
536  |     Plant Pathology. 2023;72:536–547.wileyonlinelibrary.com/journal/ppa

1  |  INTRODUC TION

Wheat is a staple crop in which the control of multiple diseases 
by breeding resistant varieties, applying pesticides, or other mea-
sures is important for maintaining yield and quality. Two of the 
most commercially important wheat diseases in the UK and many 
other countries are yellow rust, also called stripe rust, caused by 
the basidiomycete fungus Puccinia striiformis f. sp. tritici (Pst) (Liu & 
Hambleton, 2010), and Septoria tritici blotch, also known as Septoria 
leaf blotch or simply Septoria, caused by the ascomycete fungus 
Zymoseptoria tritici (formerly Mycosphaerella graminicola) (Hardwick 
et al., 2001). Distinguishing these two diseases is sometimes 

problematic because of their similar appearance at certain stages 
in their life cycle (Brown, 2021). The symptoms that are most com-
monly associated with these diseases are clearly different, but they 
are not representative of the full array of possible symptoms over 
the course of infection. At their most recognizable stages, yellow 
rust is easily diagnosed by the stripes of orange/yellow uredinial 
pustules that form on the leaves of wheat plants, whereas mature 
Septoria appears on the leaf as necrotic yellow- to- brown lesions 
restricted by the veins of the leaf with many small black pycnidia 
(Agriculture and Horticulture Development Board [AHDB], 2020). In 
most of Europe, the uredinial stage of yellow rust is formed a few 
weeks earlier than the pycnidial stage of Septoria. Confusion can 
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Abstract
Crop diseases can cause major yield losses, so the ability to detect and identify them 
in their early stages is important for disease control. Deep learning methods have 
shown promise in classifying multiple diseases; however, many studies do not use 
datasets that represent real field conditions, necessitating either further image pro-
cessing or reducing their applicability. In this paper, we present a dataset of wheat 
images taken in real growth situations, including both field and glasshouse condi-
tions, with five categories: healthy plants and four foliar diseases, yellow rust, brown 
rust, powdery mildew and Septoria leaf blotch. This dataset was used to train a deep 
learning model. The resulting model, named CerealConv, reached a 97.05% classifica-
tion accuracy. When tested against trained pathologists on a subset of images from 
the larger dataset, the model delivered an accuracy score 2% higher than the best- 
performing pathologist. Image masks were used to show that the model was using the 
correct information to drive its classifications. These results show that deep learning 
networks are a viable tool for disease detection and classification in the field, and 
disease quantification is a logical next step.
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arise, however, at two stages. In the early stages of each disease, 
yellow rust and Septoria both appear as elongated areas of chloro-
sis. Later on, as yellow rust gets to the later stages of its life cycle, 
the distinctive orange spores fall from the leaf leaving necrotic le-
sions with black telia (AHDB, 2020), which can be confused with 
mature Septoria lesions that are formed at approximately the same 
time (Schirrmann et al., 2021). This presents problems even for ex-
perienced pathologists when they have limited time to look closely 
at each plot and can thus generate mistakes in the assessment of 
wheat varieties and fungicides. The new genotypes of Pst, which 
have infected wheat in northern Europe since 2011, produce much 
more abundant telia than the only clone that was present until 2010 
(Rodriguez- Algaba et al., 2020), making it more difficult to discrimi-
nate late yellow rust and mature Septoria.

To further complicate the problem, another important wheat 
disease, brown or leaf rust, caused by Puccinia triticina (Bolton 
et al., 2008; Goyeau et al., 2006), produces orange/brown pustules 
on the leaves of wheat plants. These brown rust pustules can be 
difficult to distinguish from the earliest stages of yellow rust and 
immature pycnidia of Septoria. The final foliar disease relevant 
to this paper is powdery mildew, caused by Blumeria graminis, 
which is an important disease in many parts of the world (Dubin & 
Duveiller, 2011). Whilst several other foliar diseases affect wheat 
across the world, the four mentioned here are considered the most 
important in the UK (AHDB, 2020).

