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Hereditary breast cancer: syndromes, tumour pathology and molecular testing

Hereditary factors account for a significant proportion
of breast cancer risk. Approximately 20% of heredi-
tary breast cancers are attributable to pathogenic
variants in the highly penetrant BRCA1 and BRCA2
genes. A proportion of the genetic risk is also
explained by pathogenic variants in other breast can-
cer susceptibility genes, including ATM, CHEK2,
PALB2, RAD51C, RAD51D and BARD1, as well as
genes associated with breast cancer predisposition
syndromes – TP53 (Li–Fraumeni syndrome), PTEN
(Cowden syndrome), CDH1 (hereditary diffuse gastric

cancer), STK11 (Peutz–Jeghers syndrome) and NF1
(neurofibromatosis type 1). Polygenic risk, the cumu-
lative risk from carrying multiple low-penetrance
breast cancer susceptibility alleles, is also a well-
recognised contributor to risk. This review provides
an overview of the established breast cancer suscepti-
bility genes as well as breast cancer predisposition
syndromes, highlights distinct genotype–phenotype
correlations associated with germline mutation status
and discusses molecular testing and therapeutic impli-
cations in the context of hereditary breast cancer.
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Introduction

Breast cancer is the leading cause of cancer death in
women worldwide.1 While most breast cancers are
sporadic, approximately 5–10% are hereditary.2

Pathogenic variants in the high-penetrance genes
BRCA1 and BRCA2 account for approximately 20%
of heritable breast cancer risk.3,4 BRCA1 and BRCA2
play an integral role in DNA damage repair by
homologous recombination (HR), and germline vari-
ants in several other HR repair genes are also impli-
cated in hereditary breast cancer risk, including
CHEK2, PALB2, ATM, RAD51C, RAD51D and
BARD1.5–7 An additional proportion of patients with
hereditary breast cancer have germline variants in
genes associated with recognised cancer susceptibility

syndromes, including TP53 (Li–Fraumeni syndrome),
PTEN (Cowden syndrome), STK11 (Peutz–Jeghers
syndrome), CDH1 (hereditary diffuse gastric cancer
and hereditary lobular breast cancer) and NF1 (neu-
rofibromatosis type 1).8 An association between
mutations in mismatch repair (MMR) genes (Lynch
syndrome) and breast cancer has not been conclu-
sively established. Furthermore, a substantial propor-
tion of hereditary breast cancer risk is not explained
by pathogenic variants in specific genes but is partly
attributable to polygenic risk, referring to variable
combinations of multiple low-penetrance breast can-
cer susceptibility alleles.9 Characteristic histopatholog-
ical features and immunohistochemical phenotypes
have been associated with germline variants in sev-
eral breast cancer susceptibility genes. Recognition of
these pathological features, together with known risk
factors such as age and family history, informs
patient risk prediction, guides genetic testing and
facilitates the diagnosis of hereditary breast cancer,
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which influences patient management and surveil-
lance. In this review we provide an overview of the
established breast cancer susceptibility genes and syn-
dromes, with an emphasis on distinct pathological
and molecular associations and their clinical implica-
tions.

Historical background

A hereditary component to breast cancer predisposi-
tion was first proposed by the French surgeon, Pierre
Paul Broca in 1866, when he described a familial
cluster of breast cancer cases affecting multiple
women across four generations.10 Subsequent epi-
demiological studies firmly established family history
as a major risk factor for developing breast cancer,11–
13 with the magnitude of risk further increased by
the number of affected relatives, closer degree of rela-
tionship and younger age at diagnosis.13,14 In 1988,
segregation analysis of 1579 high-risk breast cancer
families with multiple affected individuals found that
disease clustering was fully explained by an
autosomal-dominant model of transmission with a
highly penetrant susceptibility allele.15 Two years
later, linkage studies revealed that the locus of the
gene for early-onset familial breast cancer was on
chromosome 17.16 In 1994, BRCA1 was discovered
to be the causative gene at this locus.17 In 1995,
BRCA2 was identified as the second breast cancer
susceptibility gene and localised to chromosome
13.18,19 In 1997 the Breast Cancer Linkage Consor-
tium reported distinct pathological characteristics of
BRCA1/2-associated familial breast cancers compared
to sporadic cases,20 and key histological phenotypes
associated with BRCA1/2 mutations were described
in 1998.21

