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Abstract
Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and 
ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia 
symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant 
behaviors in rodents, including hyperlocomotion. This is negated in mice lacking 
the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the 
hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating 
other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, 
and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D 
subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA 
receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we 
examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer 
(S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, 
anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO 
mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype 
present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype 
and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex 
and genotype. S-ket disrupted spatial recognition memory in females and novel object 
recognition memory in both sexes, independent of genotype. This datum identifies a 
role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the 
differential effects of the R- and S-ket enantiomers.
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1  |  INTRODUC TION

N-methyl-d-aspartate receptors (NMDARs) are a glutamate receptor 
subtype that are widely distributed in the central nervous system 
and play a key role in many physiological processes including 
neurodevelopment, synaptogenesis, synaptic plasticity, and several 
forms of cognition (Driesen et al., 2013; Hansen et al., 2017; Paoletti 
et al.,  2013; Traynelis et al.,  2010). NMDARs are heterotetramers 
composed of two obligatory GluN1 subunits and two subunits 
from among the GluN2A-D or GluN3A-B subunits (Karakas & 
Furukawa, 2014; Traynelis et al., 2010). The different subunits that 
come together to form a functional receptor generate different 
functional and pharmacological properties (Wyllie et al., 2013). Each 
various subunit also has unique temporal, regional, and cell-specific 
expression patterns. The obligatory GluN1 subunit is ubiquitously 
expressed in the brain over the lifespan whereas the GluN2A and 
GluN2B are the predominant subtypes in the adult brain and the 
GluN2C and GluN2D subunits are more highly expressed in the early 
stages of life (Akazawa et al.,  1994; Henson et al., 2008; Monyer 
et al., 1994; Tolle et al., 1993).

With maturation, GluN2D subunit expression markedly de-
creases and becomes confined to specific brain cell types, namely 
interneurons, Golgi and stellate cells, within the cortex, dienceph-
alon, mesencephalon, and brain stem (Akazawa et al., 1994; Alsaad 
et al., 2019; Engelhardt et al., 2015; Garst-Orozco et al., 2020). The 
GluN2D subunit in the adult brain is especially enriched in parval-
bumin (PV)-containing interneurons, a cell population implicated in 
the generation of high-frequency gamma neural oscillations which 
are thought to underlie higher order cognitive processes (Antonou-
diou et al., 2020; Engelhardt et al., 2015; Garst-Orozco et al., 2020; 
Hanson et al., 2019; Hudson et al., 2020; Perszyk et al., 2016). Both 
parvalbumin interneurons and gamma oscillations are consistently 
reported to be disrupted in schizophrenia (Chen et al., 2014; Chung 
et al., 2022; Dienel & Lewis, 2019; Enwright et al., 2016; Enwright III 
et al., 2018; Gonzalez-Burgos et al., 2015; Kaar et al., 2019), and in 
addition, post-mortem studies have reported alterations in the ex-
pression of the GluN2D subunit in the prefrontal cortex of people 
with schizophrenia (Akbarian et al., 1996).

NMDAR antagonists like phencyclidine (PCP) and ketamine have 
long been reported to have psychotomimetic effects leading to the 
hypothesis that NMDAR hypofunction is central to the etiology and 
pathophysiology of schizophrenia (Balu, 2016; Cohen et al.,  2015; 
Nakazawa & Sapkota, 2020). Multiple studies have shown that ad-
ministration of sub-anesthetic doses of ketamine and PCP can in-
duce a spectrum of schizophrenia-like symptoms including psychosis 
and neurocognitive disturbances in healthy individuals, and exacer-
bate symptoms in people with schizophrenia (Allen & Young, 1978; 
Cheng et al.,  2018; Krystal et al.,  1994; Lahti et al.,  1995; Luby 
et al.,  1959; Xu et al.,  2015). In rodents, administration of these 
NMDAR channel blockers results in hyperlocomotion (proposed 
to represent a striatal hyperdopaminergic state which is thought 
to underlie the positive symptoms of schizophrenia like psychosis), 
disruption of the prepulse inhibition of the startle response, and 

cognitive deficits as assessed by various behavioral tests including 
the T-maze and object recognition tasks (Cadinu et al., 2018; Gigg 
et al., 2020; Neill et al., 2014; Plataki et al., 2021; Sahin et al., 2016; 
Suryavanshi et al.,  2014; Usun et al.,  2013). Multiple studies have 
reported that GluN2D knockout (KO) mice are resistant to NMDAR 
antagonist-induced hyperlocomotion, thus suggesting a role for the 
GluN2D subunit in mediating psychotomimetic drug-induced hyper-
locomotor behavior (Hagino et al., 2010; Ikeda et al., 1995; Sapkota 
et al., 2016; Yamamoto et al., 2016). The role of the GluN2D subunit 
in mediating NMDAR antagonist-induced alterations to cognitive 
and negative symptom domains is less clear.

Ketamine is a racemic mixture of equal amounts of the enantio-
mers R- and S-ketamine (R-Ket; S-ket). R-Ket and S-ket are thought 
to have subtly different pharmacological properties and behavioral 
effects (Chang et al.,  2019; Domino & Warner,  2010; Fukumoto 
et al.,  2017; Rafało-Ulińska & Pałucha-Poniewiera,  2022; Zhang, 
Ye, et al., 2021). S-ket is reported to have higher affinity for the 
NMDAR and greater analgesic and anesthetic properties and is thus 
often thought of as the more potent isomer (Ebert et al., 1997; Jelen 
et al., 2021; White et al., 1985). The Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) recently approved 
low-dose intranasal S-ket for use in people with treatment-resistant 
depression following findings from multiple clinical trials of rapid-
onset, robust anti-depressant effects (Canuso et al.,  2018; Daly 
et al., 2021; Singh et al., 2016; Turner, 2019). Other studies, how-
ever, suggest that R-ket may have more clinical relevance as it is 
associated with fewer unwanted psychotomimetic or dissociative 
symptoms and thus might be better tolerated by patients (Fuku-
moto et al., 2017; Leal et al., 2021) and several preclinical studies 
report that R-ket has longer lasting anti-depressant effects (Scot-
ton et al., 2022; Yang et al., 2015; Zhang et al., 2014). While mul-
tiple rodent studies have shown anxiolytic effects of acute RS-ket 
at sub-anesthetic doses (.1–15 mg/kg) (Camargo et al., 2021; Fraga 
et al., 2018; Hou et al., 2022), limited studies have investigated the 
differential effects and behavioral responses induced by the two 

