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High throughput and rapid biological evaluation of small molecules is an essential factor in drug discovery

and development. Direct-to-biology (D2B), whereby compound purification is foregone, has emerged as a

viable technique in time efficient screening, specifically for PROTAC design and biological evaluation.

However, one notable limitation is the prerequisite of high yielding reactions to ensure the desired

compound is indeed the compound responsible for biological activity. Herein, we report a machine

learning based yield-assay deconfounder capable of deconvoluting low yield from low potency to identify

false negatives. We validated this approach by identifying promising SARS-CoV-2 main protease inhibitors

with nanomolar activity that rivaled potency observed from the standard D2B workflow. Furthermore, we

show how our framework can be utilized in a broad, in silico screen to produce compounds of similar

potency as a D2B assay.

Introduction

Direct-to-biology (D2B) in combination with high throughput
screening (HTS) streamlines the target discovery pipeline by
obviating the need for separation and purification. Reactive
chemical fragment and PROTAC design have both
significantly benefitted from this style of HTS.1–4 However,
D2B currently requires some careful experimental design to
limit the noise of crude reactions. For example, reagent
scavengers may be used to remove unwanted reaction
components via filtration, but their application is limited to
select reagents. For common chemistry such as peptide bond
formation reactions, resins to remove residual coupling agent
are commercially available, but this is not universal for all
useful reactions.1 Alternatively, crude reaction mixtures can
be used for biological investigation, however, the reagents
utilized must not interfere with the assay to form false
negatives or false positives.3 Likewise for any byproducts
formed, reaction optimization should be performed to limit
the number of side products.2 Often only higher yielding
reactions are used in assays; lower yielding reactions are not

further investigated due to the confounding effects of lower
yielding reactions in the biological assay. A robust method to
deconvolute the inherent noise of the crude reaction from the
biological activity would increase the scope of high
throughput D2B to a more diverse range of chemistries.

Machine learning (ML) methods have been successfully
applied to predicting a variety of medicinal chemistry
relevant properties including QSAR, IC50 prediction of
purified compounds, and improved docking studies.5–7 The
principal driving force behind these computational
algorithms is identifying and subsequently modelling
correlations between chemical or biological features and
measured outcome. Our hypothesis is that a machine
learning approach can effectively act as a denoising
algorithm – picking out average trends in structure–activity
relationships across chemical space amid noise such as
variations in yield. Prior reports utilizing ML to identify data
outliers, including false negatives, have encompassed a
variety of approaches in the chemical and biological areas.
Clustering algorithms such as principal component analysis
(PCA), k-nearest neighbors (KNN), or hierarchical clustering
are often employed.8–11 These methods allow for visual
identification of outliers, distinguished by their literal
graphical position of lying outside of the algorithmically-
formed, dense cluster centers. Analytical chemistry and
metabolomics have also employed the use of robust
regression and classification models such as support vector
machines (SVMs) and Adaboost to not only accurately model
noisy systems but also to identify these deviating

RSC Med. Chem., 2024, 15, 1015–1021 | 1015This journal is © The Royal Society of Chemistry 2024

a Cavendish Laboratory, University of Cambridge, UK
bDepartment of Chemical and Structural Biology, The Weizmann Institute of

Science, Israel
c Yusuf Hamied Department of Chemistry, University of Cambridge, UK.

E-mail: esk34@cam.ac.uk

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3md00719g

http://crossmark.crossref.org/dialog/?doi=10.1039/d3md00719g&domain=pdf&date_stamp=2024-03-18
http://orcid.org/0000-0003-2687-0699
http://orcid.org/0000-0002-9616-3108
http://orcid.org/0000-0002-2999-0955
https://doi.org/10.1039/d3md00719g
https://doi.org/10.1039/d3md00719g


1016 | RSC Med. Chem., 2024, 15, 1015–1021 This journal is © The Royal Society of Chemistry 2024

Fig. 1 Overview of ML workflow. (A) Graphical representation of the “Swiss cheese”. Hits missed by one model could be caught by the other. (B)
Analysis of a deconvolution plot. Points inside the blue box are true positives (D2B hits). Points inside the teal box are true negatives. Points inside
the orange triangle are potential false negatives.
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datapoints.12,13 However, these detection methods typically
have two defined end points. The first is to validate the
robustness of their data as low outlier levels is indicative of
high-quality data. The second is to treat outliers as unwanted
noise and proceed with outlier removal for clearer modelling
and prospective assessment. We believe that outliers,
specifically false negatives, can be harnessed for further
exploration when used in combination with high throughput
D2B. The false negatives of a screen are molecules which,
due to experimental noise, were deemed poorly performing
in their associated assay, but in reality, are actually
promising lead compounds. Herein, we report a “Swiss
cheese” ML approach that utilizes two distinct ML paradigms
to model confounded crude reaction mixture assay data
(Fig. 1). Their combined predictions allowed for
identification of false negative molecules that would have
been missed in a traditional D2B workflow. Additionally, this
paradigm can be put towards high throughput in silico
screening of vast molecular space to identify new molecular
scaffolds.