In order to control disease on any crop, it is important to be 
able to identify the disease present. Often, this requires special-
ist pathology knowledge, which is not always readily available to 
farmers or agronomists. An automated system for disease detec-
tion would allow any user to identify diseases on their crop easily, 
without the need for specialist skills, and allow them to implement 
a cost- effective fungicide programme. Advances in machine learn-
ing, specifically deep learning, have enabled game- changing ad-
vances in several applications including text recognition (Jaderberg 
et al., 2015; Lecun et al., 1998) and image recognition (He et al., 2016; 
Simonyan & Zisserman, 2015) amongst others.

Deep learning methods have shown great promise in the detec-
tion of diseases on various crops using images as input. One notable 
dataset used in multiple studies is the Plant Village dataset (Hughes 
& Salathe, 2016), which contains over 50,000 images of diseased 
leaves taken in controlled conditions with simple backgrounds such 
as a single colour. Multiple studies have used the whole or part of this 
dataset (Amara et al., 2017; Brahimi et al., 2017; Ferentinos, 2018; 
Mohanty et al., 2016; Rangarajan et al., 2018; Saleem et al., 2020; 
Zhang et al., 2018). Other studies have used their own images, also 
collected in controlled conditions (Liu et al., 2018). Although other 
studies have collected their own, more complex images under field 
conditions, these study datasets have often contained few classes; 
DeChant et al. (2017) gained accuracies of 96.7%, but it is un-
clear how well their method would perform with multiple classes. 
Conversely, some studies have used multiple classes with few im-
ages per category (Singh et al., 2020). In these cases, it is unlikely 
that any network would perform well in the field as the training data 

would not be comprehensive enough to cover the range of realistic 
conditions. Some studies have used data augmentation, whereby an 
image is digitally flipped, rotated, or otherwise transformed, thus in-
creasing the number of images for training the network. However, 
this does not add any new information or variation to the dataset.

In the work reported here, we aimed to test if deep learning 
networks are capable of handling complex images taken in realistic 
growth situations for multicategory classification of wheat diseases. 
We developed and trained a convolutional neural network (CNN), 
which we have named CerealConv, for the identification and classi-
fication of diseased wheat leaf images taken in field and glasshouse 
conditions. For the five predefined categories of Septoria, yellow 
rust, brown rust, mildew and healthy, our network achieved a clas-
sification accuracy of over 97%. When tested on a smaller dataset 
against manual classification by five pathologist participants, our 
network performed with an accuracy of 2% higher than the most 
accurate pathologist. Given that the images included diverse irrel-
evant information in the background in addition to the affected (or 
healthy) leaves, we tested whether or not CerealConv uses the cor-
rect information to drive disease classification. Our work suggests 
that deep learning methods can handle real field condition images 
well and can perform at least as well as expert wheat pathologists.

2  |  MATERIAL S AND METHODS

2.1  |  Dataset determination

We collected images of infected and healthy wheat from various loca-
tions across the UK and Ireland in the summer of 2019. Photographs 
were taken using various iOS and Android smartphones and a digital 
camera. Prior to preprocessing, the resolution of the images ranged 
from 6 to 16 megapixels, depending on the capture device. Diseased 
(or healthy) leaves were photographed whilst still attached to the 
plants (both seedling and adult), with up to five leaves being the 
focus of each image. These leaves were photographed both above 
and below the canopy, at a range of distances from the plant, from 
approximately 20 cm to 1 m, and with a range of backgrounds includ-
ing plants within the field plot, other vegetation, soil and sky. We 
captured images from multiple angles to represent the variation that 
would occur with different people using the model in the future. For 
the disease categories, only plants with visible symptoms were pho-
tographed, including the earliest visible symptoms to assist in early 
detection.

Field locations included farmers' fields and plant breeding trial 
plots. The majority of field photographs were taken in plant breed-
ers' trials containing thousands of wheat lines. A minority were 
taken in farmers' fields containing diverse commercial varieties. 
Photographs were taken over a 3- week period in varying weather 
conditions. Many mildew images were taken in a glasshouse contain-
ing diverse lines from genetic and plant breeding experiments. Each 
photography location was identified by a pathologist as having only 
one disease present and the resulting photographs were all labelled 
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with that disease. At least four different locations were used to pho-
tograph each category. We took care to include so many different 
conditions firstly, so the model could work in all situations and sec-
ondly, to reduce the risk of the model learning features that were not 
related to the disease.