Significance

These data provide significant new information that the 
sex of a mouse can influence how psychosis-inducing drugs 
impact behaviors, including anxiety, locomotion, learning, 
and memory. This study finds that GluN2D, a specific 
subunit of a receptor complex, is required to mediate 
certain effects of psychosis-inducing drugs and should be 
further explored as a novel therapeutic target. In particular, 
GluN2D mediates the effects of psychosis-inducing drugs 
on locomotor-  and anxiety-related behaviors but not 
learning and memory. This has significant implications 
when considering how males and females manifest 
psychotic behaviors and whether treatments for psychotic 
disorders should be sex specific.
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enantiomers in mice. A better understanding of the role of spe-
cific NMDAR subunits, such as the GluN2D subunit, in mediating 
enantiomer-specific effects is needed.

In regard to cognitive domains, a study by Ide et al.  (2019) re-
ported that while RS-ket, R-ket, and S-ket all produced impairments 
to object recognition in wild-type (WT) mice, GluN2D-KO mice were 
resistant to the effects of R-ket on object recognition performance 
(Ide et al., 2019). This suggests that the GluN2D subunit may play an 
important role in mediating the effects of R-ket on object recogni-
tion but not necessarily S- or RS-ket. Whether this extends to other 
cognitive tasks is unknown.

Another lesser examined factor is the potential sex differences 
in response to NMDAR antagonists. This is despite well-known sex 
differences in schizophrenia incidence, and within the cognitive 
and negative symptom domains (Mendrek & Mancini-Marie, 2016). 
While PCP and RS-ket have been reported to have sexually di-
morphic effects on anxiety and cognitive behaviors (Fitzgerald 
et al., 2021; Liang et al., 2014; Turgeon et al., 2011), the role of the 
GluN2D subunit in mediating the effects of PCP or the ketamine 
enantiomers (R-ket or S-ket) has not been thoroughly investigated 
in both sexes to date.

The aims of this study were, using WT and GluN2D-KO 
mice, to determine the role of the GluN2D subunit in a range of 
schizophrenia-relevant behaviors; examine if the psychotomimetic 
NMDAR antagonists PCP, R-norket, and S-ket elicited distinct re-
sponses; and identify if these showed sexual dimorphism.

2  |  METHODS

2.1  |  Animals and groups

Male and female GluN2D-KO mice were transported from Tokyo 
Metropolitan Institute of Medical Science and a breeding colony 
was established and maintained at the Monash Animal Research 
Platform, Monash University (Clayton, Victoria Australia), whereby 
GluN2D heterozygous male and female mice were bred to obtain 
WT, heterozygous and homozygous GluN2D-KO littermates. Two 
cohorts of mice were used for this study; Cohort 1 was used for all 
behavioral tests except for the locomotor scoring assay for which 
Cohort 2 was used. All husbandry, housing, and behavioral testing 
was undertaken at the Department of Psychiatry, School of Clinical 
Sciences, Monash University for Cohort 1 and at the Department 
of Neuroscience, Central Clinical School, Monash University for 
Cohort 2. All mice were housed in groups of two to five in individually 
ventilated cages (Tecniplast, NSW, Australia) with ad libitum access 
to food and water. At 6–7 weeks of age, mice were transferred from 
the breeding facility to the behavioral holding room with a reversed 
12-h dark–light cycle (lights off at 8:30 am) and kept there until the 
end of the experiment. Cages were monitored daily and changed 
fortnightly.

Male and female WT and GluN2D-KO mice were used for the 
experiments. With Cohort 1, mice were randomly assigned to four 

treatment groups (8–12 mice per group): mice received either sa-
line (control; group 1), or the NMDAR antagonists PCP (group 2), 
R-norket (group 3), or S-ket (group 4). Hence, 16 groups were used 
in total (2*sex × 2*genotype × 4*treatment). With Cohort 2, all mice 
(n = 42) randomly received all four treatments with at least 48 h be-
tween treatments. All procedures were approved by the Monash 
University Animal Ethics Committee and comply with the ARRIVE 
guidelines. For behavioral testing and drug challenge, researchers 
were blinded to the genotype of the mice but not the drug type.

2.2  |  NMDAR antagonists

S-ket (S-(+)-ketamine hydrochloride, 4379/50, TOCRIS, Bristol, UK), 
the ketamine metabolite R-norket (R-norketamine hydrochloride, 
5996/10, TOCRIS), and PCP (Phencyclidine hydrochloride, 2557/10, 
TOCRIS, UK) were dissolved in saline to the final concentration 
required for the doses 25, 25, and 3 mg/kg, respectively. Doses 
were chosen based on previous studies (Fukumoto et al.,  2017; 
Hagino et al.,  2010). Each compound was delivered via a single 
intraperitoneal (i.p.) injection at 5 μL/mg as described for each test.

2.3  |  Behavioral testing

Behavioral testing for Cohort 1 began at 10 weeks of age until 
~16 weeks in the following order: locomotor test/open field test 
(OFT), spatial recognition memory test (Y-maze), fear/anxiety-related 
task, the elevated plus maze (EPM), and novel object recognition 
(NOR) task (see Figure  1 for timeline below). Behavioral testing 
for Cohort 2 was conducted at ~8–11 months. All behavioral tests 
were conducted during 9 am to 5 pm. At the end of experimentation, 
animals were humanely euthanized by cervical dislocation.

For data presentation, we categorized all behavioral tasks into 
three major groups according to modalities assessed: (1) Tasks re-
lated to locomotion, (2) fear/anxiety (OFT, EPM), and (3) novelty rec-
ognition memory (Y-maze, NOR task). Body weight was analyzed at 
two time points: week 10, just before the experiments and week ~ 
16 after completion of all behavioral tasks in Cohort 1 (Figure S1).

