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Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury.
Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction.
However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The
capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether
recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease.
Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascu-
larisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An
improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion
and function in development and in adult patients after myocardial infarction may inform future therapeutic
strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research
and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and
lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date.
© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Heart failure (HF) affects �1–3% of the global adult
population [1], with 64.3 million people affected world-
wide in 2017 [2]. Patients with HF have a poor progno-
sis, with an estimated mortality of up to 60% by 5 years
[3]. Myocardial infarction (MI) is the leading cause of
HF and a history of MI increases the risk of developing
HF by 28% [4]. Early reperfusion by primary percutane-
ous coronary intervention (PCI) after acute MI can limit
infarct size [5] and has significantly improved survival
rates and complications of acute MI. However, patients
with no-reflow phenomenon (myocardial hypoperfusion
despite seemingly successful PCI), and those who present
late after MI with extensive injury are at greater risk of
adverse outcomes including HF [6,7]. Current pharmaco-
logic treatments for HF can delay disease progression but
cannot ultimately halt or reverse fibrosis and adverse
cardiac remodelling, and thus are non-curative [8].
New approaches are urgently required to enhance

myocardial perfusion, limit infarct expansion, and pro-
mote cardiac regeneration after MI. While the field of

cardiovascular regeneration has focused much of its
efforts on remuscularisation [9], a central requisite for
cardiac regeneration is the rapid and effective restoration
of functional blood vascular and lymphatic networks to
support and nourish the myocardium and promote sur-
vival, repair, and regeneration pathways [10,11].
Therefore, a comprehensive understanding of the intrin-
sic mechanisms that underpin coronary blood and lym-
phatic growth during cardiac remodelling after MI may
inform the next generation of cardiovascular regenera-
tive strategies.

Neonatal and developmental cardiac regeneration

Cardiac regeneration after injury was first reported in the
1970s and was long thought to be restricted to amphib-
ians and fish [12–14]. However, neonatal mammalian
heart regeneration was later shown in mice [15,16] and
pigs [17,18], although this regenerative capacity was lost
within a week after birth. Early neonatal mouse myocar-
dial regeneration studies focused predominantly on the
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mechanisms governing cardiomyocyte migration and
proliferation after injury [16]. However, later studies
revealed that endothelial cell (EC) activation and prolif-
eration was a critical step during neonatal mouse heart
regeneration, and that it preceded cardiomyocyte
renewal, as evidenced by the extensive sprouting of
collateral arteries at 4 days post-MI via CXCR4 and
CXCL12 signalling [19].

Cardiac regeneration in humans

Complete functional cardiac recovery was observed in a
human newborn patient with severe MI due to coronary
artery occlusion. After a 12-month follow-up, the
patient’s heart was shown to be indistinguishable in
function and morphology compared with the hearts of
age-matched healthy patients [20]. This indicates that,
similar to fish and neonatal mammals, newborn humans
may have endogenous capacity to repair myocardial
damage and recover cardiac function after MI.

Although the adult human heart was long considered
a post-mitotic organ, cardiomyocyte proliferation through-
out the adult human lifespan was reported in a unique
study by Bergmann et al [21]. Carbon-14 concentrations
were measured in cardiomyocyte DNA from individuals
born before and after nuclear bomb tests during the Cold
War [21]. The same group later reported that adult human
cardiac ECs have proportionately high proliferation rates
(>15% per year), compared with cardiomyocytes and
mesenchymal cells (<4% per year) [22]. However, these
studies were met with controversy, based on concerns
about the methodology, interpretation of data, and appro-
priateness of patient samples [23], and the findings remain
to be replicated.

In summary, despite some evidence that pathways for
cardiac regeneration may be preserved in the adult
human heart, these are clearly insufficient to support
physiological recovery following ischaemic injury. It is
likely that, similar to other mammalian species, the
potency for functional cardiac regeneration in humans
is restricted to early development.

Structure and function of lymphatic and blood
vascular systems

Vertebrates have two circulatory systems: the blood and
lymphatic vasculatures, functioning as the main supply
and drainage systems of the body. The blood vasculature
transports solutes, fluid, macromolecules, hormones,
and circulating cells through closed pulmonary and sys-
temic circuits [24]. The lymphatic vasculature system
maintains interstitial fluid homeostasis, transports
haematopoietic cells for immune surveillance, and
absorbs dietary lipids from the gastrointestinal tract,
through a complimentary unidirectional open circulatory
system [24].