Every photograph was checked visually to assess the quality, 
both of the photograph and the information contained. Any photo-
graphs that were out of focus or showed no important information 
(because it contained no relevant part of any plant for example) were 
removed. In cases where the photograph possibly had more than one 
disease present or if the image did not match the disease label from 
the site, these were also removed. Photographs with fingers or boots 
in the foreground or background were left in the dataset unless they 
were obstructing the main information. All images that passed qual-
ity control were assigned a label corresponding to the disease pres-
ent. Within the dataset, each of the five categories was divided into a 
train set (60%), a validation set (20%) and a test set (20%).

To evaluate CerealConv against expert pathologists, we cre-
ated a smaller dataset of 999 images using images from the test 
dataset. In this dataset, we included all images that the trained 
network failed to classify correctly and an even sampling of all 
categories and prediction scores. This ensured that the dataset 
contained a selection of images that, from the network's perspec-
tive, had varying degrees of difficulty in classification. The images 
were shuffled randomly to ensure that there was no way to predict 
which disease would appear next. A tagging system was created 
that loaded each image onto the screen for a user to classify. Five 
expert crop pathologists, with differing backgrounds and levels of 
experience, took part in the experiment. Each user saw the images 
in the same order and was asked to classify them individually to 
obtain a range of results representing the breadth of knowledge 
expected to be found in breeding companies. The tags 1– 5 were 
used to represent each of the five categories contained within the 
dataset. Once a tag was assigned, the next image was automat-
ically loaded. The system collected the allocated tags for each 
participant.

As an additional validation of CerealConv's performance, a sepa-
rate experiment was conducted to test if the CNN was reliably using 
the correct information to classify images into the five categories. 
This was done by placing black rectangles over diseased leaves (or 
healthy leaves in the foreground for the “healthy” category) that 
we considered would be most informative for classification. When 
CerealConv used the correct information for classification, a large 
reduction in accuracy was observed for the partially masked images 
compared to the originals.

2.2  |  Training deep learning networks

We first tested the following pretrained networks: VGG16 (Simonyan 
& Zisserman, 2015), Inception V3 (Szegedy et al., 2016), Mobilenet 
(Howard et al., 2017), Xception (Chollet, 2017). All of these networks 
have been trained on the ImageNet dataset (Deng et al., 2009), 

which contains 1.2 million images classified into 1000 categories. 
We used transfer learning with the pretrained ImageNet parameters 
for each of these networks to gain classifications of our own wheat 
images (Figure 1). We removed the part of the pretrained network 
that provides classifications and sent our images once through the 
part of the network that extracts features, the pretrained convolu-
tional base. These features were then used for training a short clas-
sifier network, which learnt to classify the images from our dataset 
using the extracted features. The classifier network was the same 
for each pretrained network. Training for this was carried out using 
a RMSProp optimizer (Hinton & Tieleman, 2012).

Alongside the pretrained networks, we developed and trained 
our own CNN models, with the aim of testing if greater accuracy 
could be achieved by a network designed and trained specifically 
to classify plant diseases. Several network designs were explored 
and evaluated. The CNNs were developed using keras v. 2.2.0 

F I G U R E  1  Flow chart of the transfer learning process. Transfer 
learning takes the knowledge learned whilst training on a larger 
dataset and applies it to the new dataset (in this case our wheat 
images). We removed the part of the pretrained network that 
provides classifications and sent our images once through the part 
of the network that extracts features, the pretrained convolutional 
base. These features were then used for training a short classifier 
network, which learnt to classify the images from our dataset 
using the extracted features. [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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(Chollet, 2015) in Python v. 3.5.1. Training was carried out using a 
RMSProp optimizer (Figure 2).

The training and validation set were used to determine the best 
hyperparameters, for example, the learning rate, number of epochs 
for training and batch size. Each model was then retrained using both 
the training and validation set, and evaluated against the test set. 
All values are reported in Table S1. To evaluate the performance, 
the classification accuracy was found by calculating the percentage 
of classifications that the model got correct. We also found the F1 
score (Goutte & Gaussier, 2005), which is used as a measure of per-
formance for classification models. We calculated a macro- averaged 
F1 score for each model by first using Equation (1) for each category, 
and then calculating the average of those results.