Research into rare syndromes with a high inci-
dence of breast cancer led to the recognition of sev-
eral additional moderate- and high-penetrance genes
that contribute to hereditary breast cancer risk,
including TP53,22 CDH1,23 PTEN,24 STK1125 and
NF1.26 Studies of non-BRCA1/2 familial breast can-
cer patients implicated germline variants in multiple
genes involved in DNA damage repair, including
ATM,27 CHEK2,28 PALB2,29 BARD1,30 RAD51C31

and RAD51D32 in breast cancer susceptibility. In
2007, the first breast cancer genome-wide association
studies (GWAS) were published,33–35 identifying sev-
eral common low-penetrance variants associated with
genetic breast cancer risk, while the implementation
of next-generation sequencing (NGS) approaches in
population-based studies has defined rare genomic

risk variants and quantified the magnitude of their
associated risk.6,7 Known germline variants in estab-
lished high-, moderate- and low-penetrance genes col-
lectively explain approximately 50% of familial breast
cancer risk.36 Ongoing research into the genetic basis
of familial breast cancer will probably uncover novel
risk variants, further elucidate the role of susceptibil-
ity genes in breast cancer aetiology and clarify how
genetic factors interact with other risk factors,
thereby improving individual risk prediction.

Heritable breast cancer risk

The genetic basis of breast cancer predisposition is a
rapidly evolving topic and this is reflected in the sub-
stantially revised ‘genetic tumour syndromes of the
breast’ chapter in the fifth edition of the World
Health Organisation (WHO) classification of tumours
of the breast (2019),37 which incorporates a growing
number of susceptibility genes and predisposition syn-
dromes implicated in breast cancer risk (Table 1).
The established and emerging breast cancer suscepti-
bility genes and predisposition syndromes are sum-
marised below.

B R E A S T C A N C E R P R E D I S P O S I T I O N S Y N D R O M E S

Hereditary breast and ovarian cancer syndrome
Hereditary breast and ovarian cancer syndrome is
associated with germline mutations in the tumour
suppressor genes BRCA1 and BRCA2 and is inherited
in an autosomal-dominant manner. BRCA1 and
BRCA2 encode for BRCA1/2 proteins involved in the
repair of double-strand DNA breaks through HR.38,39

Pathogenic variants in BRCA1/2 are highly penetrant
and are associated with a significantly elevated life-
time risk of breast and ovarian cancer40–42 and
increased susceptibility to a number of other malig-
nancies, particularly prostate (BRCA1/2) and pancre-
atic cancer (BRCA2).43–46 In a large prospective
cohort, the cumulative risk of breast cancer up to age
80 years was 72% for BRCA1 and 69% for BRCA2
mutation carriers.41 In addition, BRCA1 and BRCA2
mutation carriers have an increased risk of contralat-
eral breast cancer (40 and 26%, respectively),41 and
germline mutations in BRCA2 are associated with
male breast cancer.47,48

Li–Fraumeni syndrome
Li–Fraumeni syndrome is an autosomal-dominant syn-
drome associated with germline mutations in the
tumour suppressor gene TP53.22 TP53 encodes the

� 2022 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology, 82, 70–82.