The vascular endothelium is a monolayer of ECs that
constitutes the inner lining of arteries, veins, and capil-
laries. Vascular ECs (VECs) have numerous endocrine
functions. Other than acting as a barrier between blood
and tissues, the vascular endothelium regulates vascular
relaxation and constriction. VECs are important in con-
trolling blood fluidity, platelet adhesion and aggregation,
leukocyte activation, adhesion, and transmigration. VECs
also precisely regulate the balance between coagulation
and fibrinolysis. VECs play a key role in regulating
immune response and inflammation. They direct inflam-
matory cells to pathogens and wounded areas in need of
defence/repair. Normally quiescent, local ECs become
activated upon tissue injury/ischaemia to allow vessel
sprouting in a sequential process involving basement
membrane degradation, EC detachment, migration and
proliferation, vessel fusion, and maturation [25].
Lymphatic vessels are constructed from three compo-

nents: initial lymphatics, pre-collector lymphatics, and
collector lymphatics. Lymphatic ECs (LECs) form a
monolayer to line the lymphatic vasculature connected
by button-like junctions. Lymphatic capillary LECs are
attached to the surrounding extracellular matrix (ECM)
with anchoring filaments, unlike blood VECs that are
attached to the basement membrane. Increased intersti-
tial pressure, as in oedema, distorts the ECM compo-
nents on these anchoring filaments and enables increased
permeability of lymphatic capillaries to enhance drain-
age of excess extravasated fluid. Larger pre-collector
and collector vessels have some smooth muscle cell
coverage with a continuous basement membrane. The
lymphatic system modulates immune response by traf-
ficking antigens, pathogens, and immune cells from sites
of inflammation and infection to regional lymph nodes.
There is an influx of interstitial fluid and immune cells
during injury and inflammation that necessitates an
expansion of lymphatic vasculature.
In the context of MI, lymphatic and blood vascular

ECs play a critical role in the resolution of inflammation
and trafficking of immune cells. Tissue repair after MI
involves coordinated robust angiogenic and lymphangiogenic
responses to resolve the necrotic infarct core and reduce
myocardial dysfunction [26].

Neovascularisation and lymphangiogenesis in the
heart

Neovascularisation is the umbrella term that refers to the
growth of new vascular networks through de novo
sprouting frommigrating progenitor cells (vasculogenesis)
and via the expansion of pre-existing blood vessels (angio-
genesis) [27,28]. Arteriogenesis is the growth and enlarge-
ment of pre-existent collateral arterioles initiated by
elevated shear stress in the vessel wall [29–31]. To achieve
complete cardiac regeneration, the reconstruction of an
efficient vascular network is crucial to supply regenerating
cardiomyocytes with oxygen and nutrients, as well as to
eliminate metabolic products [32].
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Lymphangiogenesis, the formation of new lymphatic
capillaries, occurs in the infarct region and extends into
the subepicardium of non-infarcted areas [26]. MI
causes increased interstitial fluid accumulation, resulting
in myocardial oedema [33,34]. Myocardial inflamma-
tion can also cause rarefaction and dysfunction of
blood vasculature [35] and of pre-collector and collector
lymphatic vessels, which may influence immune
cell clearance and promote oedema [26,36]. However,
myocardial oedema can persist for up to 6–12 months
post-MI in humans, suggesting that, similar to other
endogenous mechanisms of cardiovascular regenera-
tion, innate lymphangiogenesis pathways are inadequate
to prevent lymphatic insufficiency [37]. In summary,
endogenous mechanisms of neovascularisation and
lymphangiogenesis are pertinent targets for therapeutic
strategies post-MI but are complex and remain to be further
understood.

Temporal angiogenic and lymphangiogenic
responses after MI

The endogenous responses in the heart after MI are a
complex and finely timed interplay spanning inflamma-
tion to fibrosis, that are often compartmentalised into
distinct phases in mice over the course of several days.
Importantly, each phase involves a concerted effort by
several cell types within the heart, including epicardial
cells, ECs, nerves, fibroblasts, myofibroblasts, and lym-
phatic cells [38]. In brief, initial ischaemic injury and
cardiomyocyte necrosis are accompanied by an exten-
sive inflammatory response phase. This phase involves
the migration and accumulation of macrophages and
monocytes into the infarct to clear damaged cells and
ECM components. This is followed by a proliferative or
reparative phase where inflammation is resolved,
neovascularisation pathways are activated, and repara-
tive myocardial remodelling is initiated via (myo)fibro-
blast proliferation. During the recovery phase, activated
fibroblasts and myofibroblasts continue to mediate scar
formation and fibrosis [39] (Figure 1).
After MI, heart regeneration relies on rapid neovascu-