All networks were trained using the Norwich Bioscience 
Institute's high- performance computing (HPC) facilities. The pre-
trained networks used central processing units (CPUs) on the HPC 
clusters, whilst our own networks were trained using graphics pro-
cessing units (GPUs) to decrease training time.

3  |  RESULTS

3.1  |  Collection and curation of wheat disease 
images under realistic growth conditions

To evaluate the potential for automated disease detection in the 
field, we collected images that reflected conditions found in typi-
cal field situations. Over 19,000 images of wheat leaves with either 

Septoria, yellow rust, brown rust, mildew, or no disease were col-
lected from various locations across the UK and Ireland in the sum-
mer of 2019 and these formed the basis of our dataset.

Example images from the dataset are shown in Figure 3. Table 1 
summarizes the number of images contained within each category 
for the full dataset, the smaller dataset for the pathologist tagging 
experiment, and the masked image experiment.

3.2  |  Testing and comparing the performance of 
different deep learning models

We experimented with four pretrained networks (MobileNet, 
InceptionV3, VGG16 and Xception). For each network, we gained the 
best results by resizing the input images to four times their original 
size. Once the features had been extracted, they were used to train 
a short classifier network consisting of one fully connected layer 
with 256 neurons, dropout (where units and their connections were 
randomly dropped from the neural network; Srivastava et al., 2014) 
and the prediction output layer. It was trained with a learning rate of 
1 × 10−4 and a batch size of 128. See Table S1 for input image sizes 
and the number of training epochs for each network.

The success of transfer learning suggested that deep learning 
networks can deal with complex images such as those taken under 
real field conditions for detecting wheat diseases. For use in the field, 
however, higher accuracies would be most beneficial. Therefore, we 
explored other networks to optimize the classification accuracy. 
We performed experiments with multiple network architectures to 
find the number and combination of layers that worked best for this 
problem. We also experimented with different input image sizes, 
batch sizes, learning rates and number of training epochs used. 

(1)F1 = 2(precision × recall)∕ (precision + recall)

F I G U R E  2  Flow chart of the deep learning process. First, the dataset is split into three smaller sets. For this work, 60% of the images 
were put into the train set, and 20% into each of the validation and test sets. The design of the network (network architecture) was then 
defined ready for training. The train set was fed through the network in small batches for a set number of epochs, allowing the network to 
learn features from the images for classification predictions. The internal parameters of the model were adjusted to maximize the accuracy 
of its classifications. The validation set was used to monitor the performance after each epoch on an independent dataset to reduce over- 
fitting (indicated by a divergence of prediction accuracy between the train set and validation dataset). Using the validation set in this way, 
as part of an optimization procedure, can introduce a dependence on the validation set. Therefore, once the network had been trained for a 
set number of epochs, or once the classification accuracy had converged to a stable level, the network performance was evaluated against 
a different dataset, the test set. The network provided predicted classifications for the images in the test set, to gauge the accuracy of the 
network when presented with never- before- seen data. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Our best- performing model was a CNN (LeCun et al., 1999), con-
sisting of 13 convolutional layers, with batch normalization (Ioffe 
& Szegedy, 2015), max pooling (where only the maximum value of 
the area being convolved is used) and dropout (Figure 4). During 
preprocessing, the images were resized to 256 × 256 pixels. No 
data augmentation methods were used. This model, which we have 
named CerealConv, was trained for 75 epochs, with a batch size of 
8 and a learning rate of 1 × 10−4. See Figure S1 for training and val-
idation accuracy and loss plots. The confusion matrix of the CNN 
model CerealConv's classifications shows that CerealConv performs 

consistently well over all the categories with only minimal confusion 
between categories (Figure 5, Table 2).

