace (the corresponding convex
hull covered 60% of the total morphospace; Fig. S6).

In our dataset, 45% of living species had bisexual flowers with
one whorl of sepals and one whorl of petals, a total of 6–10 peri-
anth parts, together with a differentiated style (Fig. S7). By con-
trast, the floral traits characterizing the empty area of the
theoretical morphospace (traits more rarely observed in living
species) included, in combination or not: dimerous perianths and
androecia with more than two whorls each, diaperturate and
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inaperturate pollen grains, the absence of a perianth, spiral peri-
anth and androecium phyllotaxis, flap-valvate and H-valvate
anther dehiscence, fused ovaries, undifferentiated styles, as well as
free-central and laminar placentation (Fig. S7). The five species
with the highest eccentricity were as follows: Eupomatia bennetii
F.Muell. and E. laurina R.Br. (magnoliids), Cyclanthus bipartitus
Poit. ex A.Rich. (other monocots grade), Galbulimima belgra-
veana (F.Muell.) Sprague (magnoliids), and Sarcandra chlor-
anthoides Gardner (Chloranthales; Fig. S6).

Disparity differed significantly among angiosperm
groups (Kruskal–Wallis test: v2 = 18 392, df = 10, P = < 2.2e�16;
Fig. 3b; Table S2). Floral disparity was highest within magnoliids
(meanD = 0.378� SD 0.16), the ANA grade (meanD =
0.370� 0.14), and the other eudicots grade (meanD =
0.334� 0.16). These three groups also contributed the most to
total disparity (Fig. 4c). The lowest disparity was found in nested
clades within the Pentapetalae clade, such as campanulids
(meanD = 0.158� 0.09) and lamiids (meanD = 0.12� 0.08;
Fig. 3b). These two groups contributed the least to total disparity

(Fig. 4c). Rarefied meanD and rarefied R showed similar results
(Fig. S8).

The position of living clades and grades in the space varied
significantly (npMANOVA: F = 41.78, r2 = 0.23, P < 1e�04;
Fig. 3a), meaning that each group presented specific combina-
tions of floral traits. Exceptions (nonsignificantly different
groups) were as follows: (1) the ANA grade, magnoliids, and the
other eudicots grade, (2) commelinids and the other monocots
grade, (3) fabids, the other superasterids grade, and the other
superrosids grade, (4) the other monocots grade and the
other superrosids grade (Fig. 3a).

Correlations

Disparity significantly decreased with species richness (Pearson:
t =�3.01, df = 9, P = 0.015; Fig. 4a), with the exception of
fabids, which showed medium disparity (meanD = 0.29) and a
large number of species (85621). Disparity significantly increased
with crown node age (t = 5.80, df = 4, P = 0.004; Fig. 4b) and
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with the contribution to total disparity (t = 4.84, df = 9,
P < 1e�3; Fig. 4c). Sample size was positively correlated with spe-
cies richness (t = 4.69, df = 9, P = 0.001; Fig. S10).

Discussion

Floral disparity through time

Early high levels of disparity are generally characterized by high
rates of character change during the early phases of a lineage’s his-
tory, resulting in maximum phenotypic variation followed by
developmental canalization (Foote, 1997, 1999; Wagner, 2018;
Smith & Donoghue, 2022). As we show here, angiosperm flow-
ers also followed this pattern, reaching their maximal disparity in
the Early Cretaceous, meaning that major structural variations
(Bauplan, e.g. fusion, number, and arrangement of organs) were
explored early in the history of the group. Interestingly, this
occurred when angiosperm species richness was still low com-
pared with other land plants (Lupia et al., 1999) and the group

was still mainly restricted to the paleotropics (Willis & McEl-
wain, 2002). It remains uncertain whether the initial floral mor-
phological diversification was associated with the exploitation of
ecological opportunities, for example by the interaction with dis-
persers and pollinators. Insect pollination, for instance, existed
before the origin of angiosperms (Pe~nalver et al., 2015; Asar
et al., 2022; Pe~na-Kairath et al., 2023) and is ancestral for the
group as a whole (Friis et al., 1999; Stephens et al., 2023).

Disparity decreased in the Late Cretaceous as the average floral
morphology shifted to become more similar to that of extant spe-
cies (Fig. S11). For example, the higher frequency of undifferen-
tiated free perianths, spiral androecia, basifixed anthers, and
valvate anther dehiscence among Early Cretaceous fossils was,
from the Late Cretaceous on, replaced by a majority of differen-
tiated and fused perianths, whorled androecia, dorsifixed anthers,
and dehiscence by longitudinal slits. A number of these Late Cre-
taceous flowers also display new traits considered as a step toward
a further adaptation to animal pollination, like perianth differen-
tiation, a lower number of floral organs, nectaries, and fusion of
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carpels (syncarpy; Friis et al., 2006). This timing is consistent
with the diversification of various pollinating insect clades (Asar
et al., 2022; Benton et al., 2022; Kawahara et al., 2023; Pe~na-
Kairath et al., 2023), the emergence (stem age) of most extant
angiosperm families (Ram�ırez-Barahona et al., 2020), and the
progressive dominance of angiosperms in terrestrial ecosystems
(Lupia et al., 1999; Willis & McElwain, 2002; Augusto
et al., 2014; Condamine et al., 2020).