larisation to guide cardiomyocytes to the area of injury
and support myocardial regrowth. New capillary growth
was found in the apical thrombus as early as 2 days post-
apical resection in neonatal mice [40]. The development
of mature arteries and perfused vessels appeared by
5 days post-resection [40]. Of note, vessel ingrowth
preceded cardiomyocyte migration, with co-alignment
of most migrating cardiomyocytes with ingrowing
vessels [40]. Enhanced angiogenesis can rescueMI-induced
damage in the myocardium by mitigating hypoxia in the
ischaemic border zone. In adult mice, primitive vessels
with different diameters were observed 3 days post-MI
and extended from the endocardium [41]. Between 4 and
14 days post-MI, primitive vessels were covered by
pericytes and became a mature circulatory network with
uniform vessel diameters. This salvaged the damaged

cardiomyocytes via activating vascular endothelial
growth factor (VEGF) receptor 2 (VEGFR2) signalling
[41]. Similarly, it was reported that arterial ECs in the
neonatal mouse heart at 4 days post-MI had
reassembled, formed collateral arteries, and provided
an alternate route to vessel perfusion [19]. However,
artery reassembly did not occur in injured P7 or adult
murine hearts. Hence, this suggested that artery-derived
collateral formation was restricted to a brief regenerative
window [19]. Investigating the role of early collateral
blood flow in MI patients showed that the presence of
well-developed collateralisation was associated with
reduced infarct size and improved myocardial salvage
[42]. This highlights the cardioprotective role of endog-
enous neovascularisation after MI.

Fibrotic pathways also play an important role in the
adult mammalian heart after ischaemic injury. By 3 days
post-MI, a substantial number of cardiac fibroblasts were
shown to undergo mesenchymal-to-endothelial transi-
tion via the p53 pathway, to promote neovascularization
and cardiac repair [43]. In contrast, other studies have
demonstrated that most cardiac fibroblasts maintain their
phenotype after injury to mediate fibrosis [44,45].
Lineage tracing in adult murine hearts showed that car-
diac fibroblasts expanded after injury but did not con-
tribute to neovascularisation. Instead, the development
of new vessels was almost exclusively derived from
pre-existing ECs [27]. Complementary studies using
endothelial-specific lineage tracing ‘Confetti’ mice
showed that endogenous vascular repair following MI
was maintained via clonal proliferation of pre-existing
resident ECs [46,47]. No significant contribution from
bone marrow cells or endothelial-to-mesenchymal
transition to new blood vessels was observed at day
7 post-MI, shown using single-cell RNA-sequencing
(scRNA-seq) technology [47]. However, a population
of ECs undergo transient mesenchymal differentiation to
facilitate neovascularisation at 14 days after injury [46].
This suggests that endothelial-to-mesenchymal transi-
tion may be temporally regulated during different stages
post-MI. Potentially, this transient mesenchymal activa-
tion after injury may facilitate EC migration and clonal
expansion to revascularise the human heart.

Three key studies have contributed to our understand-
ing of the temporal dynamics of mammalian cardiac
lymphangiogenesis in mice post-MI [48–50]. An
increase in lymphatic vessel density at 7 days post-MI
was observed at the surface of the heart that increased in
diameter by day 14 and continued to expand until day
35 post-MI, where lymphatic shunts were apparent at the
border zone of the infarct and healthy myocardium [48].
Similarly, increased lymphatic vasculature at 4 and
8 days post-MI was reported, which remained elevated
at 42 days post-MI compared with healthy mice [49].
A significant increase is seen in the total number of
LECs and of proliferating LECs at 3 days post-MI,
which persisted until day 7 following injury [50].
Investigations of the remodelling of cardiac lymphatics
reported an ‘explosion’ of lymphatic density in the
infarct scar by 12 weeks post-MI in comparison with
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sham-operated rats [26]. In zebrafish, cardiac lymphatic
vessel growth appeared as early as 40 h post-injury, with
significant expansion observed at 7 days after injury
[51,52]. These studies collectively show expansion of
lymphatic vessels at early stages after MI, which can
persist for prolonged periods, thereby indicating a likely
regulatory role in the regenerative process.