2.4  |  Locomotor test

Each mouse was placed into a 600 × 600 × 500 mm open field arena 
(SD Instruments, San Diego, USA) and the automated system recorded 

F I G U R E  1 Timeline of behavioral testing. EPM, elevated plus 
maze; NORT, novel object recognition test.
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animal movement via infrared sensors. Baseline locomotor activity 
was measured for 1 h, after which the mice were injected with either 
saline, R-norket (25 mg/kg), S-ket (25 mg/kg), or PCP (3 mg/kg) ac-
cording to their group allocation and locomotor activity was measured 
again for 2 h (Figure 1a) (Chavez et al., 2009; Klug et al., 2012; van 
den Buuse et al., 2012). The distance traveled was recorded during the 
entire 3-h session and presented as total distance traveled during the 
first hour, average distance traveled during the last 2 h and additionally 
presented as 5-min bins during the first hour and 20-min bins during 
the last 2 h.

2.5  |  Locomotor scoring assay

While assessing behavior in the locomotor arenas following drug ad-
ministration, we noted that altered locomotion may be due to a range 
of behaviors other than locomotion per se, including stereotypies, 

ataxia, and catalepsy. Thus, Cohort 2 was used to assess these be-
haviors. Mice were placed in a 370 × 190 × 130 mm open field arena 
and monitored visually for the presence of stereotypies, ataxia, and 
catalepsy for 30 min post-injection. A score was given for each of the 
three measures every 5 min according to a 3-point scale previously 
developed by our lab, and then, the score averaged over the 30-min 
session (Hudson et al., 2020).

2.6  |  Tests to assess anxiety/fear-related behavior

2.6.1  |  Open field test

Data from the above locomotor test were used to analyze anxiety-
like behavior as part of the OFT. The arena was divided into a center 
area (25% of arena) and four equal squared corners (combined, 25% of 
arena) (Figure 2a). The time spent in the center was calculated using 

F I G U R E  2 The effect of NMDAR antagonists on locomotion in WT and GluN2D-KO mice. (a) Schematic overview of the paradigm. 
Locomotor activity without drug during the first 1 h (b), and locomotor activity over 2 h following drug challenge (c–g). Average distance 
traveled (c) and distance traveled over time with either saline (d; n = 9 F WT, 9 F KO, 9 M WT, 10 M KO), R-norket (e; n = 10 F WT, 10 F KO, 
10 M WT, 9 M KO), S-ket (f; 9 F WT, 9 F KO, 10 M WT, 10 M KO), or PCP (g; 9 F WT, 10 F KO, 10 M WT, 11 M KO). Further measures of ataxia 
(h), stereotypy (i), and catalepsy (j) were assessed in a separate cohort (n = 10 F WT, 8 F KO, 12 M WT, 12 M KO). All data presented as 
mean ± SEM. When a two-way ANOVA showed a significant interaction, p-values were calculated with the Sidak's multiple comparison test 
(b, c), Fisher's LSD test (d–f, g: females), Tukey's multiple comparison test (g: males, h–j); *p < .05, **p < .01, ***p < .001, ****p < .0001.
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the software PAS764 provided by SD Instruments. Less time spent in 
the center was taken to represent anxiety/fear-related behavior.

2.6.2  |  Elevated plus maze

EPM was performed as previously described (Grech et al., 2019). Sa-
line, R-norket, S-ket, or PCP was administered 30 min before the test 
via a single i.p. injection. The level of anxiety-like behavior was pre-
sented as time spent in the open arms over the first 5 min. A lower 
number (lower preference for the open arms) indicates a more anx-
ious phenotype.

2.7  |  Tests to assess novel recognition memory

2.7.1  |  Y-maze—Novel-arm recognition memory

Y-maze was performed as previously described (Grech et al.,  2019). 
Briefly, mice were placed in a Y-shaped maze and allowed to explore two 
arms (1 arm closed) for 5 min. Mice were then removed from the maze 
and injected with saline, R-norket, S-ket, or PCP and returned to their 
home cage for 1 h. After the 1-h retention period, mice were once again 
placed in the maze but this time with all three arms open and their activ-
ity was recorded for 5 min. The natural behavior of mice is to explore 
novel environments; therefore, intact recognition memory of the previ-
ously closed arm is reflected by an increased time spent in the novel arm 
upon reintroduction into the maze. The discrimination ratio was calcu-
lated as time spent in the novel arm/[(time spent on average in familiar 
arms) + (time spent in the novel arm)] (Ribeiro et al., 2019). A value above 
.5 indicates preference for the novel arm. Time spent in the center area 
(decision-making phase) was analyzed separately. In this task, mice were 
exposed to NMDAR antagonists during the retention phase, therefore 
assessing the impact of the drugs on memory consolidation.

2.7.2  |  Novel-object recognition (NOR) task

NOR task was performed as previously described (Grech et al., 2019). 
After 2 days of habituation to the test apparatus, mice were injected 
with saline, R-norket, S-ket, or PCP 30 min before the test. The test 
began by exposing mice to two novel objects for 10 min. After 1-h 
retention time, mice were exposed to one familiar object from the 
first phase and one novel object for 5 min. Objects were pseudo 
randomly assigned as familiar or novel to each mouse to avoid ob-
ject preference bias. The novel versus familiar side was randomly 
rotated between mice to account for side bias. Mouse behavior was 
recorded on video and traced with the software TopLightScan 2.0 
(CleverSys, VA, USA). Mice with intact object recognition memory 
will show novelty preference and spend more time with the novel 
object rather than the familiar one. In this task, mice were exposed 
to treatment prior to the start of the task, thus assessing the impact 
of the treatments on memory formation.

2.8  |  Statistical analysis

Graphical representations and statistical analysis outputs were gener-
ated by GraphPad Prism (ver. 9.1.0, GraphPad Software, San Diego). All 
data were tested for normality using the Shapiro–Wilk test and passed 
normality. To analyze baseline locomotion, a two-way ANOVA with sex 
and genotype as between factors was performed. For locomotor activ-
ity following drug challenge, a three-way ANOVA was used with geno-
type and sex and time as between factors. For the first hour of OFT 
analysis and for body weight, a two-way ANOVA with sex and genotype 
as between factors was performed. OFT analysis post drug-exposure, 
EPM, latency to closed arm, and both novelty recognition tasks were 
analyzed by a three-way ANOVA with sex, genotype, and treatment as 
between factors. In the case of a three-way ANOVA, if an interaction 
with sex was detected, a separate analysis for males and females was 
performed followed by multiple comparison tests as recommended by 
the GraphPad Software. If there was no sex effect, female and male data 
were consolidated for further analysis. Outliers were removed by means 
of the ROUT test (Q = 5%). One mouse was removed from the locomo-
tor data, one from the EPM data and one from the Y-maze dataset due 
to being identified as a statistical outlier. Four mice were removed from 
the NORT dataset due to being identified as statistical outliers (all from 
different groups). In all cases, the significance level was set to p ≤ .05. 
Power analysis for 80% power using the three-way ANOVA design re-
quires an n of 8 for a medium effect (.75).