Hereditary breast cancer 71



protein p53, an important cell cycle regulator.49,50

Germline mutations in TP53 are associated with an
increased risk of early onset malignancy, including
epithelial, mesenchymal and haematological malig-
nancies.51–54 Breast cancer is the most common
epithelial malignancy in women,55 with an 85%
cumulative lifetime risk of breast cancer by age
60 years.56 The median age of breast cancer diagnosis
is 34 years57 and germline TP53 mutations are identi-
fied in approximately 5–8% of women diagnosed with
breast cancer before the age of 30 years.58

Cowden syndrome
Cowden syndrome is an autosomal-dominant syn-
drome associated with germline mutations in the
tumour suppressor gene PTEN24 and is the most
common disorder in the PTEN hamartoma tumour
syndrome spectrum.59 The clinical manifestations of

Cowden syndrome include the development of multi-
ple hamartomas as well as an elevated risk of breast,
thyroid, endometrial, renal and colorectal malignan-
cies.60,61 Breast cancer is the most common malig-
nancy in Cowden syndrome, with an estimated
lifetime risk of up to 85%62,63 and an average age of
diagnosis between 38 and 46 years.64

Peutz–Jeghers syndrome
Peutz–Jeghers syndrome is an autosomal-dominant
syndrome attributable to mutations in the tumour
suppressor gene STK11.65 Peuts–Jeghers syndrome is
characterised by the development of mucocutaneous
pigmentation, hamartomatous gastrointestinal polyps
and is associated with an increased risk of gastroin-
testinal, breast, lung, gynaecological and genitouri-
nary malignancies.66-70 Breast cancer is the second
most common malignancy after gastrointestinal
tumours, with a cumulative breast cancer risk of up
to 54% at age 64 years and a mean age at diagnosis
of 37 years.67

Hereditary diffuse gastric cancer and hereditary
lobular breast cancer
Hereditary diffuse gastric cancer (HDGC) and heredi-
tary lobular breast cancer (HLBC) are autosomal-
dominant syndromes associated with inactivating
germline mutations in CDH1.71 CDH1 encodes E-
cadherin, a transmembrane protein involved in cell-to-
cell adhesion.72 Both men and women with HDGC
have an elevated lifetime risk of developing diffuse gas-
tric cancer (70 and 56% by age 80 years, respec-
tively)73 and women also have a 42% lifetime risk of
developing invasive lobular carcinoma (ILC).73,74 ILC
can be the first manifestation of HDGC, presenting as
bilateral disease in women younger than 50 years of
age.75 HLBC includes families with germline CDH1
mutations who show a predisposition to ILC but do not
have a family history of gastric cancer.76–78 However,
even without a family history of gastric cancer,
patients with HLBC have a markedly elevated risk of
developing occult gastric malignancy.79 Breast cancer
metastasis may need to be excluded in patients with dif-
fuse gastric cancer who also have a history of ILC, as
ILC is the most common breast cancer subtype to
metastasise to the stomach and morphologically mim-
ics diffuse-type gastric cancer.80 Differentiating meta-
static breast from primary gastric carcinoma requires a
panel of immunohistochemical markers; for example,
GATA binding protein 3 (GATA3), oestrogen receptor
(ER) and progesterone receptor (PR) positivity supports
breast origin, while CK20 and CDX2 positivity is seen
in a proportion of gastric carcinomas.81,82

Table 1. Comparison of the topics included in the ‘genetic
susceptibility: inherited syndromes’ chapter in the WHO
classification, 4th edition (2012) and the ‘genetic tumour
syndromes of the breast’ chapter in the WHO classification,
5th edition (2019). Of note, the association between Lynch
syndrome and breast cancer is controversial, so the editorial
board did not feel that there was sufficient evidence to
include Lynch syndrome in the 2019 classification system.
In the current classification system, Li–Fraumeni syndrome
has also been split into two categories associated with vari-
ants in either TP53 or CHEK2. These classification systems
may continue to evolve as more knowledge is accrued