Histopathological analyses have been used to study
lymphangiogenesis in myocardial remodelling in
autopsied hearts fromMI patients [53]. The authors used
the Lodge-Patch scale [54] to characterise 88 lesions,
spanning all seven stages of the scale (Table 1).
Importantly, they found that lymphangiogenesis pre-
cedes angiogenesis post-MI, and that significant angio-
genesis was observed between stages III and IV, during
which cardiomyocyte necrosis was observed. Similarly,
in the rat mesentery, angiogenesis was found to precede
lymphangiogenesis after an inflammatory stimulus [55].
Furthermore, the angiogenic effect of VEGF-C was
attenuated in the presence of an expanding lymphatic
network in the rat mesentery [56]. In particular,

Figure 1. Schematic overview of the temporal cardiac regeneration in mice after myocardial infarction. Top panel indicates the key for the
schematic and graphical representation of injured/regenerating heart in mice.

Table 1. The seven stages of histopathological change after
MI – Lodge-Patch scale.

Stage Description

I Earliest changes where stretching and waviness of
myocardial fibres are observed and these myocytes have
eosinophilic cytoplasm and pyknosis

II Coagulation necrosis of cardiomyocytes with haemorrhage
or neutrophil infiltration, but without CD68+

macrophages
III Coagulation necrosis of cardiomyocytes with infiltration of

CD68+ macrophages in addition to neutrophils
IV Early stage of granulation in which fragmented myocytes

with coagulation necrosis, many CD68+ macrophages, a
few neutrophils, and fibroblasts are found

V Mature granulation tissue with CD68+ macrophages and
fibroblasts, but without necrotic myocytes or neutrophils

VI The stage of fibrosis with abundant myofibroblasts positive
for smooth muscle actin, in which the interstitium is
weakly stained blue by Azan–Mallory throughout the
lesion

VII The lesion is replaced with scar tissue with a decrease
of myofibroblasts and uniformly stained blue by
Azan–Mallory

Mechanisms regulating valscular and lymphatic regeneration 669

© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2023; 260: 666–678
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


endothelial proliferation and the number of branch
points in the blood vasculature were reduced. These
studies suggest a regulated temporal relationship
between neovascularisation and lymphangiogenesis
pathways following MI. Whether strategies to augment
blood vascular and lymphatic responses by targeting
common regulatory mechanisms support myocardial
regeneration remains to be determined. However, it is
imperative to establish the molecular orchestration of
these events to inform future strategies.

Pre-clinical studies of neovascularisation in the
heart after MI

Following MI, most processes regulating the activation
of vessel growth and vascular remodelling are impaired
by the deleterious microenvironment characterised by
fibrosis, inflammation, hypoperfusion, and inhibition of
angiogenic and regenerative programmes [57]. Thus,
targeting vascular homeostasis (e.g. hypoxia-related path-
ways, immune-inflammatory balance, and haemodynamic
forces) and stimulating neovascularisation could be appro-
priate for the restoration of functional vascular networks in
the ischaemic heart [57,58].
Since endogenous pathways in the adult heart cannot

support cardiac regeneration after MI alone, there is a
rationale to bolster intrinsic neovasculogenic signals
through the administration of exogenous pro-angiogenic
factors (i.e. growth factors, microRNAs, modified RNA,
exosomes, proteins) [8,59–61]. Indeed, several proof-of-
concept pre-clinical studies have shown the potential
benefit of this strategy. For example, intramyocardial
injection of synthetic modified RNA encoding human
VEGF-A stimulated expansion of epicardial cells and
directed their differentiation towards an endothelial
lineage [62]. This resulted in enhanced myocardial perfu-
sion and improved survival in a mouse MI model [62].
Lentiviral ETV2 (ETS variant transcription factor 2)
delivery into murine infarcted hearts upregulated the
expression of pro-angiogenic, anti-fibrosis, and anti-
inflammatory factors [61]. A novel population of cardiac
interstitial cells named telocytes was shown to facilitate
cardiac angiogenesis and regeneration after MI by
inhibiting the apoptosis of cardiac microvascular ECs
[63]. Cardiac telocyte-derived exosomes targeted and
silenced the cell death inducing p53 target 1 (Cdip1)
gene, thus reducing activated caspase-3 [63]. It was
suggested that the promotion of EC survival and sup-
pression of apoptosis could aid long-term therapeutic
cardiac angiogenesis. Five-week treatment with
thymosin-β4 in mice subjected to MI prevented cardiac
rupture and improved cardiac function with significantly
ameliorated left ventricle dilation, reduced cardiac
fibrosis, and an enhanced capillary density/angiogenic
response [64]. Adeno-associated virus (AAV) 9-mediated
delivery of the transcription factor zinc finger E-box-
binding homeobox 2 (Zeb2) in the infarcted murine heart
induced the release of pro-angiogenic factors, thymosin-β4