3.3  |  Evaluating the performance of CerealConv 
against expert pathologists

The dataset used in this experiment contained 999 images represent-
ing samples of varying levels of difficulty in classification (based on the 
network's performance). This dataset included 111 images that the 
network had classified incorrectly and 888 images that were correctly 
classified by the network. CerealConv's prediction accuracy for this 
dataset was thus 88.9%, which was higher than any individual person 
and significantly higher than the mean of the human scorers, 85.9% 
(contingency table test, χ2 = 6.68, 1 df, p = 0.01). The pathologists did 
not vary significantly in their accuracy (χ2 = 4.65, 4 df, p = 0.3).

The human participants for this experiment were five expert 
crop pathologists, from four different companies or institutions, 
each with substantial experience in identifying and scoring these 
diseases (Table 3). The confusion matrices in Figure 6 show the re-
sults of the trained network compared with the results of the five 
pathologist participants. Our network classified each category with 
an accuracy of 80% or higher, with mildew being the category with 
the most incorrect classifications. In contrast to this, each of the five 

F I G U R E  3  Example images from each wheat disease category in the dataset, taken in field conditions: Top row— yellow rust (left), brown 
rust (middle), healthy (no disease) (right). Bottom row— Septoria tritici blotch (left), mildew in the field (middle), mildew in glasshouse (right). 
[Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  1  The number of images of each category of healthy and 
diseased wheat that passed quality control.

Category

Number of images

Full 
dataset

Pathologist 
tagging 
experiment Masked images

Brown rust 2502 128 148

Healthy 2274 122 99

Mildew 2942 161 97

Septoria 7054 349 175

Yellow rust 4388 239 118

Total 19,160 999 637

https://onlinelibrary.wiley.com/
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participants classified mildew with 94%– 95% accuracy, making it 
one of the highest accuracy classes. Of the 999 images, 643 images 
were correctly classified by all five participants.

Another difference between the results of the network and the 
pathologists was the classification of the Septoria category. Here, 
the network performed extremely well, gaining 96% accuracy, but 
all but one of the pathologists were less accurate, with a range of 
76%– 85%. For these four pathologists, the main source of incorrect 
classification was yellow rust, with the healthy category also being 
significantly misclassified by two of the four. The pathologist who 
performed similarly to the network on the Septoria category instead 

showed a dip in classification accuracy in the yellow rust category. 
Here, almost all the misclassifications were Septoria.

Overall, CerealConv classified the 999 images faster (approxi-
mately 1 h on a Mac desktop) than the pathologists, who took close 
to 3 hours for the same dataset.

3.4  |  Use of masked images to ensure CerealConv 
is using the correct information to drive classification

Given the high accuracy of CerealConv, we wanted to determine 
whether it was using the correct parts of the images (the disease 
lesions and the leaves) to make its classifications. We theorized that 
with the mask covering the leaf and disease information in the image, 
a deep learning model would have trouble correctly classifying the 
images so would “guess” rather than make an informed decision; in 
this case, we would expect a drop in classification accuracy for the 
masked image dataset. Examples of the masked images used in this 
experiment are shown in Figure 7.

The classification results for the original versions of the images 
used in this experiment and the masked images are shown in the 
confusion matrices in Figure 8. There is a clear difference between 

F I G U R E  4  The architecture of our CerealConv model used in these experiments. The blue blocks depict convolutional layers, the purple 
batch normalization, the dark green max pooling, the light green dropout and yellow fully connected layers. Information about the layer 
hyperparameters (depth, filter size, dropout value) is also included. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5  Confusion matrix, summarizing the prediction results 
of the convolutional neural network (CNN) model, CerealConv, 
and showing the proportion of correct and incorrect predictions 
for each wheat disease category. [Colour figure can be viewed at 
wileyonlinelibrary.com]

TA B L E  2  Comparison of accuracy of wheat disease classification 
by four pretrained networks and our model, CerealConv, using our 
test dataset.

Model used
Classification accuracy on 
test dataset (%) F1 scorea

MobileNet 91.46 0.90

InceptionV3 91.41 0.91

VGG16 85.16 0.83

Xception 89.87 0.89

CerealConv 97.05 0.97

aF1 score is a measure of performance for classification models and 
is calculated as F1 = 2(precision × recall)/(precision + recall) (Goutte & 
Gaussier, 2005).

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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the classifications of the two sets of images. As expected, the con-
fusion matrix for the original images echoes that of the full dataset, 
where the network classifies the images with high accuracy, making 
only a small number of misclassifications.