3  |  RESULTS

3.1  |  The effect of NMDAR antagonists on 
locomotion in WT and GluN2D-KO mice

Mice were habituated for 1 h prior to drug challenge, then locomotor 
activity was assessed for 2 h post drug administration (Figure  2a). 
Locomotor activity assessed at baseline revealed a significant effect 
of time (F(8.5, 1284) = 126.2; p < .0001), genotype (F(1, 151) = 46.5; 
p < .0001) as well as time × genotype (F(11, 1661) = 1.9; p < .05) 
and time × sex × genotype interactions (F(11, 1661) = 2.8; p < .01) 
(Figure 2b). No main effect of sex was found. The main effect of time 
and genotype reflects a decrease in locomotor activity over time 
in all mice and a significantly lower baseline locomotor activity in 
GluN2DR KO mice when compared with WT controls, respectively.

Following drug challenge, three-way ANOVA showed a signif-
icant main effect of drug (F(3, 103) = 7.713, p = .0001), a signifi-
cant main effect of genotype (F(1, 103) = 32.62, p < .0001), and a 
significant drug × genotype interaction (F(3, 103) = 2.814, p = .04) 
(Figure  2c). There was no significant drug × sex × genotype inter-
action, so sexes were consolidated. Here, Sidak's multiple com-
parisons test showed significant differences between WT and KO 
groups following administration with R-norket (p = .04) and PCP 
(p < .0001) with WT but not KO mice showing increased locomo-
tor activity following drug administration but not S-ket (p = .09) or 
saline (p = .49).
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For the control saline group (Figure 2d), a RM three-way ANOVA 
revealed a significant effect of time (F(4.012, 132.4) = 59.62; 
p < .0001) and time × genotype interaction (F(8, 264) = 4.011; 
p = .0002). As there was no effect of sex, female and male data were 
consolidated and Sidak's multiple comparisons showed significant 
genotype effects at 60 and 80 min, but not thereafter. This may re-
flect overall reduced activity from all mice in the task from 100 min 
onward.

Analysis of the R-norket group (Figure  2e) from 60 min (time 
point of injection) onward revealed a significant main effect of time 
(F(2.702, 94.58) = 49.86; p < .0001) but no main effect of genotype 
or sex. The significant effect of time can reflect changes induced 
by the drug, given at 60 min. Here, while locomotion does appear 
to increase from 60 to 80 min, no significant difference was found 
at this time point, suggesting that R-norket did not have a profound 
effect on locomotion in all mice. Significant reductions in locomo-
tion were seen at 40 min post drug exposure (60 vs. 100, p = .0092) 
with all animals showing similar levels of reduced activity from 
100 min onward. There was, a significant time × genotype interac-
tion (F(8, 280) = 2.968; p = .0033), however post hoc comparisons 
revealed no significant genotype effects when assessed at each 
time bin. However, when data were averaged across the 2 h fol-
lowing exposure to R-norket (Figure 2c), it appears that R-norket 
increased locomotion to a greater extent in WT but not KO mice. 
Similar to the saline treated group, it appears that there is a gen-
otype effect until approximately 100 min—after which all animals 
show reduced activity.

Analysis of the S-ket group (Figure 2f) from 60 min (time point of 
injection) onward showed a significant main effect of time (F(4.116, 
139.9) = 46.95; p < .0001) and a time × genotype interaction (F(8, 
272) = 4.433; p = .0001). Post hoc comparisons for the main effect of 
time showed that similar to R-norket, while there is a slight increase 
in locomotion 20 min post injection (at 80 min), this was not signifi-
cant, indicating that the effects of the drug on locomotion were not 
profound. Locomotor activity then declines at 100 min in all mice 
and remains steady. However, when exploring the time × genotype 
interaction, Fisher's post hoc analysis showed that WT mice were 
significantly more active at 80 min (p = .008) and 100 min (p = .03) as 
compared to KO mice and this heightened activity declined there-
after reaching similar levels to KO, independent of sex. Thus, the 
increase in locomotor activity induced by S-ketamine is significantly 
blunted in both male and female KO mice.

Analysis of the PCP group (Figure  2g) from 60 min onward 
showed a significant main effect of time (F(3.304, 118.9) = 25.59; 
p < .0001), genotype (F(1, 36) = 11.19; p = .0019), time × sex interac-
tion (F(8, 288) = 3.794; p = .0003), time × genotype interaction (F(8, 
288) = 4.539; p < .0001), and time × sex × genotype interaction (F(8, 
288) = 2.690, p = .0072). Given the interaction with sex, female and 
male datasets were analyzed separately. Firstly, the main effect of 
time was explored in each sex, and we can see that the effect of drug 
is significant in males, with increased locomotion at 80 (p = .024) and 
100 (p = .03) min post injection, while females show no significant 
differences in locomotion at the same time points. Genotype effects 

at each time bin were then explored in both females and males. 
Fisher's LSD test showed that WT female mice were significantly 
more active at 80 min (within 20 min post injection) as compared to 
KO mice (p = .027) and this heightened activity declined thereafter. 
In male mice, multiple comparison test showed that WT mice were 
significantly more active at 80 min (p = .008), 100 min (p = .02), and 
120 min (p = .02) as compared to KO mice and this heightened ac-
tivity declined thereafter reaching similar levels to KO mice by 140–
180 min. Therefore, the increase in locomotor activity induced by 
PCP is significantly blunted in both male and female KO mice, al-
though this effect is more prolonged in males.