and prothymosin, and contributed to improved cardiac
repair and function by stimulating angiogenesis [65].
These findings revealed beneficial mediators of angiogen-
esis which may offer potential therapeutic opportunities
for patients with MI.

Reactivation of developmental gene programmes as
a therapeutic approach in adult cardiovascular
disease

The hypothesis that genes expressed during embryogen-
esis may be reactivated and repurposed to initiate tissue
regeneration is gaining traction [66]. Indeed, in the adult
zebrafish heart, embryonic epicardial genes, including
raldh2 and tbx18, were shown to be reactivated follow-
ing injury and promoted cardiomyocyte proliferation
and myocardial regeneration [67–69]. Developmentally
activated epicardial-derived cells facilitated regeneration
by invading and revascularising the new myocardium
via fibroblast growth factor (Fgf ) signalling [68]. Injury-
stimulated epicardium and endocardium contributed to
cardiac regeneration by providing guidance cues and
VEGF-A signalling to induce coronary revascularisation
and provide a scaffold to support cardiomyocyte
replenishment [51,70].

Foetal gene reactivation in heart injury and disease
has also been shown to occur in other cardiac cell types
[71]. Wilms’ tumour 1 (Wt1), an essential gene for
normal heart development during embryogenesis, is
activated in the coronary vasculature after cardiac dam-
age in adult zebrafish [72] and rats [73]. The epicardium
is normally quiescent in the murine adult heart, but in
response to injury stimuli, quiescent lineages can be
reactivated to re-express embryonic developmental
genes, i.e. Wt1, T-box factor 18 (Tbx18), transcription
factor 21 (Tcf21), and retinoic acid-synthesising enzyme
(Raldh2), in an attempt to repair and revascularise the
ischaemic heart [74–76]. The injury-stimulated adult
mouse epicardium recapitulated foetal epicardial prop-
erties and promoted proliferation of epicardium-derived
cells from 3 days to 2 weeks after MI, which then dif-
ferentiated into mesenchymal cells. These cells modu-
lated myocardial injury and supported angiogenesis by
secreting paracrine factors [77]. One study showed that
de novo capillary network formation in the infarct border
zone and necrotic infarct core after MI in adult mice was
formed by cells originating in the endocardium and
coronary sinus. Thus, the reactivated epicardium appears
to support neovascularisation by directionally promoting
outgrowth of vessels toward the infarcted zone [78].
Together, these studies highlight the exciting potential
of reactivation of foetal genes in the adult heart after MI,
and improved in-depth knowledge will be crucial to
inform new therapeutic strategies.

Importantly, care must be taken. An aberrant expres-
sion of foetal genes has been linked to maladaptive
changes in cardiac function in the adult failing heart.
The ventricular re-expression of some foetal genes,
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including atrial and brain natriuretic peptide, isoforms of
contractile proteins, foetal-type cardiac ion channels,
and some smooth muscle genes, is thought to be associ-
ated with cardiac remodelling in response to pathologi-
cal stress [79]. Indeed, foetal gene programmes are
frequently used as biomarkers of cardiac hypertrophy
and HF in pre-clinical models [80]. In addition, several
foetal genes, e.g. limb-bud and heart (Lbh), frizzled
receptor-2 (Fzd2), fibulin-1 (Fbln1), and tenascin C
(Tnc), were identified to be reactivated in cardiac ECs
during myocardial remodelling and HF [81]. It is highly
feasible that the re-expression of developmental genes in
adults requires precise timing and regulation, i.e. if
sustained or dysregulated it may progress to pathological
changes [82]. Interestingly, the reparative process in
adult hearts is correlated with high and robust expression
of inflammatory and fibrotic genes, whereas the injured
foetal heart demonstrated diminished inflammatory and
fibrotic responses leading to complete cardiac regeneration
[83]. Therefore, future research should focus on tempo-
ral regulation of reactivated developmental genes, as
well as their capacity to minimise cardiac remodelling
and fibrosis.