WHO classification 4th
edition (2012)199 WHO classification 5th edition (2019)37

BRCA1 and BRCA2
syndromes

BRCA1/2-associated hereditary breast
and ovarian cancer syndrome

Li–Fraumeni syndrome Li–Fraumeni syndrome, TP53-associated

Li–Fraumeni syndrome, CHEK2-associated

Ataxia–telangiectasia Ataxia–telangiectasia

Cowden syndrome Cowden syndrome

Lynch syndrome Not included in new edition

Other breast
cancer-predisposing
genes

CDH1-associated breast cancer

PALB2-associated cancers

Peutz–Jeghers syndrome

Neurofibromatosis type 1

The polygenic component of breast
cancer susceptibility
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Neurofibromatosis type 1
Neurofibromatosis type 1 is associated with mutations
in the tumour suppressor gene NF1,83 which may be
inherited in an autosomal-dominant manner or occur
sporadically in approximately half the cases.84 Clini-
cal manifestations include neurocutaneous lesions
and an increased risk of malignancy, predominantly
involving the nervous system and breast.85 Women
with neurofibromatosis type 1 have an increased risk
of early-onset breast cancer, with a four to 11-fold
increase in breast cancer risk up to the age of
50 years84 and a 17% cumulative lifetime risk of
breast cancer by age 70 years.86

Lynch syndrome
Lynch syndrome is an autosomal-dominant syn-

drome primarily attributable to germline mutations in
the MMR genes MLH1, MSH2, MSH6 and PMS2.87

The most common malignancies in Lynch syndrome
involve the colon, endometrium, ovaries and stom-
ach.88,89 An association between Lynch syndrome
and breast cancer has not been definitively estab-
lished. Some studies have reported an increased risk
of breast cancer90–92 and a prospective cohort study
of MMR gene mutation carriers identified a fourfold
increase in breast cancer risk with a median follow-
up of 5 years.88 However, data from the Prospective
Lynch Syndrome Database showed that the risk of
developing breast cancer in carriers of MLH1, MSH2
and MSH6 pathogenic germline variants was not sig-
nificantly elevated among the general popula-
tion.89,93,94 In addition, microsatellite instability
(MSI) as a result of MMR deficiency is uncommon in
breast cancer and seen in fewer than 2% of cases.95

In a cohort of 640 breast cancers, only 11 were
found to have MMR deficiency using whole genome
sequencing and more than 80% of the MMR-deficient
tumours did not have Lynch syndrome.95 Further-
more, analysis of breast carcinomas arising in
patients with Lynch syndrome found that only 51%
of tumours demonstrated evidence of MMR deficiency
on immunohistochemistry,96 suggesting that half the
cases had a different aetiology.

H O M O L O G O U S R E C O M B I N A T I O N D E F I C I E N C Y A N D

B R E A S T C A N C E R R I S K

HR is a high-fidelity DNA repair pathway utilised in
the repair of double-strand DNA breaks.97,98 A defect
in HR is termed homologous recombination deficiency
(HRD) and is characterised by defective DNA repair,
genomic instability and cancer predisposition.99 In
addition to BRCA1/2, several other genes involved in
the HR repair pathway are associated with an

increased risk of breast cancer, including PALB2, ATM,
CHEK2, RAD51C, RAD51D and BARD1. Two recently
published population-based case–control studies
BRIDGES6 and CARRIERS7 assessed sequencing data
from almost 180 000 women, including unselected
breast cancer patients as well as controls (unaffected
individuals), to determine the prevalence of pathogenic
variants in breast cancer predisposition genes in the
general population and their associated breast cancer
risk. Both studies identified an elevated breast cancer
risk in women with germline pathogenic variants in
eight genes involved in the HR repair pathway:
BRCA1, BRCA2, PALB2, ATM, CHEK2, RAD51C,
RAD51D and BARD1. Germline pathogenic variants in
these genes, together with CDH1, NF1, PTEN and
TP53, were detected in 5.03% of unselected breast can-
cer cases compared to 1.63% of controls.7

PALB2
Partner and localiser of BRCA2 (PALB2) is a tumour

suppressor gene involved in the HR repair pathway
through its interaction with BRCA2.100–102 Bi-allelic
germline PALB2 mutations are associated with Fan-
coni anaemia and a predisposition to childhood malig-
nancies,103 whereas mono-allelic germline mutations
confer an increased risk of breast, pancreatic and ovar-
ian cancer.29,104–108 Mono-allelic germline PALB2
mutations are identified in up to ~5% of patients with
hereditary breast cancer104,109 and female PALB2
mutation carriers have a 2.3 to ninefold increased risk
of breast cancer,29,107 with an estimated cumulative
lifetime risk of 35% by age 70 years.107