We next assessed and compared the impact of each drug on 
ataxia, stereotypy, and catalepsy in a separate cohort of WT and 
KO male and female mice to determine if the locomotor activity 
described above may have been influenced by these behaviors. For 
ataxia (Figure  2h), a three-way ANOVA showed a significant main 
effect of drug (F(2, 113) = 209.6; p < .0001), but no main effect of sex 
or genotype or any genotype × sex × drug interaction. Therefore, fe-
male and male data were consolidated and Tukey's post hoc analysis 
revealed that administration with R-norket and S-ket, but not PCP, 
produced ataxic behaviors in all mice, irrespective of genotype. Ad-
ditionally, mice were significantly more ataxic following treatment 
with S-ket compared to R-norket (p < .0001).

For the stereotypy score (Figure  2i), three-way ANOVA re-
vealed a main effect of drug (F(2, 113) = 37.35; p < .0001) and sex 
(F(1, 113) = 3.992; p = .048) and a significant drug × sex interaction 
(F(2, 113) = 4.252; p = .017). Given the interaction with sex, female 
and male datasets were analyzed separately. A two-way ANOVA 
for the female group revealed only a significant main effect of drug 
(F(2, 48) = 18.3; p < .0001) and the subsequent Tukey's post hoc 
analysis revealed that treatment with R-norket (p = .0005) and S-ket 
(p < .0001) both increased stereotypies when compared with PCP, 
which did not result in stereotypies in female mice. In male mice, a 
two-way ANOVA showed only a main effect of drug. Subsequent 
Tukey's multiple comparison test showed that R-norket and S-ket 
produced stereotypic behavior and this was observed to a greater 
degree following treatment with S-ket (p < .0001). However, PCP 
did not result in stereotypies. Furthermore, the increase in stereo-
typy induced by S-ket was more pronounced in males than females 
(p = .0009).

Lastly when assessing cataleptic behavior (Figure 2j), a three-
way ANOVA revealed a significant main effect of drug (F(2, 
113) = 27.35; p < .0001) but no other significant effects. There-
fore, female and male data were consolidated and Tukey's multiple 
comparison test revealed that treatment with S-ket compared to 
R-norket (p < .0001) or PCP (p < .0001) resulted in catalepsy and to 
a similar degree in both genotypes. To summarize, treatment with 
25 mg/kg of S-ket causes ataxia, stereotypy, and catalepsy, treat-
ment with 25 mg/kg R-norket causes ataxia and stereotypy but 
to a lesser extent than S-ket, and PCP at 3 mg/kg does not cause 
ataxia, stereotypy, or catalepsy. Therefore, the movement data 
shown in Figure 2c following PCP administration can be solely at-
tributed to locomotion.
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3.2  |  The effect of NMDAR antagonists on anxiety/
fear-related behavior in WT and GluN2D-KO mice

For the OFT, the time spent in the center was calculated—reduced 
time spent in the center is indicative of a more anxious phenotype 
(Figure 3a). During the first hour, before drug injection, all treatment 
groups were consolidated and a two-way ANOVA revealed a 
significant main effect of genotype (F(1, 149) = 12.7; p < .001) and sex 
(F(1, 149) = 9.4; p < .01), but no genotype × sex interaction (Figure 3b). 
This showed that (a) KO mice spent less time in the center of the 
arena compared to WT controls indicative of anxiety-like behavior 
and (b) female mice spent less time in the center compared to male 
mice, independent of genotype (Figure 3b). The average time spent 
in the center was calculated for each treatment group over 2 h after 
drug injection (Figure 3c). A three-way ANOVA showed a significant 
main effect of drug (F(3, 139) = 4.133; p = .007), but no effect of sex or 
genotype and no interactions. Tukey's multiple comparisons for the 
main effect of drug showed significant differences between saline 
and S-ket (p = .002) and saline and PCP (p = .0015) groups in male 

WT mice, with both drugs causing a reduction in the percentage of 
time spent in the center.

During the EPM test (Figure  3d), the time spent in open/closed 
arms negatively correlates with anxiety-like phenotype. A three-way 
ANOVA revealed a significant main effect of drug (F(3, 128) = 9.290; 
p < .0001), sex (F(1, 128) = 14.86; p = .0002), drug × sex interaction (F(3, 
128) = 3.452; p = .02), and sex × genotype interaction (F(1, 128) = 5.258; 
p = .02). Data were then split by sex due to the above interactions. In 
female mice, a two-way ANOVA showed a main effect of drug (F(3, 
66) = 3.730; p = .01), a trend for an effect of genotype (F(1, 66) = 3.945; 
p = .051), and a drug × genotype interaction (F(3, 66) = 3.387; p = .02). 
Post hoc analysis for the main effect of drug showed a significant differ-
ence between the S-ket and PCP groups (p = .01). Post hoc analysis for 
the drug × genotype interaction showed a trend for an effect of geno-
type in the S-ket group (p = .08), with KO mice showing reduced time in 
the open arm/closed arm. Female KO mice in the saline and PCP groups 
also showed a nonsignificant reduction in time spent in the open/closed 
arm, but not the R-norket group, suggesting the anxiogenic effect in the 
KO mice may be ameliorated only by R-norket.

F I G U R E  3 Anxiety/fear-related behavior. (a) Open field test (OFT): The time spent in the center was recorded during the first hour (b) 
and during 2 h after injection with saline (n = 9 F WT, 10 F KO, 9 M WT, 11 M KO), R-norket (n = 10 F WT, 11 F KO, 9 M WT, 9 M KO), S-ket (9 F 
WT, 10 F KO, 10 M WT, 10 M KO), or PCP (8 F WT, 10 F KO, 11 M WT, 9 M KO) (c). (d) Elevated Plus Maze (EPM): The time spent in the open 
arms/closed arms over 5 min (e) and the latency to closed arm (f) was recorded. All data presented as mean ± SEM. When a two-way ANOVA 
showed a significant interaction, p-values were calculated with an ordinary two-way ANOVA (b), Sidak's multiple comparison tests (c, e, f); 
*p < .05, **p < .01, ***p < .001, ^p < .0001, ##p < .01 -main sex effect, &p < .01.
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In male mice, there was a main effect of drug (F(3, 62) = 6.056; 
p = .001), but no effect of genotype and no drug × genotype interac-
tion. Post hoc analysis for the main effect of drug showed that PCP 
had an anxiolytic effect in both WT and GluN2DR KO mice, but this 
effect was not seen with R-norket or S-ket (saline vs. PCP, p = .001; 
PCP vs. R-norket, p = .005; PCP vs. S-ket, p = .005).

