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Summary

Although leaves are considered the main site for photosynthesis, other green nonfoliar tissues

can carry out considerable amounts of photosynthetic carbon assimilation.With photosynthesis,

a potential target for improving crop productivity, physiology and contribution of nonfoliar

tissues to overall plant carbon acquisition is gaining increasing attention. This reviewwill provide

an overview of nonfoliar photosynthesis, the role of stomata in these tissues andmethodologies

for quantification and the contribution to overall carbon gain.

I. Introduction

Photosynthesis has been studied in numerous species and
environments, and the key components and pathways are well
established. However, to date, the majority of these studies have
focused on leaves, and few have considered the contribution from
other tissues (Simkin et al., 2020). Green tissues other than leaves,
including stems (Simkin et al., 2020), ears/panicles (Maydup
et al., 2014; Rivera-Amado et al., 2020; Zhang et al., 2022), green
floral organs (Bertolino et al., 2022), pods (Wang et al., 2016) and
fruit (Simkin et al., 2020), have been reported to photosynthesize
and contribute to varying degrees and to overall plant carbon gain.
Wheat and rice panicles, which a large proportion of studies have
focused on, have been reported to have high photosynthetic
capacities (Brazel & Ó’Maoiléidigh, 2019; Chang et al., 2020;
Sanchez-Bragado et al., 2020), with panicle and ear photosyn-
thesis reported to contribute between 10% and 60% to yield (Hu
et al., 2019) and spike photosynthesis positively correlated with
yield (Molero & Reynolds, 2020). Rates of CO2 assimilation in

nonfoliar organs depend on the material, conditions and
methodologies used. A recent review by Araus et al. (2021)
collated data on a number of C3 crop species (including rice,
barley and wheat) and reported values between 0.6 and
30.3 μmol m−2 s−1 depending on the tissue and conditions,
representing between 10% and 600% of flag leaf rates. Although
typically rates of ear photosynthesis per unit area are often lower
than in the flag leaf, these organs have a relatively large surface
area, and when the total area is taken into account, these rates can
be considerably higher (Araus et al., 2021). Considerable
differences in mass between leaves or sources vs ears/pods and
sink tissue also exist, for example the dry weight of a pea pod can
be c. 10× greater than leaves.

In the last decade, manipulation of key processes to increase
photosynthesis in leaves has been a prime objective to improve crop
yields. Extending this to photosynthesis in ears could provide a
novel target, and this potential has been demonstrated by Simkin
et al. (2020) inwheat plants overexpressing theCalvin cycle enzyme
SBPase, who reported ear photosynthesis, as well as leaf
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photosynthesis, was increased (Driever et al., 2017). Furthermore,
natural variation in leaf photosynthetic capacity is known to exist
between species (Weyers & Lawson, 1997) and cultivars (Faralli
et al., 2019a,b) and similar variation has also been reported for ears
and panicles of C3 crops (Molero & Reynolds, 2020; Tambussi
et al., 2021) providing exciting opportunities to exploit such
natural variation for on-going breeding programs.

The importance and contribution of ear or spike photosyn-
thesis (and other potential nonfoliar green tissue) to yield is
considered even more important when foliar tissues (and
particularly the flag leaf, which is considered the major photo-
synthetic contributor to grain filling) are damaged or stressed
(Ntakirutimana & Xie, 2020). For example, Zhang et al. (2011)
reported that nonfoliar organs in wheat accounted for 27–62% of
the total green area per culm and this ratio increased significantly
with reduced water availability. Under water-stressed conditions,
wheat flag leaf photosynthetic capacity and rate decrease along
with key photosynthetic enzymes; however, the same is not true
for ears or awns (Vicente et al., 2018), with ear photosynthesis
being maintained (Tambussi et al., 2005) and critical to grain
filling and yield maintenance under such environmental condi-
tions (Hu et al., 2019). A possible explanation for the differential
impacts of water stress on ears compared with leaves is that water
relations in these organs are considerably different to foliar tissue
and stomata could play a key role in this regulation (to be
described later).

Wheat ears are made up of a number of photosynthetic
components, and significant variation in assimilation rates exists
between these different structures. Fig. 1 shows chlorophyll

fluorescence (CF) measurements of photosynthetic processes and
demonstrates differences in efficiency between awns and the other
wheat ear components. The glumes appear to have the highest
photosynthetic efficiency (Fig. 1a) compared with the awns
(Fig. 1b), although both are considered important in terms of
photosynthetic contribution (see Hu et al., 2019). Spatial
differences in photosynthetic efficiency are due mostly to
photochemical quenching (Fig. 1c,d) rather than differences in
F 0
v/F

0
m which decreases with nonphotochemical quenching

(Fig. 1e,f), suggesting that carbon fixation is an important sink
for the end products of electron transport. Photosynthetic
contribution from awns is thought to be particularly important
in stress conditions, and therefore, awned varieties may be
advantageous in environments that experience periodic stresses
(Ntakirutimana & Xie, 2020). It is also well established that
genotypic variation in ear water-stress tolerance exists (Li
et al., 2017), which could represent another currently unexploited
target for breeding programs to develop wheat ideotypes for
future climatic conditions.