With the masked images, there was a clear bias towards mildew 
classification over all the categories. This means that there was only 
a small difference between the mildew category classifications over 
both image sets, implying that the model may have used background 
information to classify mildew images. There was also a smaller 
tendency to incorrect classification as healthy; this was not as ob-
vious as the bias towards mildew, but it was the only other category 
that was consistently picked as an incorrect classification over all 
categories.

Figure 8 shows that, other than the mildew category, CerealConv 
performs much better when classifying the original images than the 
masked ones. This indicates that CerealConv performs as expected 
using the leaf information for making a classification decision.

4  |  DISCUSSION

This study aimed to evaluate the viability of deep learning methods, 
specifically CNNs, for identifying wheat diseases from images taken 
in realistic growth conditions. Several studies preprocessed their im-
ages to remove complex background information (Barbedo, 2018) 
or did not include background information in their images at all (Liu 
et al., 2018; Mohanty et al., 2016). In recent years, datasets acquired 
in the field have become more widely used (Li et al., 2021), but many 
datasets have contained few images per category, meaning they 
could not fully represent the range of conditions found in the field. 
Our dataset includes images that capture the complex conditions 
found typically in the field and represent typical examples of the 
kind of images that automated disease detection in realistic situa-
tions would need to be able to deal with.

In many cases, the datasets collected and used for plant disease 
detection with deep learning, such as the ImageNet dataset (Liu & 
Wang, 2021), are still significantly smaller than those used for other 
purposes. Our dataset aims to overcome this bottleneck for wheat 
disease, whilst also being as comprehensive as possible to ensure 
that it can perform well in the field. Importantly, our dataset does 

not include any data for presymptomatic infections. Whilst this 
would be valuable for the early detection of disease, it was not viable 
for this study, which was based on visible symptoms. Capturing im-
ages of symptomless plants would probably have required specialist 
equipment, such as hyperspectral cameras, and image analysis tech-
niques outside the visible spectrum, which was beyond the scope of 
our study.

Furthermore, we did not include images with multiple infections 
in our dataset. At this stage, we aimed to prove that deep learning 
models could classify each disease with a high accuracy individually 
given a large, comprehensive dataset of complex field images. Work 
to identify multiple diseases simultaneously would be a useful devel-
opment in the future.

It would now be beneficial to test the CerealConv model in the 
field. Considering the comprehensive and realistic training data, it is 
reasonable to expect that it would perform relatively well for single 
diseases. This would allow a farmer to check the disease on his or 
her plants and implement the correct fungicide application, without 
necessarily involving a trained pathologist. The performance would 
naturally drop when encountering infections from multiple diseases.

Although CerealConv classified the 999 images faster than the 
pathologists, the speed of the model's computation could be in-
creased further by using GPUs and parallelization. This would be 
easier to achieve than recruiting more trained pathologists to per-
form the same job.

An important thing to note is that this classification was per-
formed on static images. The deep learning network achieved an 
impressive accuracy for such data, at least comparable to that of ex-
pert crop pathologists, but it is likely that the performance of the pa-
thologists would increase with real plants. In a real field situation, a 
pathologist would be able to look closer, change their viewing angle, 
and obtain information that would be available in the field but not 
from static images. Thus, it is probable that the accuracy of patholo-
gists would be higher in field situations.

Furthermore, we should consider the discrepancies between 
the ability of different humans to classify. For example, in this ex-
periment, there were 160 cases where only one participant gave an 
incorrect classification. When shown the images again as a group, 
in many cases there was a unanimous decision on the classification 
of the image, indicating a human error aspect to this experiment. 

Participant Years of experience Specialization

1 35 Cereal diseases, in particular mildew, yellow 
rust and Septoria, especially in field trials

2 40+ Cereal pathologist for a major breeding 
company

3 20 Wheat disease observation plots, mainly for 
QTL mapping work

4 10 Scoring trial plots for wheat disease, in 
particular rusts and Septoria

5 12 Common European cereal diseases

TA B L E  3  Years of experience and 
specialization of each of the five 
participant plant pathologists.
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F I G U R E  6  Confusion matrices of the classification of wheat disease by the CerealConv model and five pathologists, using the smaller 
dataset of 999 images. The proportion of correct and incorrect predictions for each category shows that our model achieved an overall 
accuracy on this dataset of 88.88%, 2% higher than the most accurate pathologist. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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However, in some cases where two or more participants incorrectly 
classified an image and were shown it again as a group, there was still 
difficulty in deciding which disease was present.