Another aspect to consider, which can be regarded as initial 
short-phasic fear response, is the time the mouse takes to hide in 
the closed arm after it was placed onto the open arm (Latency to 
closed arm, Figure  3f). The quicker it moves to the closed arm, it 
may be inferred the more anxious or fearful it is. Analysis showed 
no significant effect of sex or drug, but a trend for an effect of gen-
otype (F(1, 128) = 3.881; p = .051) and a significant genotype × drug 
(F(3, 128) = 2.9; p = .03) and sex × genotype × drug interaction (F(3, 
128) = 6.9; p = .0002). Further separate analysis for the females 
showed a main effect of genotype (F(1, 67) = 6.8; p = .01), no effect 
of drug, but a genotype × drug interaction (F(3, 67) = 8.7; p < .0001). 
The main effect of genotype showed that female KO mice were in 
general faster to hide in the closed arm as compared to female WT 
mice, again, indicating KO mice were more anxious than WT. To fur-
ther explore the genotype × drug interaction, Sidak's comparisons 
test was performed and showed that R-norket, but not S-ket or PCP 
reversed this anxiogenic phenotype (p = .009) in KO females simi-
lar to the above findings that R-norket reversed the reduced time 
spent in the open arm/closed arm. There were no significant effects 
of drug or genotype in the males, but a significant drug × genotype 
interaction (F(3, 61) = 3.2; p < .05). Further multiple comparison tests 
showed that only S-ket had an anxiolytic effect in WT, but not in KO 
males (p = .006).

3.3  |  The effects of NMDAR antagonists on 
spatial recognition memory and novel object 
recognition memory in WT and GluN2D-KO male and 
female mice

Y-maze and NOR tasks were performed to assess novel arm (spatial) 
and novel object (episodic) recognition memory, respectively. 
Analysis of the Y-maze did not reveal any main effect of sex, 
genotype, or drug, but a significant sex × drug interaction (F(3, 
139) = 2.9; p < .05) (Figure  4a,b). Further separate analysis by sex 
showed that S-ket, but not R-norket or PCP, reduced the preference 
for the novel arm in female mice irrespective of genotype, which 
is indicative of impaired spatial short-term memory 2-way ANOVA, 
main treatment effect (F(3, 68) = 3.1; p < .05, Dunnett's multiple 
comparison test: saline vs. S-ket *p = .038, Figure 4b). No effects 
of drugs or genotype and no interactions were found in the male 
groups. No group differences were observed in the percentage of 
time spent in the center, decision-making phase, of the Y-maze (data 
not shown).

Analysis for the NOR task revealed a significant main effect of 
treatment (F(3, 131) = 4.4; p < .01), but no other significant effects 
or interactions (Figure  4c,d). Dunnett's multiple comparison test 

showed that S-ket, (*p = .024, Figure 4d) but not R-norket or PCP, 
disrupted the preference for the novel object when compared to ve-
hicle, independent of genotype or sex.

4  |  DISCUSSION

Here, we show, firstly, that the hyperlocomotion induced by the 
NMDAR antagonists, R-norket, S-ket, and PCP was blunted in both 
male and female GluN2D-KO mice. We show that the baseline 
hypolocomotor phenotype in GluN2D-KO mice, previously reported 
(Hagino et al., 2010; Ikeda et al., 1995; Miyamoto et al.,  2002), is 
present in both sexes. We report that GluN2D-KO mice exhibit 
anxiety-like behaviors, in both the open field test and the elevated 
plus maze test, and this phenotype was more pronounced in female 
mice. The effect of NMDAR antagonist drugs on anxiety-like 
behaviors was highly dependent on the task and sex of the mouse; 
in the OFT PCP, and S-ket reduced the time spent in the center, 
which may suggest reduced exploratory behavior and increased 
fearful or anxious behavior. However, in the elevated plus maze task, 
R-norket showed anxiolytic effects in females, while S-ket showed 
anxiolytic effects in male WT but not KO mice. Furthermore, PCP 
also showed anxiolytic effects in this task that were independent 
of genotype. Finally, S-ket was found to disrupt spatial recognition 
memory in females and novel object recognition memory in both 
sexes, independent of genotype.

As mentioned previously, several studies have reported that 
GluN2D-KO mice exhibit decreased locomotor activity in novel envi-
ronments when compared with WT mice. It has been suggested that 
this may be attributable to a reduction in motivation as GluN2D-KO 
mice have been shown to display anhedonic-  and depressive-like 
behaviors (Salimando et al., 2020; Yamamoto et al., 2017). Further-
more, there is evidence of altered dopamine and serotonin metab-
olism in the frontal cortex, striatum, thalamus, and hippocampus of 
GluN2D-KO mice which could explain the hypolocomotor behavior 
as well as the anhedonic state (Miyamoto et al., 2002). It is also well 
established that acute administration of NMDAR antagonists such 
as PCP and ketamine in mice results in hyperlocomotion, cognitive 
dysfunction, and deficits in social behaviors (Brigman et al., 2009). In 
this study, the hyperlocomotion induced by R-norket, S-ket, and PCP 
in WT mice was significantly reduced in GluN2D-KO mice of both 
sexes. Thus, we provide here evidence that the GluN2D subunit may 
play a key role in hyperlocomotion induced by R-norket, S-ket, and 
PCP. PCP is considered to be a nonselective blocker of GluN2(A-D)-
containing NMDA receptors but these results suggest that adminis-
tration of PCP resulting in hyperlocomotion may be predominantly 
mediated by blocking the GluN2D, as previously shown (Sapkota 
et al., 2016; Yamamoto et al., 2013). We extend this by showing it 
is not sex specific. Although our findings of phenotypic differences 
in the effects of the different NMDAR antagonists is of interest 
given that ketamine and PCP have rarely been assessed together, 
a significant limitation of our study is that we only tested a single 
dose of each drug. Although this dose was chosen carefully based on 
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previous studies (Fukumoto et al., 2017; Hagino et al., 2010), a full 
dose–response curve would be required to definitively confirm the 
differential effects of these drugs.