ATM
Ataxia–telangiectasia-mutated (ATM) gene is a

tumour suppressor gene that encodes a serine/thre-
onine protein kinase involved in the HR repair path-
way, regulation of cell-cycle check-points and
intracellular signalling pathways.110 Bi-allelic loss of
function variants in ATM are associated with the
development of ataxia–telangiectasia – a rare autoso-
mal recessive neurodegenerative disorder – and con-
fer increased cancer susceptibility.27,111,112

Heterozygous carriers have a threefold increased risk
of breast cancer and the risk is reported as sevenfold
for women younger than 55 years.112 The estimated
cumulative lifetime risk of breast cancer in heterozy-
gous mutation carriers is ~33% by age 80 years.113

CHEK2
Check-point kinase 2 (CHEK2) tumour suppressor

gene encodes CHK2, a serine/threonine protein
kinase involved in the HR repair pathway, cell cycle
arrest and apoptosis in response to DNA damage.114

Germline CHEK2 mutations are associated with an
increased risk of breast, prostate, kidney, colon,
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thyroid and gastric cancer as well as sarcoma and
non-Hodgkin lymphoma,115–118 in some cases mani-
festing in a Li–Fraumeni-like phenotype (referred to
as CHEK2-associated Li–Fraumeni syndrome or Li–
Fraumeni syndrome 2).119 Pathogenic variants in
CHEK2 are associated with a moderate breast cancer
risk, with an odds ratio of 2.47 [95% confidence
interval (CI) = 2.02–3.05]7 The estimated lifetime
breast cancer risk is 21% by age 70 years,120 and
the magnitude of this risk as much as doubles when
both first- and second-degree relatives have a history
of breast cancer.120,121

RAD51C, RAD51D and BARD1
RAD51C, RAD51D and BARD1 are tumour suppres-

sor genes involved in the HR repair pathway and cell
cycle progression.122 Pathogenic variants in BARD1,
RAD51C and RAD51D show a modest association with
overall breast cancer risk, with reported odds ratios of
2.09 (95% CI = 1.35–3.23), 1.93 (95% CI = 1.20–
3.11) and 1.80 (95% CI = 1.11–2.93), respectively;6

however, demonstrate a stronger association (odds
ratios > 2) with ER-negative and triple-negative dis-
ease.7 Carriers of protein-truncating mutations in these
genes are estimated to have a moderate absolute breast
cancer risk (17–30%) by age 80 years.6

P O L Y G E N I C R I S K

Pathogenic variants in moderate- and high-
penetrance susceptibility genes explain approximately
25–30% of heritable breast cancer risk.123 A further
18% is attributable to polygenic risk, pertaining to
variable combinations of hundreds of common low-
penetrance breast cancer susceptibility alleles, identi-
fied using population-based GWAS.9,124,125 These
low-penetrance genetic variants are often located in
non-coding regions of DNA and individually confer a
small risk of breast cancer (odds ratio < 1.5).124,126

However, the magnitude of breast cancer risk can be
substantial when the sum of individual risk is
assessed, expressed as the polygenic risk score.127 For
women in the top centile of the polygenic risk score
based on 313 confirmed risk loci, there was a ~ 33%
lifetime risk of breast cancer, with a fourfold
increased risk of developing ER-positive breast cancer
compared to women in the middle quintile.9