Results & discussion

For this investigation, we targeted the SARS-CoV-2 main
protease, Mpro, a non-structural protein that plays a key role
in viral replication. Mpro has been noted by several groups to
be a promising target for drug design due to its importance
in SARS-CoV-2's lifecycle and lack of related homologues in
humans which has resulted in the success of approved SARS-
CoV-2 antiviral treatments, nirmatrevir (Paxlovid) and
ensitrevir (Xocova).14,15 Numerous high throughput assays to
quantitatively measure Mpro inhibition for rapid fragment
screening have been developed.16 We opted for a previously
reported fluorogenic assay which utilizes the synthetic
fluorogenic Mpro substrate, [5-FAM]-AVLQSGFR-[Lys(Dabcyl)]-
K-amide.17

Prior effort from the COVID Moonshot consortium
resulted in the rapid discovery of an orally bioavailable,
nanomolar inhibitor of Mpro, 1, through the use of
crowdsourcing, ML-directed synthetic complexity scores, and
computationally guided structure activity relationship (SAR)
screening. The authors noted the importance of the
isoquinoline motif for Mpro P1 pocket activity, but a high
tolerance of structural variation of the Mpro P2 pocket
binding motifs. This allowed for the simplification of the
original chromane ring to 1's chloro-tetrahydroisoquinoline,
which furnished an N-centered handle for further SAR.
Library-based derivatization of this handle with Schotten–
Baumann sulfomidation resulted in a promising Mpro

inhibitor drug candidate with improved enzymatic inhibition,
antiviral activity, and improved oral bioavailability,
highlighting the importance of this tail.17 We began a further
investigation upon the N-centered handle through the
formation of similarly stable amide bonds with the fast
turnaround of D2B screening, but including low yielding
reactions that would be traditionally discarded. We

hypothesized that ML-guided hit identification would be able
to identify promising scaffolds even in the noisy environment
of low yielding, crude reaction mixtures. Low yielding but
potent compounds will still register as low activity molecules.
To this end, we synthesized a library of derivatives via EDC
mediated peptide bond couplings (Fig. 1B). Given high
throughput D2B is known for peptide bond formations, we
believed this chemistry to be a good test-case for our
deconfounding strategy. Thus, 300 amines were chosen,
coupled to the commercially available Mpro P1, P2 binder,
acid 2, and subjected without further purification or
separation to fluorogenic Mpro assay.

To identify these false negatives, we designed a “Swiss
cheese” ML-based deconfounder. This was achieved by
selecting two distinct ML techniques known to be highly
accurate in molecular property prediction but orthogonal in
their methods of generating predictions. The rationale was
that ML techniques that model with different algorithms
would result in a robust framework more accurate than if just
one or the other was used. Hits missed by one algorithm still
had the potential to be identified by the other. Agreement of
predictions from both models indicated a high likelihood of
experimental reality. A Random Forest regressor and
Gaussian Process regressor were chosen as the two ML “Swiss
cheese” slices (Fig. 1A). A Random Forest is an ensemble
model technique formulated from a collection of decision
trees.18 They encapsulate the “wisdom of crowds” where a
single individual decision tree may be inaccurate, but their
aggregate predictions are quite accurate. This mimics the
well-known phenomenon that individuals can be inaccurate
at guessing the correct answer, but the collective group has
remarkable accuracy. Accurate prediction of compound
solubility, quantitative structure–activity relationships
(QSAR), and toxicity have been achieved with Random Forest
modelling.19–21 Contrastingly, Gaussian Processeses are
based upon Bayesian statistics which predicts a distribution
of functions whose sole restriction is that they pass through
the known (experimental) datapoints. The properties of these
functions are determined via the kernel, which characterizes
the smoothness, periodicity, and shape of the underlying
family of functions. Gaussian Processes have the additional
benefit of predicting value and uncertainty. Intuitively, high
uncertainty of a predicted value occurs when, at that given
input, the range of values from the possible functions
(determined from the kernel and known data points) is high.
Gaussian Processes have accurately predicted lipophilicity,
ADMET properties, and PROTAC potency in prior
reports.6,22,23 Both models are non-parametric, making them
ideal ML models for our “Swiss cheese” framework.

Whilst ML-based regression models that predict IC50

values from pure substrate have been validated numerous
times previously, we believe these methods are less suitable
in the context of D2B.20,24–26 To develop any model that
predicts the IC50 outcomes (values from regression, or active/
inactive from classification) of pure substrate, pure substrate
must first be obtained.27 However, two key features of D2B
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are 1) the utilization of crude, unchromatographed
compound in biological assays and 2) the ability to perform
ultra-high throughput screens on nanogram quantities of
substrate.4 Both of these key features make the traditional
ML IC50 prediction platform incompatible. It would
necessitate several hundred compounds be made on larger
scales to ensure enough material for isolation and
subsequent IC50 evaluation; a slower and less high
throughput method which runs contrary to the goals of D2B.
Thus, we propose that our model, with its capacity for false
negative detection as a consequence of training upon crude
IC50 data, lends itself as a better fit into D2B campaigns.