We also observe a decrease in floral disparity following the
Cretaceous/Paleogene (K/Pg) extinction event. Although fossil-
based quantitative analyses have suggested that the K/Pg extinc-
tion was highly selective to certain clades (e.g. Laurales and
Cyclanthaceae; McElwain & Punyasena, 2007) and regions (e.g.
tropical South America; Carvalho et al., 2021), there is no con-
sensus about the impact of the K/Pg extinction on angiosperms
as a whole (Willis & McElwain, 2002; Cascales-Mi~nana &
Cleal, 2014; Thompson & Ram�ırez-Barahona., 2023; Wilf
et al., 2023), and it remains uncertain whether it had an effect on
floral disparity as Paleogene floral fossils are unevenly distributed
with regard to phylogeny, geography, and preservation types
(Friis et al., 2011; Xing et al., 2016). In our data, the morpho-
space area covered by these fossils is restricted, and the area emp-
tied during the Paleogene gets occupied again in the Present,
confirming a possible sample bias in the Paleogene record. The
Paleogene was characterized by profound global landscape
changes with the emergence of dense subtropical forests with
closed canopies (Carvalho et al., 2021) and the diversification
(crown age) of most extant angiosperm families (Ram�ırez-
Barahona et al., 2020). Despite their lower disparity, Paleogene
flowers show a higher frequency of bilateral symmetry (zygomor-
phy) and perianth fusion, which might indicate higher rates of
specialization to different functional groups of pollinators (e.g.
Stewart et al., 2022).

Interestingly, angiosperm pollen disparity also rapidly
increased from the Early Cretaceous (Lupia, 1999) but the high-
est pollen disparity in the Late Cretaceous was followed by a sta-
bilization of the morphospace due to the accumulation of
different morphologies. The same pattern was estimated for

Asterales pollen (Jardine et al., 2022). Conversely, Oyston
et al. (2016) found that the overall disparity of vegetative and
reproductive characters remained constant throughout the
angiosperm’s history. By contrast, a study on wood traits (Mart�ı-
nez-Cabrera et al., 2017) found low initial disparity followed by
an increase from the Late Cretaceous on, concomitant with
the increased domination of land ecosystems by angiosperms,
most probably due to vegetative key innovations leading to
more adaptive growth strategies (Feild et al., 2011; Condamine
et al., 2020). The different evolutionary trends of disparity varia-
tion between flowers, pollen, and vegetative traits probably reflect
differences in function, selective value, and evolutionary potential
of these traits. Knowing more about these different components
would allow getting a more comprehensive understanding of the
incredible success of angiosperms throughout their evolutionary
history.

Limits in the evolution of floral form

Most extant flowers are restricted to a small area of the morpho-
space (Fig. S6): 91% of the living species have flowers with a peri-
anth, 85% are bisexual, 83% are whorled, and 72% have a
differentiated perianth (Fig. S7). In terms of trait combinations,
the most common flower is bisexual, with a differentiated peri-
anth arranged in two whorls (45% of living species in our data-
set). These traits characterize Pentapetalae, the angiosperm clade
containing > 70% of extant species (Magallon et al., 1999; Chris-
tenhusz & Byng, 2016). For the flower, the higher occupation of
some areas of the morphospace can be attributed to the economy
of construction and/or to functional advantages (Stebbins, 1951;
Endress, 1982). For example, bisexuality (85% of the living spe-
cies in our dataset) increases pollination probability (function)
since pollinators can deposit and take up pollen in a single flower
visit; a differentiated perianth (72% of the living species in our
dataset) allows sepals to protect the developing flower while petals
attract pollinators at anthesis (function); a perianth with two
whorls of organs (71% of the living species in our dataset) that
generally alternate allows for optimal organization (economy of
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construction); finally, the presence of a low number of united car-
pels (55% of the living species in our dataset) requires a smaller
amount of wall tissue during growth (economy of construction)
and enables more regular pollen tube distribution among carpels
(function; Endress, 1982), increasing the probability for fertiliza-
tion (Armbruster et al., 2002). Some trait combinations, like the
presence of a corolla with zygomorphy and a small number of sta-
mens (20% of the living species in our dataset), increase specia-
tion rates (O’Meara et al., 2016) as they give a selective advantage
for pollination (function) by ensuring a more efficient placement
of pollen on pollinator’s bodies (Walker-Larsen & Harder, 2000;
Sargent, 2004).