Tumour pathology

H I S T O P A T H O L O G Y

Invasive carcinoma of no special type (IC-NST) is the
most common histological tumour subtype in

hereditary breast cancer. BRCA1-associated breast
carcinomas are typically high-grade and characteristi-
cally exhibit medullary pattern features, including a
pushing margin, solid growth, necrosis and promi-
nent lymphocytic infiltrate (Figure 1A);21,128 how-
ever, low-grade subtypes such as tubular carcinoma
can rarely be seen.129 BRCA2-associated breast can-
cers are more heterogenous in terms of grade and
spectrum of histological tumour subtypes,130–132 with
a larger proportion of tumours being low- and
intermediate-grade compared to BRCA1-associated
cancers. Germline CDH1 mutations are specifically
associated with ILC (Figure 1B);23,133 however, rare
cases of IC-NST have been described in CDH1 muta-
tion carriers.134 Distinct genotype–phenotype correla-
tions are less well defined for other breast cancer risk
genes. Most breast carcinomas described in the con-
text of Li–Fraumeni syndrome135 and neurofibro-
matosis type 1136 as well as germline PALB2137 and
ATM138 mutations are high-grade IC-NST. Tumours
arising in PALB2 mutation carriers were also associ-
ated with minimal sclerosis, and this was reported to
be predictive of PALB2 mutation status.137 Breast
carcinomas with MMR deficiency are typically high-
grade and are significantly more likely to show solid
growth, necrosis, increased mitotic activity and a
prominent lymphocytic infiltrate.96 In contrast, breast
carcinomas in Cowden syndrome are more commonly
low- and intermediate-grade IC-NST,139,140 with a
proportion of cases exhibiting apocrine differentiation
(Figure 1C).141 Germline CHEK2-associated breast
cancer can be of any grade; the most prevalent
c.1100delC variant is associated with IC-NST,142–144

while p.I157T carrier tumours show an association
with lobular differentiation.145,146 The polygenic risk
score may also convey subtype-specific risks; for
example, an ILC-specific predisposition polymorphism
has been identified at 7q34 (rs11977670).147

I M M U N O H I S T O C H E M I C A L P H E N O T Y P E S A N D

I N T R I N S I C B R E A S T C A N C E R S U B T Y P E S

Triple-negative
BRCA1-associated breast cancers are more likely to
be ER-, PR- and human epidermal growth factor
receptor 2 (HER2)-negative (‘triple-negative’)5,148,149

and the majority show a ‘basal’ phenotype (expres-
sion of high molecular weight cytokeratins such as
CK5/6 and CK14 on immunohistochemistry).150–152

Indeed, more than 60% of tumours arising in the
context of BRCA1 mutations are triple-
negative5,130,131 and a triple-negative phenotype is
highly predictive of BRCA1 mutation status.153
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Several other susceptibility genes involved in DNA
damage repair are also associated with triple-negative
disease, including BRCA2, PALB2, RAD51C, RAD51D
and BARD1 variants.5,154 Analysis of the BRIDGES
data set found that germline variants in nine of the
breast cancer susceptibility genes (BRCA1, BRCA2,
PALB2, ATM, CHEK2, RAD51C, RAD51D, BARD1
and TP53) accounted for 27.3% of all triple-negative
breast cancers in women aged 40 years or younger.5

Breast carcinomas with MMR deficiency were signifi-
cantly more likely to be ER-/PR-negative than MMR-
proficient tumours; however, the difference in HER2
expression was not statistically significant.96

Hormone receptor-positive
BRCA2-associated breast cancers are more frequently
ER-positive and of luminal A or B intrinsic molecular
subtype compared to BRCA1-associated
tumours.151,155 Indeed, evaluation of the BRIDGES
data set found that while BRCA2 pathogenic variants
showed a strong association with the triple-negative
phenotype, they were most highly associated with hor-
mone receptor-positive, HER2-negative disease.5 Fur-
thermore, high-grade ER-positive disease was found to
be modestly predictive of BRCA2 mutation status, irre-
spective of age.153 PALB2 variants are also highly asso-
ciated with hormone receptor-positive, HER2-negative
subtypes in addition to triple-negative disease.5 ATM
variants are most commonly associated with ER-/PR-
positive, HER2-negative (luminal B) sub-
type.5,138,156,157 CHEK2 variants are associated with
all intrinsic breast cancer subtypes except for triple-
negative breast cancer.5,143–146 Of the few reported
breast cancer phenotypes in Peutz–Jeghers syndrome,
most comprised ER-positive, HER2-negative disease.158