Deconvolution for false negative identification

We first began by identifying false negatives, these so-called
“hidden gems”. These are compounds which, by nature of their
low yield, have been labeled with low inhibitory activity. In a
traditional D2B workflow, these compounds would be either a)
excluded prior to the assay screening due to their low yields or
b) require some level of scavenger-assisted separation to
normalize the concentration of the potentially active
compounds. Gaussian Process and Random Forest regressors
were individually trained on the experimental Mpro inhibition
data from the 300 crude amides (Fig. 2B, Table S1†). Due to the
conserved nature of the acid, the Morgan fingerprint of the

amine moiety was used as the featurization of each compound.
The predictions for both models, visually, lead to an easy
identification of true positives and true negatives: molecules
that have high yields and high or low activity, respectively.
However, we can also identify potential false negatives (“hidden
gems”): compounds that were determined by to be structurally
represented in the high activity regime, but experimentally
determined to have low yield and low inhibitory activity
(Fig. 1B, S1 and S2†). The top 5 compounds that were
determined to meet the aforementioned criteria (high
predicted activity by both Gaussian Process and Random
Forest, low experimental activity, low yield as determined by
LC/MS) were selected as promising false negatives. These
compounds, 3–7, had reported less than 35% Mpro inhibitory
activity via the fluorogenic assay and a yield under 50%. Of the
five compounds, 4 were able to be synthesized in suitable
purity. Whilst compound 6 was indeed inactivate
(deconvolution failed), compounds 4 and 5 showed high
nanomolar to low micromolar inhibitory activity and 7 and
boasted an IC50 value of 81 nM, ranking it within the top 20
most potent D2B hits (Fig. 3 and S3†). This result showcased
the ability of the “Swiss cheese” framework to find new
promising molecules that would be typically bypassed.
Considering the ease of implementation and the low data
requirement to run the models, we believe it is a low risk, high
reward strategy to augment established D2B pipelines.

High throughput computational deconvolutional screening

Finally, we sought to investigate the potential of our “Swiss
cheese” framework towards in silico screening. A set of 61 814
amines commercially available from Enamine were initially
sourced and screened for structural alerts. Molecules with
more than a single stereocenter were removed to avoid
downstream complications in assessing potency. This
resulted in 58 082 1° and 2° amines which were subjected to
virtual screening by our trained “Swiss cheese” framework to
identify possible amides with potent Mpro inhibition,
irrespective of their potential coupling yield. The top 20
compounds predicted by the “Swiss cheese” to have high
Mpro inhibition were synthesized and assessed (Fig. S4 and
S5†). Of these compounds, 19 were successfully formed in
suitable purity, and 7 of them had nanomolar inhibitory
activity that ranked them in the 96th percentile of hits from
the initial 300 amine screen. This resulted in an increase of
sub 100 nanomolar inhibitors from 12 to 19, a 58% increase
with minimal screening and computational cost.

Notably the structure of the top 2 most potent D2B
compounds, 8 and 9, are remarkably different from the in
silico screen's top two compounds, 13 and 14. Whilst 8 and
9 both contain aniline motifs, typically avoided due to their
propensity to form reactive metabolites,28 this deleterious
functionality is absent in not just 13 and 14, but all the
top 5 predicted most potent compounds. Comparing the
top non-aniline containing D2B hits revealed that this brief
in silico screen resulted in compounds with similar

Fig. 2 Introduction to a new SARS-CoV-2 main protease (Mpro)
inhibitor. (A) Structure of promising crowdsourced Mpro inhibitor. (B)
Workflow for investigation of tunable tail fragment.
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nanomolar Mpro inhibition, at 50 and 52 nM respectively,
compared to 45 nM and 61 nM, highlighting this
framework's capabilities not only in uncovering potent
compounds that would have been discarded in a traditional
D2B pipeline, but also as a valuable high throughput in
silico screening module (Fig. 4).

Conclusion

We have showcased a dual machine learning framework that
can expand the scope of D2B-compatiable reactions by
deconvoluting reaction yield and potency, allowing for low
yielding reactions to be included. The “Swiss cheese”
framework acted as a deconfounder of low yield from low Mpro

inhibition and resulted in the elucidation of three active

compounds previously labeled as inactive. Additionally, we
highlighted the framework's utility in a much broader screen
of over 58000 compounds; it would be challenging to validate
such a number of compounds in a time- and cost-efficient
manner. This in silico screen identified 7 new nanomolar
potent compounds with valuable and non-deleterious
structural motifs. We hope that future D2B and/or in silico
screens can take advantage of this lightweight ML architecture
which can be used in both low and high data environments to
uncover new biologically valuable compounds and motifs.

Data availability

Code for this paper and the associated data can be found at:
https://github.com/wjm41/deconvoluting_low_yield.

Fig. 3 Top validated amides (the amine used in the peptide bond forming reaction shown for clarity) of crude assay inhibition. IC50 values of the
resulting amide shown below each compound. Selection criteria for compounds is listed. (Left panel) Top 5 putative and uncovered false
negatives. (Right panel) Top 5 D2B hits from crude fluorogenic assay results (true positives). Deleterious aniline motif is highlighted in pink.
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