The distribution of living species in the floral morphospace
and the quantification of disparity follow a phylogenetic pattern
and support conclusions from qualitative studies (e.g. Endress &
Igersheim, 1997, 1999, 2000; Matthews & Endress, 2002, 2005,
2006; Sch€onenberger & von Balthazar, 2006; Endress, 2010,
2011). These results are consistent with the re-analysis of Steb-
bin’s dataset by Chartier et al. (2014): we found the highest floral
disparity in early-diverging and species-poor grades and clades,
and the lowest disparity in highly nested and species-rich clades
(Fig. 3).

The ANA grade, magnoliids, and the other eudicots grade dis-
play a broad range of floral trait combinations appearing widely
spread in the morphospace. In addition, most species with the
highest eccentricity belong to these groups (Fig. S11). It is
expected for grades to show more variability than clades per defi-
nition. Old clades are also known to present more variable floral
traits. For instance, floral phyllotaxis is particularly labile in
members of the ANA grade and magnoliids (Endress &
Doyle, 2009), where whorled and spiral phyllotaxis often coexist
at shallow phylogenetic levels, and merism is highly variable
within early-diverging angiosperms and members of the other
eudicots grade (Endress, 2011). The most eccentric species often
show a marked reduction of organs, such as perianth loss, allow-
ing the arrangement and number of stamens and carpels to
become highly labile (e.g. Eupomatia and Galbulimina in the
magnoliids, Euptelea, and Trochodendron in the other eudicots
grade, and Cyclanthus in the other monocots grade; End-
ress, 2011).

Another trend is the stabilization of floral organization within
highly nested groups such as malvids, campanulids, and lamiids,
which occupy relatively narrow regions in the space and show
low levels of disparity coupled with high species richness (Fig. 3).
Some floral characters became canalized or fixed within these
major clades. For example, floral phyllotaxis is generally whorled
and merism became stabilized to pentamery (or tetramery) in
Pentapetalae and trimery in commelinids (Endress, 2011). This
tendency in angiosperm floral evolution toward fixation of the
number and position of organs, and toward repeated evolution of
some traits such as zygomorphy (Reyes et al., 2016), is often asso-
ciated with increased synorganization, that is when organs of the
same module (e.g. perianth) or different modules (e.g. androe-
cium and gynoecium) become integrated into architecturally and
functionally complex structures (Endress, 2002, 2006, 2016).
The lower disparity in floral organization found in nested clades

does not preclude, and possibly even has enabled variation in
other aspects of floral structure, for instance, traits associated with
mechanical properties (e.g. size and proportions) or traits directly
related to interactions with pollinators (e.g. organ shape, floral
color, and rewards). Such floral traits, which have not been con-
sidered in this study, tend to be very labile, even among closely
related species (Endress, 1994, 2011).

Conclusion

Our quantification of disparity through time revealed a pattern
of highest disparity early during angiosperm floral evolution.
Disparity in the Early Cretaceous might have been even higher
than our present estimation since numerous plant fossils with
reproductive organs possibly belonging to the angiosperms have
not been formally described yet (Sauquet & Magall�on, 2018).
Studies on disparity would greatly benefit from the description
of such fossils, even if they cannot be assigned to extant
lineages. It seems very surprising that there are hardly any
described extinct angiosperm families and orders, which one
would expect when considering the long evolutionary history of
the group (but see Sun et al., 2002; Pessoa et al., 2023). Other
fossils, such as Bevhalstia pebja Hill, 1996 (Friis et al., 2011),
do not present enough characters to be added to disparity stu-
dies. It also has to be mentioned that the fossil record of angios-
perms is geographically biased since most of the currently
available specimens stem from the mid-northern paleolatitudes
(Friis et al., 2011; Xing et al., 2016). Studies in extant lineages
have shown that floral disparity may vary with latitude and with
regional factors (Chartier et al., 2021), and it would be interest-
ing to test whether such patterns are also present in the floral
fossil record. However, it is currently not possible to address
this question due to the paucity of the floral fossil record from
the southern hemisphere. Furthermore, our results illustrate that
ASRs are, by nature, conservative. First, while the ages of the
crown nodes of the evaluated groups date to the early Cretac-
eous (or earlier; Ram�ırez-Barahona et al., 2020; Table S1), the
corresponding ASRs fall within the small morphospace areas
occupied by most extant species included in the dataset (Fig. 2).
This is discrepant with the documented positive correlation
between node age and disparity (Fig. 4), and hence, with our
expectation that oldest nodes would occupy morphospace areas
outside those occupied by the majority of extant species. Sec-
ond, while ASRs may document character state combinations
that are not present among the original species sample, they are
methodologically precluded from estimating character states that
are not present in this sample. Third, our results empirically
show that fossils document greater floral disparity than ASRs
(Fig. 2). Nonetheless, further ASR-based analyses would com-
plement our approach as they would likely add crucial qualita-
tive and quantitative information on the evolution of the group,
through the exploration of morphological rates of evolution
through time and through ASR incorporating fossil data.
Finally, the analyses of morphospaces for vegetative and for
other reproductive characters (e.g., fruits) would achieve an inte-
grative understanding of angiosperm evolution.
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