The polygenic risk score may also inform intrinsic
subtype-specific risks corresponding to ER-positive ver-
sus ER-negative breast cancers.9,124,126

HER2-positive
TP53 pathogenic variants consistently show a strong
association with HER2 positive breast cancer.5,159,160

A study of 24 breast carcinomas arising in the con-
text of neurofibromatosis type 1 demonstrated a
higher prevalence of ER-negative, HER2-positive cases
compared to age-matched controls, particularly in
women aged less than 50 years.136 It should be
noted that while BRCA1/2-associated breast carcino-
mas were more significantly enriched for other sub-
types, a lower but increased risk of HER2-positive
disease was also identified in mutation carriers, while
CHEK2 variants showed similarly elevated odds ratios
for HER2-positive and hormone receptor-positive/
HER2-negative disease.5

Molecular testing and therapeutic
implications

G E R M L I N E T E S T I N G

Germline testing detects heritable mutations present
in the genome and is typically performed on a blood
sample. Guidelines from expert groups such as the
National Comprehensive Cancer Council (NCCN) out-
line criteria for germline testing based on factors such
as age at breast cancer diagnosis, family history and
tumour characteristics.161 For example, according to
current NCCN guidelines, germline testing is recom-
mended for all women diagnosed with triple-negative
breast cancer as well as for women with ILC who
have a personal or family history of diffuse gastric
cancer.161 In England, the National Genomic Test
Directory outlines the eligibility criteria for genetic
testing in suspected cases of inherited breast can-
cer.162 According to the directory, patients who meet
the testing criteria for inherited breast and ovarian
cancer are eligible for germline BRCA1, BRCA2,

Figure 1. Examples of tumour pathology in hereditary breast cancer. A, BRCA1-associated invasive carcinoma of no special type with

medullary pattern; B, CDH1-associated breast cancer is characteristically invasive lobular carcinoma; C, invasive carcinoma with apocrine

differentiation can be associated with germline PTEN mutations (Cowden syndrome).
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PALB2, ATM and CHEK2 testing. In addition, several
hereditary breast cancer risk assessment models have
been devised, largely aimed at identifying patients
with pathogenic variants in BRCA1/2,163–165

although ongoing revisions of some models have
allowed for a more broad assessment of genetic
risk.166 Nonetheless, genetic testing guidelines and
risk assessment models may miss a significant propor-
tion of patients with clinically actionable germline
susceptibility variants,167–169 and it was found that
almost 50% of breast cancer patients with pathogenic
or probably pathogenic variants in known susceptibil-
ity genes did not qualify for germline testing based on
genetic testing guidelines.167 In view of this, the
American Society of Breast Surgeons has recently rec-
ommended that germline testing be offered to all
breast cancer patients.170 The increasing availability
of NGS, combined with decreased cost and removal of
gene patents, has allowed for routine implementation
of multigene panel testing among multiple established
breast cancer risk genes and the addition of the poly-
genic risk score, may further refine the accuracy of
breast cancer risk stratification in hereditary breast
cancer.171–173 Germline testing results inform screen-
ing and risk reducing interventions and have implica-
tions for breast cancer management. For example,
according to NCCN guidelines, there is currently suffi-
cient evidence to consider risk reducing mastectomy
in the setting of germline BRCA1/2, PALB2, TP53
and CDH1 mutations.161 Furthermore, given that
TP53 mutations are associated with an increased sus-
ceptibility to radiation-induced malignancies,174 iden-
tification of germline TP53 mutations modifies
screening and management recommendations in
order to minimise radiation exposure in this patient
cohort.55,175