II. Methods for assessing nonfoliar photosynthesis

One of the major restrictions in quantifying the contribution of
nonfoliar photosynthesis to overall carbon assimilation and yield is
methodological limitation. This is further complicated by different
photosynthetic pathways operating in these tissues. Here, we
outline some of the complications and options for measuring
photosynthetic carbon assimilation in organs and provide some
insights into possible new approaches.

(a) (b) (c) (d) (e) (f)

Fig. 1 Chlorophyll fluorescence images of awned and nonawned wheat ears of (a, b) photosystem II (PSII) operating efficiency (F0q/F
0
m); (c, d) F

0
q/F

0
v (PSII

photochemical quenching factor); and (e, f) maximum PSII operating efficiency (F0v/F
0
m). Colour scale bar represents 0.4–0.6 for F0q/F

0
m and 0.5–0.85 for

F0q/F
0
v and F0v/F

0
m.
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1. Complexities of measurements

Typically, leaf measurements of photosynthesis (A) and transpira-
tion are made using infra-red gas analysers, which enclose a flat leaf
or proportion of a leaf into a cuvette and use differentialmeasures of
gases entering and leaving the chamber. The development of
bespoke chambers that enable gas exchange measurements in
complex organs (wheat ears and rice panicles) is providing new
information on photosynthetic capacity, stomatal kinetics and
WUE(Maydup et al., 2010;Chang et al., 2020;Henry et al., 2020).
An example of these types of measurements is illustrated in Fig. 2,
which shows dynamic responses of A and gs in pea pods following a
step change in light intensity (Fig. 2a,b). This figure also illustrates
that even with 100 μmol m−2 s−1 PPFD, pod photosynthesis is
negative and therefore well below the light compensation point,
indicative of high rates of respiration. Infra-red gas analyser
measurements of nonfoliarmaterial are not without complications.
First, leaves are usually a flat lamina surface and easily sealed into a
chamber, whilst fruits, pods and stems vary greatly in size, shape
and dimension. A second problem is that photosynthesis is
measured on a projected leaf area basis, and the 3D structure of ears
and fruits can make quantification of the area challenging.
Furthermore, the complexity in shape of the material can result
in uneven illumination (Hu et al., 2019; Chang et al., 2020), and
temperatures, further complicating measurements. 3D scanning
can be used to overcome the problem of establishing leaf area

(Simkin et al., 2020), whilst surrounding chamber LED illumina-
tion reduces shading. Gas exchange measurements also require
knowledge of boundary lay conductance, which is difficult to
determine for nonlamina material, but can be measured using the
filter papermethods (Parkinson, 1985) andmimicking the shape of
the organ.

A considerably more difficult problem to overcome when
measuring nonleaf photosynthesis is the controversy around the
mechanisms of photosynthesis. Although the majority of studies
have assumed a similar pathway to C3 leaf mesophyll photosyn-
thesis, this may not always be the case. In nonfoliar tissue, it has
been proposed that there are two major sources of CO2 for
photosynthesis. Atmospheric CO2 can diffuse from the atmo-
sphere into the cells through stomatal pores and fixed by
Rubisco, as per C3 foliar photosynthesis. However, a second
supply of CO2 for fixation is also released from high mitochon-
drial respiration and subsequently refixed (Millar et al., 2011),
which would underestimate photosynthetic rates measured by gas
exchange. The extent to which each of these pathways
contributes to photosynthesis is under debate and most likely
species-specific. Refixation of respiratory CO2 may be particu-
larly important in internal tissues where atmospheric C-fixation
is restricted (i.e. the seeds), due to longer CO2 diffusion
pathways and reduced light penetration (Henry et al., 2020;
Simkin et al., 2020). Higher rates of respiration in panicles
compared with leaves (Chang et al., 2020) suggest a substantial
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Fig. 2 Example of photosynthetic activity in Cameor pea pods and leaves.Mean (a) pod and (b) leaf assimilation (A), (c) pod and (d) leaf stomatal conductance
(gs)wasmeasured in response to a step in light intensity from100 to1000 μmol m−2 s−1 photosynthetic photonfluxdensity (PPFD), at 400 ppmCO2and23°C
within a bespoke pod chamber. Grey shaded areas represent when the light source is at 100 μmol m−2 s−1 PPFD. Error bars represent mean � SE (n = 3). All
measurements are normalized to an illuminated projected area (typically used for leaves). (e) Chlorophyll fluorescence image of photosystem II operating
efficiency (F0q/F

0
m)wasused todemonstratedifferences inefficiencybetweenthe two tissue types.Colour scalebar represents anF0q/F

0
m of0.5–0.8. Exampleof a

(f) pod and (g) leaf epidermal impression at a 200×magnification.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

New Phytologist (2023) 238: 55–61
www.newphytologist.com

New
Phytologist Tansley insight Review 57



contribution of respiratory CO2 to photosynthesis (Sanchez-
Bragado et al., 2020; Zhang et al., 2022) in these tissues, with
reports of between 55% and 75% of respired CO2 refixed in
wheat and barley (Bort et al., 1996).