Only treatment with S-  and R-norket, but not PCP resulted in 
ataxia and stereotypies in this study and only S-ket caused cata-
lepsy. It is possible the lack of a PCP effect on ataxia and catalepsy 
behaviors could be dose related; however, previous studies report 
the absence of catalepsy or ataxia in mice following PCP treatment 
at 10 mg/kg (Koek & France, 2008). For these outcomes, there were 
no significant differences between the genotypes, so it is unlikely 
that NMDAR antagonist-induced ataxia, catalepsy, or stereotypy is 
mediated by the GluN2D subunit. These data do, however, suggest 
the locomotor effects induced by R-norket or S-ket in this study 
may be influenced by stereotypy, ataxia, and catalepsy behaviors, 

even at the subanesthetic (25 mg/kg) dose that we applied—and 
may, in part, explain the modest effects that we found for S-ket 
and R-norket on locomotion. However, PCP had no effect on these 
behaviors but showed a very clear hyperlocomotion effect at the 
3 mg/kg dose we administered. Given both ketamine and PCP have 
similar affinities for NMDA receptors, this effect may be due to the 
different doses applied, but also off-target effects. For example, 
PCP has a greater potency as a D2 receptor activator than ketamine 
(Seeman et al., 2009) and D2 receptor activation is associated with 
hyperlocomotion.

In contrast to some previous studies, we report that GluN2D-KO 
mice exhibit anxiety/fear-related behavior during the OFT and EPM. 
Previously, Yamamoto et al. reported a normal level of anxiety-like 
behavior in GluN2D-KO mice using the marble-burying test and 

F I G U R E  4 Novelty recognition memory. (a) Y-maze task: After exploring two arms of the Y-maze, mice were injected with either saline 
(n = 9 F WT, 9 F KO, 10 M WT, 11 M KO), R-norket (n = 10 F WT, 11 F KO, 10 M WT, 10 M KO), S-ket (9 F WT, 10 F KO, 10 M WT, 10 M KO), or 
PCP (9 F WT, 10 F KO, 10 M WT, 8 M KO). An hour later, the mice were returned to the Y-maze and allowed to explore all three arms and their 
activity was recorded for 5 min; (b) S-ket disrupts spatial memory in female but not male mice. (c) NOR task: After 2 days of habituation, mice 
were injected with either saline (n = 9 F WT, 10 F KO, 9 M WT, 11 M KO), R-norket (n = 11 F WT, 9 F KO, 10 M WT, 9 M KO), S-ket (9 F WT, 7 F 
KO, 10 M WT, 9 M KO), or PCP (9 F WT, 12 F KO, 10 M WT, 7 M KO) 30 min before being exposed to two novel objects for 10 min. An hour 
later, mice were exposed to one familiar object and one novel object and their activity was recorded for 5 min; (d) S-ket disrupts novel object 
recognition in both male and female mice. All data presented as mean ± SEM. When a two-way ANOVA showed a significant interaction, 
p-values were calculated with the Dunnett's multiple comparisons test; *p < .05.
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novelty-suppressed feeding test, while Miyamoto et al. reported re-
duced anxiety in GluN2D-KO mice in the EPM and light–dark box test 
(Miyamoto et al., 2002; Yamamoto et al., 2017). The discrepancies in 
the findings might be due to the different tests used which might 
be sensitive to subtly different anxiety-  or fear-related behaviors. 
For example, recent studies have suggested that the marble-burying 
test might more closely represent repetitive/compulsive behaviors 
than anxiety-like behavior (Dixit et al., 2020; Thomas et al., 2009). 
Another contributing factor to the discrepancies in our findings 
compared to previous reports is that we assessed both sexes. In-
deed, for the OFT, we found a main effect of genotype; however, 
this appears to be driven mainly by female mice and analysis of males 
alone may not have led to statistically significant results. Another 
recent study examining both male and female GluN2D-KO mice also 
found increased anxiety- and depressive-like behaviors in KO mice 
of both sexes which was associated with disruptions to the modu-
lation of neural activity by GluN2D-containing NMDARs in the bed 
nucleus of the stria terminalis, which is a complex structure known 
to modulate emotional states (Salimando et al., 2020). It is possible 
that sex differences in GluN2D levels and/or expression patterns 
might underlie some of the behavioral dimorphism observed in this 
study. However, there is very limited literature comparing GluN2D 
expression between sexes, largely due to a lack of knowledge of 
GluN2D expression in females. A study looking at relative expres-
sion of GluN2 variants found sex-specific differences in the local-
ization of the GluN2D subunit in the spinal dorsal horn of rats (Temi 
et al., 2021). Another study reported increased GluN2D expression 
in females diagnosed with major depressive disorder compared to 
controls, which was not seen in males (Gray et al., 2015).

Once again highlighting sex differences in anxiety-  and fear-
related behaviors, female but not male KO mice show reduced time 
spent in the open arm of the elevated plus maze, and reduced la-
tency to reach the closed arm. This suggests that the anxiety pheno-
type in the EPM is female specific, a finding unable to be assessed 
in the previous male only studies. We also show that R-norket im-
proves anxiety-like behaviors in KO females—suggesting GluN2D is 
not involved in mediating the effects of R-norket on this behavior 
in female mice. In line with our findings, a recent study reported 
that R-ket attenuated anxiety-related behaviors in an animal model 
of maternal immune activation which is commonly used to study 
neurodevelopmental disorders including schizophrenia (de Oliveira 
et al., 2023). This anxiolytic effect was linked to its antioxidant and 
anti-inflammatory effects in the prefrontal cortex of the mice (de Ol-
iveira et al., 2023). Thus, the anxiolytic effects of R-norket observed 
in our study might be due to this anti-inflammatory action rather than 
via GluN2D-mediated signaling. S-ket showed anxiolytic effects in 
male WT but not KO mice and PCP showed anxiolytic effects in both 
male and female WT and KO mice in the EPM task. Thus, we found 
almost opposing effects of PCP and the ketamine enantiomers in the 
EPM compared to the OFT tasks as PCP and S-ket both reduced per-
centage time spent in the center of the OFT, suggestive of a fearful 
or anxiogenic effect. While reduced time spent in the center of the 
open field task can be seen as a sign of anxiety, the behavior may be 