Pre-clinical studies for lymphangiogenesis in the
heart after MI

The VEGF family members are key regulators of angio-
genesis and lymphangiogenesis [56,84]. VEGF-C and
VEGF-D are increased in the infarcted heart at both early
and late stages of MI in humans [85]. They are known to
drive endogenous lymphangiogenic responses post-MI
by promoting lymphatic capillary expansion. In addi-
tion, low VEGF-C is an independent predictor of all-
cause mortality in patients with suspected or known
coronary artery disease [86]. Therefore, VEGF-C has
been a key focus of lymphangiogenesis studies after MI.

Several rodent studies have reported a therapeutic
benefit of VEGFR3-selective VEGF-C gene or protein
therapy to drive lymphangiogenesis and improve cardiac
function post-MI. One study utilised an LEC-specific
VEGF-C, VEGF-C156S, which acts specifically via the
VEGFR2 receptor, and augmented the lymphangiogenic
response to MI and promoted immune cell clearance
[48]. Notably, left ventricular ejection fraction (LVEF)
was improved 14 and 21 days post-MI following VEGF-
C156S treatment. Therapeutic VEGF-C improves clear-
ance of acute inflammation by trafficking immune cells
towards draining mediastinal lymph nodes [11]. Delivery
of a VEGFR-3 selective ligand, VEGF-CC152S, in a rat MI
model showed reduced cardiac hypertrophy and atten-
uation of pre-collector remodelling [26]. Studies
utilising AAV delivery of Vegfc or intramyocardial
VEGF-C delivery did not report effects on infarct size
or significant functional improvement [26,87],
although lymphangiogenesis and angiogenesis were
not quantified in these studies.

A recent study challenged the impact of VEGF-C on
coronary lymphangiogenesis [88]. The effects of lym-
phatic or vascular EC-specific loss of VEGFR3, and
global loss of VEGF-C and VEGF-D ligands on cardiac
function post-MI in mice were studied. LVEF 2 weeks
post-MI was not impaired by loss of lymphatic vessel
growth and the authors postulated that post-MI targeting
of lymphangiogenesis may thus fail as a therapeutic
modality. However, while this study implies that endog-
enous lymphangiogenesis mediated by VEGF-C signal-
ling may be insufficient to ameliorate cardiac function, it
does not consider the therapeutic potential of
augmenting the endogenous lymphatic response to myo-
cardial ischaemia, i.e. through exogenousmeans as dem-
onstrated in [48,50].

Other factors which promote lymphangiogenesis
post-MI

Adrenomodulin (AM) is a cardioprotective epicardial-
derived factor [89] required for proper cardiovascular
and lymphatic network development in mice [90]. AM
was increased in response to cardiac injury, includingMI
[91], and drives lymphangiogenesis via connexin-43
[92]. Modulation of AM represents a new therapeutic
avenue to improve myocardial oedema after cardiac
injury.
Apelin plays a key role in lymphatic development,

cardiac contractility, angiogenesis, and lymphangiogenesis
[93]. After MI, apelin-knockout mice showed increased
VEGF-C and VEGF-D with hyperplasia and leaky lym-
phatic vasculature [94]. Overexpression of apelin was suf-
ficient to restore a functional lymphatic vasculature and to
reduce ECM remodelling and inflammation [94].
Furthermore, apelin and the apelin receptor were exclu-
sively expressed on newly formed lymphatic vessels after
MI [94].

Multi-omic approaches to inform our
understanding of neovascularisation and
lymphangiogenesis

Advances in high-throughput single cell/nuclei and
spatial omic technologies have transformed our ability
to probe the complexity of disease, including MI. The
molecular and cellular identities of the heterogeneous
cell types that constitute the heart have been thor-
oughly examined using these technologies in develop-
mental, adult, and diseased states [95-97]. The single-cell
omics field is rapidly evolving. Genomic, transcriptomic,
epigenomic, metabolomic [98], and proteomic
approaches continue to undergo exponential scaling in
throughput and resolution, accompanied by state-of-the-
art tools for in-depth unbiased integrated analyses and
novel target discovery.
Atlases of the healthy human [99–101] and mouse [82]