2. Indirect methods for assessing nonfoliar photosynthesis

There are several indirect methods for assessing the contribution of
ear and stem photosynthesis, including organ removal and shading,
where the ear or stems are covered with foil to reduce light
penetration (Maydup et al., 2010). However, shading alters
temperature and gaseous flow, whilst removing organs can induce
stress responses, both of which impact on photosynthetic rates
(Tambussi et al., 2021). Quantification of O2 accumulation as an
indication of electron transport has been employed to assess
different ear components; however, this requires destructive
sampling rather than in situ measurements (review by Tambussi
et al. (2021)).Chlorophyll fluorescence imaging is another tool that
can be utilized to measure photosynthetic efficiency (and calculate
electron transport rate) in both leaf and nonleafmaterial (Tambussi
et al., 2005; Simkin et al., 2020; Figs 1, 2). Although this is a rapid
and relatively simple approach, electron transport is only a proxy
for carbon assimilation and alternative electron sinks including
photorespiration can influence photosynthetic efficiency (Murchie
&Lawson, 2014). Itmay therefore be advantageous to combineCF
measurements with gas exchange to determine the proportion of
electrons used to fix atmospheric CO2 from those going to
alternative sources. This can be easily achieved by performing
measurements under 2% O2 to eliminate photorespiration
(McAusland et al., 2013, 2015, 2019), although the amount of
CO2 produced through respiratory processes may complicate this.
Using membrane inlet mass spectrometry could provide an
advanced approach to quantifying different processes. Utilises
naturally occurring stable isotopes of O2 and CO2 and using
enrichment approaches would enable discrimination from respi-
ration from other O2 consumption, as well as O2 evolution from
photosynthetic electron transport under different conditions
(Driever & Baker, 2011). Thermal imaging can provide insights
into spatial and temporal stomatal behaviour, that may be valuable
to elucidate and quantify atmospheric CO2 fixation from other
CO2 sources. Combined thermography with other imaging
approaches such as CF (McAusland et al., 2013, 2015) could
deliver further insights into water-use efficiency in different tissues
(McAusland et al., 2013). For a recent review on different methods
for measuring ear photosynthesis, we refer readers to Tambussi
et al. (2021).

III. Role of stomata in nonfoliar tissue

In leaves, photosynthesis requires atmospheric CO2 to enter the
leaves through the stomatal pores and subsequently stomatal
density (SD) and behaviour influence assimilation rate and
stomatal conductance, which is closely correlated with rates of
carbon fixation. For some nonleaf tissues, such as tomato fruit, the
lack of stomata highlights the sole reliance upon carbon refixation
(Simkin et al., 2020). Stomata are found in various numbers on

nonfoliar tissues, such as rice panicles (Li et al., 2021; Rangan
et al., 2022), wheat stems and ear components (Fig. 3; Hu
et al., 2019; Henry et al., 2020; Simkin et al., 2020), and certain
fruits (Brazel & Ó’Maoiléidigh, 2019); however, their function-
ality, including their contribution to carbon acquisition, has not
been fully evaluated (Simkin et al., 2020). Recent work by
Bertolino et al. (2022) has reported considerable spatial variation in
stomata in rice floral organs and suggested that they are morpho-
logically distinct from leaf stomata, although their function is still
unknown.