confounded by locomotion, which we know at baseline is reduced 
in the KO mice, and is further altered by ketamine and PCP. We did 
account for this by calculating the percentage of time spent in the 
center, rather than raw time in the center; however, the elevated 
plus maze task may be a more reliable test of anxiety like behavior 
in this instance. The differing effects of R-norket and S-ket on these 
anxiety-related behaviors might be explained by recent studies 
which report that S-ketamine preferentially binds to and activates 
mu opioid receptors when compared with R-ketamine (Bonaventura 
et al., 2021; Levinstein et al., 2023). Moreover, this interaction was 
linked to the antidepressant effects of ketamine as the administra-
tion of naltrexone, an opioid antagonist, blocked the antidepressant 
and anti-suicidal effects of ketamine (Williams et al., 2018, 2019). 
This may explain the anxiolytic effects of S-ket observed in male WT 
mice in our study.

As reported previously, we found that GluN2D-KO mice had 
normal object recognition memory and this was disrupted in both 
genotypes and sexes by S-Ket, but not R-norket or PCP. One possi-
ble explanation for cognitive deficits following treatment with sub-
anesthetic doses of NMDAR antagonists like S-ket is the blockade 
of NMDAR specifically on parvalbumin+ GABAergic interneurons 
which play a key role in many cognitive processes. Blockade of the 
NMDARs on these interneurons would decrease GABA release 
resulting in the disinhibition of the pyramidal neurons (Widman & 
McMahon, 2018; Zhang, Yang, et al., 2021). This would in turn in-
crease prefrontal glutamate release resulting in cortical hyperex-
citability, disrupting the excitatory:inhibitory balance required for 
higher order cognitive function (Nakazawa et al., 2017; Nakazawa & 
Sapkota, 2020; Starc et al., 2017). Chronic treatment with S-ket, but 
not R-ket, was found to reduce PV immunoreactivity in the medial 
prefrontal cortex and hippocampus in mice (Yang et al., 2016). Thus, 
it is possible that administration of S-ket causes disruption to their 
function in the prefrontal cortex and hippocampus resulting in cog-
nitive deficits. Interestingly, recent studies report that R-ketamine 
may in fact ameliorate cognitive deficits induced by maternal im-
mune activation or treatment with PCP and this effect is not seen 
with S-ketamine (Tan et al., 2020, 2022).

Ide et al. reported that R-ket induced deficits in object recogni-
tion memory only in WT mice not in GluN2D-KO mice, suggesting 
that the GluN2D subunit was important for cognitive impairment in-
duced by this drug. Contrastingly, our results do not appear to show 
that PCP or R-ket causes disruptions to object recognition memory 
or spatial recognition memory in any of the sexes or genotypes as-
sessed. A possible explanation for this discrepancy is that while Ide 
et al. administered the drugs immediately after the familiarization 
phase (day 2) and then conducted the test phase 24 h later, we ad-
ministered the drugs 30 min before the test phase of the NOR task. 
The protocol followed by Ide et al. would have been probing for the 
effect of NMDAR antagonists on memory consolidation whereas we 
were investigating the effect of the NMDAR antagonists on memory 
recall/retrieval (Lueptow, 2017). Thus, together these data suggest 
different roles for GluN2D subunit containing NMDARs in memory 
consolidation and retrieval.
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A limitation of our study is that we used a sequential design for 
our behavioral testing with all mice performing the tests in the same 
order: locomotor test/OFT, Y-maze, the EPM, and then the NOR task. 
All mice received only one type of NMDAR antagonist with a washout 
period of 48 h in between. Although this should be sufficient given a 
short elimination half-life of approximately 13 min for ketamine and 
46 min for PCP when administered i.p. in mice (Maxwell et al., 2006; 
Stone & Forney, 1978), there is a possibility of carryover effects due 
to the repeated administration of the compounds. Indeed, one study 
showed that subchronic ketamine (30 mg/kg once daily for 5 con-
secutive days) was sufficient to increase striatal dopamine synthesis 
and locomotor activity in mice (Kokkinou et al., 2021). Another study 
reported that subchronic PCP (1.5 mg/kg once daily for 4 days) im-
paired reversal learning in rats without affecting other nonspecific 
behaviors (Savolainen et al.,  2021). Counterbalancing behavioral 
tests might account for some of the nonspecific effects of repeated 
exposure to drugs. Additionally, in this study, we did not test the 
role of GluN2D on the effects of the ketamine isomers on prepulse 
inhibition (PPI). PPI is a measure of sensorimotor gating consistently 
reported to be impaired in people with schizophrenia, and following 
treatment with NMDAR antagonists (Saletti et al., 2015; San-Martin 
et al., 2020; Wu et al., 2018). S-ket has been reported to disrupt PPI 
with greater potency than R-ket in WT mice and rats (Halberstadt 
et al., 2016; Yang et al., 2015). Shelkar et al. reported a reduction in 
PPI in GluN2D-KO mice compared to WT mice while others have re-
ported that it is unaltered (Sapkota et al., 2016; Shelkar et al., 2019; 
Takeuchi et al., 2001). Thus, it is still unclear whether, and to what 
extent, the GluN2D subunit plays a role in PPI and should be further 
investigated.

In conclusion, our study confirms that the GluN2D subunit plays 
a key role in mediating the hyperlocomotor effects of NMDAR an-
tagonists, but these effects are more pronounced in males than 
females. Both male and female GluN2D-KO mice show an anxious 
phenotype, but this anxious phenotype is more pronounced in fe-
males. R-norket and S-ket showed anxiolytic properties that were 
dependent on sex and genotype, while PCP showed anxiolytic ef-
fects independent of sex and genotype. These data shed new light 
on sexually dimorphic responses to NMDAR antagonists and the 
role of the GluN2D subunit in mediating these effects.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
FIGURE S1 Body weight. GluN2D-KO mice weighed less than WT 
controls independent of sex at (a) week 10 and (b) week 16. As 
expected, male mice were overall heavier than female mice at both 
time points. All data presented as mean ± SEM; ****p < .0001 main 
effect of genotype, ####p < .0001 main effect of sex.
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