heart have been generated (Table 2). Unexpectedly, the
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proportion of ventricular cardiomyocytes was higher in
human female hearts and showed a negative correlation
with fibroblasts compared with males [100]. However,
another study did not report sex-specific differences in the
proportion of atrial and ventricular cardiomyocytes in
the human heart [99], which may reflect smaller sample
sizes. Furthermore, atrial and ventricular cardiomyocyte
populations showed transcriptional differences that
indicated different developmental origins and chamber-
specific specialisation [100]. Similarly, distinct transcrip-
tional profiles of atrial and ventricular cardiomyocytes
and in particular greater transcriptional differences
between the left atrium and ventricle than the right atrium
and ventricle were reported, with 2,058 and 1,134 differ-
entially expressed genes, respectively [99]. Genes with
unexplored roles in cardiomyocyte function were identi-
fied in this chamber-specific differential analysis [99].
For example, HAMP, previously known for iron export
activity, was present in 18.3%of right atrium cardiomyocytes
compared with other heart chambers. These studies exem-
plify the power of single nuclear and cell sequencing to
gain novel insights into the cellular and transcriptional
diversity of the human heart.
Other sequencing projects have focused on the het-

erogeneity and dynamics of one cell type, e.g. ECs
[47,108], immune cells [118], and fibroblasts [109]. An
analysis of ECs from 11 mouse organs found that EC
heterogeneity was predominantly attributed to tissue
type, rather than vessel type [108], similar to the
Tabula Muris Consortium data that ECs mainly cluster
by tissue type of origin [101]. However, capillary ECs
had fewer markers that were conserved across tissues,
suggesting that capillary ECs show phenotypic variation
that is more tissue-type-dependent in mice [108]. The
authors suggested that this might indicate a greater plas-
ticity of capillary ECs to adapt to tissue microenviron-
ments. In addition, angiogenic and proliferating ECs
were identified in the healthy human heart, although in
low numbers [108]. Whether this EC phenotype repre-
sents a baseline on the spectrum of regeneration requires
further examination.
The cardiac EC transcriptome has been examined in

ischaemic injury. Single-cell sequencing of Pdgfb-
lineage cardiac VECs from mice revealed heterogeneity
in healthy and infarcted hearts [47]. Specifically, ten EC
states with distinct expression signatures were reported
with predicted functions in proliferation, cardiac and
ECM remodelling, among others. Furthermore, a
multi-species meta-analysis of coronary EC data from
scRNA-seq studies in the healthy and injured mouse and
human hearts annotated injury-associated temporal
shifts of the EC transcriptome [119]. Differentially
expressed genes in the inflammatory, angiogenic, and
vascular maturation phases of MI were identified. This
EC meta-atlas, CrescENDO (http://www.crescendo.
science), a searchable app for researchers, exemplifies
the value of such data integration.
Recent work implemented a multimodal omics

approach using single-nucleus RNA-sequencing, single-
cell chromatin accessibility sequencing (snATAC-seq)Ta
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and spatial transcriptomics to build a spatial multi-omic
map of human MI [115]. The integration of these data
enabled evaluation of cell type compositions at great
resolution and identified signatures distinct to pathologi-
cal sites of injury and remodelling [115]. To exemplify, in
ischaemic regions, a reduction in capillary ECproportions
was accompanied by an increase in venous ECs. In this
way, the expertise of pathologists, scientists, and bioinfor-
maticians can be combined to create essential reference
resources for research that give high resolution to pathol-
ogy. Such approaches will undoubtedly inform the trans-
lational research landscape and feed into clinical
intervention approaches.

Clinical strategies for lymphangiogenesis and
angiogenesis

Based on the aforementioned pre-clinical studies and
increasing understanding of the innate regenerative
mechanisms of cardiac tissue and vasculature [22], there
is great opportunity to exploit this new knowledge to
develop new effective clinical strategies. Moreover,
neovasculogenesis and lymphangiogenesis are plausible
targets for therapeutic intervention after MI. A number
of different approaches are in development or have been
used in clinical studies to treat patients with cardiovas-
cular disease, e.g. administration of stem and progenitor
cells, stromal cells, extracellular vesicles and exosomes,
growth factors, non-coding RNAs, episomes, gene ther-
apies, biomaterials, and tissue engineering products
[120]. However, to date, most studies have targeted
inflammation, infarct size, and modulation of ventricular
remodelling. In addition, although most of these studies
demonstrated safety in humans, there was significant
variability in the efficacy, and significant prolonged
clinical improvements were rarely seen. However,
inconsistency can be observed in many variables asso-
ciated with study design and the clinical end-points
evaluated, which may be a source of the conflicting
results observed to date.
Strategies for cardiovascular regeneration include