S O M A T I C T E S T I N G

Molecular testing can be performed on the tumour to
identify clinically actionable somatic driver mutations,
treatment resistance-associated mutations and to
assess for gene expression profiles and mutational sig-
natures that have prognostic and therapeutic implica-
tions. For example, the commercially available
multigene expression assay Oncotype DX evaluates
the expression of multiple cancer-related genes to
generate a recurrence risk score which is prognostic
for recurrence risk and predictive of adjuvant
chemotherapy benefit in early-stage ER-positive,
HER2-negative breast cancer.176,177 In the advanced
breast cancer setting, somatic testing can be utilised
to identify clinically actionable mutations that may

inform therapeutic options and clinical trial opportuni-
ties. Identification of PIK3CA mutations predicts
response to adjuvant treatment with alpelisib in hor-
mone receptor-positive, HER2-negative breast cancer,
while detection of ESR1 mutations predicts resistance
to hormone therapy.178 Testing for MMR deficiency,
MSI status and/or tumour mutation burden (TMB)
may have a role in the advanced disease setting as the
US Food and Drug Administration (FDA) has approved
immunotherapy with pembrolizumab for patients with
unresectable or metastatic solid tumours that are
MMR-deficient or TMB-high and have progressed on
initial treatment.179 Immune check-point inhibitors
are also FDA-approved for metastatic triple-negative
breast cancers that show evidence of programmed
death ligand 1 (PD-L1) expression on immunohisto-
chemistry.178 The predictive value of somatic BRCA1/
2 mutations has not been definitively established in
the breast cancer setting.180

H O M O L O G O U S R E C O M B I N A T I O N D E F I C I E N C Y A N D

P A R P I N H I B I T O R S

Poly [adenosine diphosphate (ADP)-ribose] polymerase
(PARP) inhibitors, which inhibit the PARP enzymes
from repairing single-strand DNA breaks, induce syn-
thetic lethality in the presence of HRD.181 BRCA1/2
proteins are central to the HR repair pathway and
impaired BRCA1/2 gene function renders tumour cells
susceptible to PARP inhibitor therapy.182–184 Clini-
cally, adjuvant treatment with PARP inhibitors was
associated with improved outcomes in patients with
BRCA1/2-associated breast cancer,185–189 and heredi-
tary breast cancer management guidelines have incor-
porated PARP inhibitors in the treatment of advanced
BRCA1/2-associated breast cancers and, more
recently, in the setting of high-risk early-stage HER2-
negative disease.175,190 Germline BRCA1/2 mutation
testing is the recommended method of identifying
breast cancer patients who may benefit from PARP
inhibitor therapy, as there are currently few data on
the clinical outcomes of patients with breast cancers
harbouring somatic BRCA1/2 mutations.191 However,
a significant proportion of breast cancers may be asso-
ciated with an HRD phenotype independent of BRCA
germline status as a result of germline mutations in
other pathway mediators (e.g. PALB2), epigenetic
changes (e.g. somatic methylation of BRCA1 pro-
moter), somatic mutational dysregulation of associated
genes or, indeed, occurring through no obvious
cause.192 There is emerging evidence that this
expanded patient cohort may also benefit from PARP
inhibitor therapy.193,194 Several testing methods have
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been developed to determine HRD status, including
germline testing for mutations in HR pathway genes,
detection of somatic genomic scars and mutational sig-
natures associated with the HRD phenotype through
various tumour-based genomic analyses, as well as
functional assessments of HR repair pathway defi-
ciency.195–198 However, it is not yet clear which of
these assays is the most reliable method of determining
HRD status or the predictive value of HRD biomarkers
in identifying breast cancer patients who may benefit
from PARP inhibitor therapy.

Summary

Hereditary breast cancer accounts for a substantial
proportion of breast cancer cases. Some of the genetic
risk can be explained by pathogenic variants in
highly and moderately penetrant breast cancer sus-
ceptibility genes, several of which are also associated
with recognisable cancer predisposition syndromes.
Polygenic risk is also an established contributor to
breast cancer risk. Characterisation of the genetic
basis of breast cancer is central to the understanding
of breast cancer biology and behaviour, which
informs genetic testing recommendations and has sig-
nificant implications for accurate risk prediction,
patient management and surveillance.
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