Using thermography Simkin et al. (2020) showed that stomata
of wheat ears were functional and responded to changes in light
intensity; similar to leaves, albeit gs levels were lower. The existing
variation in SD on different tissue types may allude to functional
differences. For example, in Fig. 4, we show that wheat ears with a
lower SD have higher ear temperatures than those with greater
stomatal numbers (Fig. 4). Fruits have been reported to have 1–
10%of the density found in leaves, with apples even lower numbers
at 30 times less than leaves (Blanke&Lenz, 1989).However, SD in
wheat ear organs is only 50–60% lower than that in the leaf
(Tambussi et al., 2005), and some studies have even reported higher
SD in ears than leaves. Interestingly, stomata have been found on
both the adaxial and abaxial sides of glumes, lemma (Simkin
et al., 2020) and bracts (Ding et al., 2018). Ding et al. (2018)
proposed that adaxial bract stomata facilitate CO2 uptake from the
respiring grain. Such amphistomaty could indicate stomata
function to support both atmospheric CO2 uptake from one side
of the tissues and refixation of respiratory CO2 uptake on the other.
Such functionality could be key to maintaining ear photosynthesis
under stressful conditions that cannot be achieved by the flag leaf.
This hypothesis is supported by a recent study by Zhang
et al. (2022) who explored control of photosynthesis in rice
panicles at different stages of crop development and reported that at
anthesis, panicle photosynthesis was dependent on both gs and
biochemical function, and there was a positive correlation between
gs and A. However, at grain filling, gs declined and net photosyn-
thesis was correlated with gs rather than the carboxylation capacity
of Rubisco (Vcmax), indicating that A was primarily determined by
stomatal behaviour. Respiration in panicles has been reported to
increase in the initial stages of grain filling along with a decrease in
gs, supporting the idea that respiratoryCO2 is important for panicle
photosynthesis at this stage (Chang et al., 2020). This suggests that
there is a possible switch between atmospheric CO2 being the main
supply for photosynthesis earlier in the season supported by higher
gs, which switches to respiratory supply later in development,
concurrent with a decrease in gs. At the same time, biochemical
changes support refixation of respired CO2 (Zhang et al., 2022).
However, changes in panicle gs could also be due to shifts in the
osmotic and water status of the panicle. Xylem water potential
would be decreased with phloem unloading in the panicles at grain
filling and could explain a decrease in gs.

Although, to date, the majority of research on stomata in
nonfoliar photosynthesis has focused on their role in CO2 uptake,
stomata are also important for transpiration and the movement of
water through the plants, including the translocation of photoas-
similates (Simkin et al., 2020). Stomatal control of evaporative
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cooling in all plant tissues is critical formaintaining temperature for
photosynthesis and reproductive capacity. It is well established that
heat stress greatly impacts wheat yield, with flower and reproduc-
tive growth phases being particularly sensitive (Yadav et al., 2022).
Heat stress, several days before anthesis during floral development,

greatly affects ovule and pollen formation with significant impacts
on grain development and yield. It has been proposed that ear
temperature during the early stages of anthesis is an important
component of heat stress tolerance (Steinmeyer et al., 2013), and
therefore, stomatal behaviour possibly could be critical for
evaporative cooling and maintenance of temperature at critical
stages. Transpirationalwater loss through the stomatamay also play
a key role in the translocation of photoassimilates from sources to
the ear sinks during grain filling, and the changes in osmotic/water
potential during this process could be responsible for changes in gs
at different developmental stages. Furthermore, the amount of
water lost through nonfoliar organs, although difficult to establish
from current literature, needs to be quantified in order to fully
appreciate overall crop water use. Further research is necessary to
fully establish the role of stomata in these tissues, along with
hydraulic capacity, and overall water loss and carbon gain in these
organs.

Natural variation in SD between cultivars in leaves (Weyers &
Lawson, 1997), ears (Li et al., 2017) and individual ear components
(Simkin et al., 2020) provides an opportunity to explore the role of
stomata further. Li et al. (2017) demonstrated that wheat cultivars
with lower ear SD had increased WUE and drought tolerance.
Therefore, manipulating SD (e.g. Bertolino et al., 2022) or
function (Lawson & Matthews, 2020) in wheat ears alone could
improve heat tolerance and support greater photosynthesis through
increased evaporative cooling, influence translocation of photoas-
similates and nutrients to the grains and provide a route to improve
nonfoliar water-use efficiency.

(a) Lemma (b) Awn 

20 mm 20 mm

10 mm10 mm

(d) Glume(c) Awn

Fig. 3 Example of epidermal impressions showing stomata from a barley (a) lemma and (b) awn and a wheat (c) awn and (d) glume.

29.0°C

20.3°C 19.2°C

15.0°C

(a) (b)

Fig. 4 Thermal images of wheat ears which demonstrate functional
difference due to variation in stomatal density (SD): (a) SD of 12 mm−2 and
(b) 35 mm−2. Measurements were made following 1 h exposure to 27°C.
Colour scale bar represents a difference in temperature from 15°C to 29°C.
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IV. Conclusion

Although the contribution of nonfoliar tissues to carbon
assimilation and yield has not been fully quantified and depends
on tissue, cultivars and environmental conditions, it represents
an exciting and (to date) mostly unexploited area for improved
crop productivity. Furthermore, understanding and manipulat-
ing stomatal behaviour in these organs could provide a unique
opportunity to produce crop cultivars with greater stress
tolerances, through increased cooling capacity, greater translo-
cation, higher photosynthesis and the ability to yield in
environments that might otherwise be subject to significant
losses; however, these could come at the expense of water-use
efficiency.
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