administration of exogenous factors, such as cells,
implants, grafts, or tissues to stimulate regenerative
responses and replace damaged myocardial tissue, and
ways to enhance endogenous regenerative responses
[120]. Trials modulating the angiogenic response in
patients with coronary heart disease, involving VEGF
and fibroblast growth factor, have not yet yielded
expected cardiac outcomes [121,122]. VEGF-A has
emerged as a promising angiogenic intervention strat-
egy. The safety of therapeutic angiogenesis was exam-
ined in patients with coronary artery disease undergoing
surgical revascularisation using VEGFA165 mRNA ther-
apy. In vivo testing showed enhanced blood flow and
increased cardiac vascular density in animal studies, and
improved cardiac function in pigs undergoing MI
[123,124]. The ongoing EPPICURE phase 2a trial will

assess the efficacy of VEGFA165 mRNA therapy on
cardiac angiogenesis.

Despite the technique of in situ reconstruction of
lymphatic networks using VEGF-C existing for more
than 15 years in pre-clinical animal studies, the transla-
tion of this to clinical trials has been challenging [125].
Pre-clinical methods of VEGF-C delivery that improved
outcomes post-MI include implanted particles, recombi-
nant protein, and viral vectors. While viral vectors are
established in gene therapy clinical trials, other methods
of delivery may be technically challenging to apply to
clinical studies [126].

Plasmid-mediated gene therapy has been a popular
delivery method for treating cardiovascular disease
[127]. A trial for the percutaneous catheter-based gene
transfer of naked plasmid DNA encoding VEGF2
(phVEGF2) to patients with angina reported a reduction
in the Canadian Cardiovascular Society (CCS) angina
class and improved the exercise treadmill test (ETT)
time [128]. This therapy was also associated with
reduced angina in CCS class 3 and 4 patients up to
2 years of follow-up.

Adenoviral delivery of a pro-angiogenic and pro-
lymphangiogenic form of VEGF-D (VEGF-DΔNΔC)
was evaluated for efficacy in patients with refractory
angina [129–131]. Improved myocardial perfusion
reserve was reported at 3 and 12 months after adminis-
tration. However, anti-adenoviral antibodies increased
by 54% in treated patients compared with baseline
[132]. In addition, intramyocardial adenoviral VEGF-
DΔNΔC did not increase the risk for ventricular arrhyth-
mias and may even improve heart rate variability metrics
[133]. In a pilot study, intravenous administration of AM
was given to patients with acute MI before reperfusion
therapy [134]. This showed a significant reduction in
infarct size 3 months after treatment compared with
baseline.

Indeed, there is a significant paucity of clinical studies
that translate the wealth of pre-clinical data on the ben-
efits of angiogenic and lymphangiogenic modulation
into the clinical setting. However, the aforementioned
studies provide an optimistic view for angiogenic and
lymphangiogenic augmentation after MI as a therapeutic
target.

Conclusion

Most research in cardiac regeneration post-MI has his-
torically focused on cardiomyocyte proliferation and
remuscularisation of the myocardium, although the criti-
cal role of both coronary vascular and lymphatic network
regeneration is now indisputable. The disappointing cor-
relation of results from pre-clinical studies to a clinical
setting may be mitigated in future by a better understand-
ing of the full repertoire of cellular responses and mech-
anisms within the complex milieu of the infarcted
myocardium, with a particular focus on temporal dynam-
ics. Specifically, delineating co-regulatory mechanisms,
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such as those associated with coronary neovascularisation
and lymphangiogenesis, may drive the development of
more potent therapeutics to target more than one regener-
ative system. In addition, increasing evidence supports
the value of developmental gene pathway reactivation in
driving regenerative responses in adult heart disease, and
future research in that area may produce significant ther-
apeutic breakthroughs for patients with cardiovascular
disease. Finally, the unprecedented evolution of single-
cell and multimodal omics technologies and integrated
analysis tools provides a unique opportunity for the car-
diovascular research community to align and accelerate
target discovery and validation in an unbiased manner. In
conclusion, the future of ‘bench-to-bedside’ research in
cardiovascular regenerative medicine is bright, and holds
great promise for the treatment and prevention of HF.
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