Comparison of the classification accuracy between the masked 
and unmasked images suggested that the network was correctly 
identifying diseased parts of the plant for the Septoria, yellow rust, 
brown rust and healthy categories, as masking resulted in a steep 
drop in prediction accuracy. For the mildew images, the prediction 
accuracy using masked images remained comparable to that for the 
original images, suggesting that other, non- disease- related features 
might have been driving the classification. This is supported by our 
model's higher rate of misclassification of mildew images than the 
other diseases in the experiment with pathologist participants.

To understand this, the conditions in which the photographs of 
different diseases were taken should be considered. Almost all the 
incorrect classifications of the masked images were healthy or mil-
dew. Misclassifications as healthy probably arose from having little 

disease and much greenery present in the background. The issue 
with the mildew images may have resulted from them being col-
lected predominantly in glasshouse conditions, rather than in the 
field. The black pots used in the glasshouse, which are present in 
many of the mildew images, may have caused many of the masked 
images to be classified as mildew in the absence of any other disease 
information, because the black masks may have been mistaken for 
plant pots.

Further research is required to explain the above observations, 
which highlight two points. First, it would be important to include 
the same range of conditions over all categories of the dataset to re-
duce the risk of the model learning to differentiate categories on the 
basis of irrelevant signals. For example, if one category were photo-
graphed in rain, sun and cloud, then all four other categories should 
also be photographed in these conditions. Second, it is desirable to 
develop explainable models for which the pixels driving the classi-
fication can be identified and the associated patterns in the images 

F I G U R E  7  Examples of masked 
(left) and unmasked images of diseased 
wheat used to determine the drivers of 
classification by the CerealConv model. 
Black masks were added to cover the 
diseased parts of the image. [Colour figure 
can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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related back to biology. Several approaches are under development 
that could transform the current black- box nature of deep learning 
to make them more accessible and interpretable (Carter et al., 2019; 
Selvaraju et al., 2020).

The next step would be to use deep learning methods to quan-
tify the amount of disease present and to give a numerical or ordi-
nal score. Whereas a classification model is useful for identifying 
the presence of a disease on a plot or field, a scoring model would 
allow pathologists to quantify severity. This would be highly ben-
eficial for the rapid scoring of large numbers of field plots whilst 
not needing the continuous involvement of a highly skilled pathol-
ogist. Such applications, however, are likely to require significant 
further development before any system will be ready for use in 
the field.

In conclusion, in this study we evaluated the potential of deep 
learning approaches for the detection and diagnosis of wheat dis-
eases using real field images. It is important to be able to classify 
diseases from complex images that give an accurate representation 
of realistic field conditions, so the results can be used in the field by 
breeders, farmers and agronomists. The results of our work demon-
strate that deep learning models are capable of handling complex 
images of plant diseases taken in real field conditions, without the 
need to remove the background information.

The trained network marginally outperformed expert plant pa-
thologists in terms of classification accuracy and, less surprisingly, 
did so more quickly. Speed is significant as, generally, a patholo-
gist may only have time to go into the field and score a trial once 
during the field season, whereas a deep learning model could be 
deployed as a mobile phone application, or on a drone if the net-
work was retrained using aerial images, using photographs taken 

on multiple occasions by a person with no specialist expertise in 
pathology. This means that a more accurate picture could be built 
of the progression of a disease over time. For wheat in northern 
Europe, the results presented here show the potential for using 
deep learning to distinguish Septoria leaf blotch from yellow rust, 
thus increasing the accuracy of variety evaluation and other field 
trials.

Our case study also highlighted the potential pitfalls of using 
datasets that are unbalanced in terms of the variability of conditions 
within each category and the need to carefully validate what is driv-
ing the classification. The development of methods that aid the in-
terpretation of network models will help address these issues.
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