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Abstract

PrecisionMedicine is an emerging approach for disease treatment and prevention that takes into
account individual variability in genes, environment, and lifestyle. Autoimmune diseases are
those in which the body’s natural defense system loses discriminating power between its own
cells and foreign cells, causing the body tomistakenly attack healthy tissues. These conditions are
very heterogeneous in their presentation and therefore difficult to diagnose and treat. Achieving
precision medicine in autoimmune diseases has been challenging due to the complex etiologies
of these conditions, involving an interplay between genetic, epigenetic, and environmental
factors. However, recent technological and computational advances in molecular profiling have
helped identify patient subtypes and molecular pathways which can be used to improve
diagnostics and therapeutics. This review discusses the current understanding of the disease
mechanisms, heterogeneity, and pathogenic autoantigens in autoimmune diseases gained from
genomic and transcriptomic studies and highlights how these findings can be applied to better
understand disease heterogeneity in the context of disease diagnostics and therapeutics.

Impact statement

Precision medicine is an emerging approach for disease treatment and prevention that takes into
account individual variability in genes, environment, and lifestyle. As defined by Christensen et al.
([2009], The Innovator’s Prescription: A Disruptive Solution for Health Care), precision medicine is
provision of care for diseases that can be precisely diagnosed, whose causes are understood, and
which consequently can be treated with rules-based therapies that are predictably effective. Auto-
immune diseases are those in which the body’s natural defense system loses discriminating power
between its own cells and foreign cells, causing the body to mistakenly attack healthy tissues. There
are more than 80 types of autoimmune diseases that affect a wide range of organ systems. These
conditions are very heterogeneous in their presentation and therefore difficult to diagnose and treat.
Achieving precision medicine in autoimmune diseases has been challenging due to the complex
etiologies of these conditions, involving an interplay between genetic, epigenetic, and environmental
factors. However, recent technological and computational advances in molecular profiling have
helped to identify patient subtypes and molecular pathways that can be used to improve diagnostics
and therapeutics. This review discusses the current understanding of the disease mechanisms,
heterogeneity, and pathogenic autoantigens in autoimmune diseases gained from genomic and
transcriptomic studies and highlights how these findings can be applied to better understand disease
heterogeneity. Within that framework, improved diagnostics and targeted therapeutic approaches
may advance toward precision clinical care of patients with autoimmune diseases.
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Introduction

Autoimmune diseases are a diverse group of over 80 diseases,
including rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), multiple sclerosis (MS), ulcerative colitis (UC), and many
others where the immune system attacks the body. While these
diseases are primarily differentiated based on the primary target
organ, they also share common features, including loss of tolerance
and autoantibody production. Within each disease, there is con-
siderable heterogeneity in clinical manifestations and disease pro-
gression, making diagnosis challenging. Furthermore, treatment
options are often limited to general immunosuppressive treatments
with significant toxicity and side effects with a limited number of
targeted treatments. Due to a lack of predictive biomarkers, treat-
ment decisions are primarily made empirically based on clinical
symptoms and limited serological features, such as autoantibodies,
resulting in substantial variation in treatment response. Therefore,
new clinical strategies, rooted in precision medicine, are needed to
accurately predict treatment response, identify novel therapeutic
targets, reduce unexplained clinical variation in treatment, and
improve clinical outcomes for autoimmune diseases.

Precision is the pursuit of being free from error. Precision
medicine is, therefore, the intention to treat each person with as
little error as possible using informed and carefully calibrated
individually guided therapeutics. Determining the best course of
action and moving toward precision medicine in autoimmune
diseases entails tailoring targeted therapeutic approaches to an
individual based on their underlying disease mechanisms often
determined using large-scale molecular profiling and stratification.
In some fields, such as oncology, this is already a reality. For
example, cancer has a strong genetic component, and next-
generation sequencing has led to the extensive use of precision
medicine in oncology to aid diagnosis and treatment decisions.
Patients with estrogen receptor-positive metastatic breast cancer,
for instance, are treated with endocrine therapies (Manohar and
Davidson, 2021), whereas patients who express human epidermal
growth factor receptor-2 (HER-2) are treated with monoclonal
antibodies specifically targeting HER-2 (Goutsouliak et al., 2020).
Engineered chimeric antigen receptor (CAR) T cells that recognize
specific tumor antigens have also been investigated as targeted
individualized therapies for certain blood cancers (Ye et al.,
2018). PD-L1 levels are used to determine patients who would
benefit from PD-1 antagonists. In addition, precision medicine is
used to treat monogenic diseases, such as cystic fibrosis, where
affected individuals are treated according to the underlying muta-
tions in the cystic fibrosis transmembrane conductance regulator
gene (Lopes-Pacheco, 2020).

Precision medicine in autoimmune diseases has been more
challenging due to the complex etiologies of these conditions,
involving an interplay between genetic and environmental factors.
However, recent technological and bioinformatic advances have
helped reveal novel molecular pathways, and characterize disease
heterogeneity, leading to the first biopsy-driven clinical trial
(Humby et al., 2021), paving the way for precision medicine in
autoimmunity. Inspired by the Precision Medicine: Relevance to
Autoimmune Disease Colloquium, organized by the Autoimmune
Association and Dr. Noel R. Rose in 2020, this review discusses the
current understanding of the disease mechanisms, heterogeneity,
and pathogenic autoantigens in autoimmune diseases gained from
genomic and transcriptomic studies and highlights how these
findings can be applied to targeted therapeutic approaches to
improve clinical care of patients with autoimmune diseases.

Resolving patient heterogeneity

Autoimmune diseases are frequently characterized by clinical fea-
tures or autoantibody prevalence; however, these features are het-
erogeneous and often overlap between autoimmune diseases,
hindering precise diagnosis, and early treatment. Therefore, mov-
ing toward molecular diagnostics, which define disease based on
changes in biological molecules, may aid diagnosis, and improve
clinical outcomes of autoimmune diseases. Recently, exome and
genome sequencing have shown promise for identifying pathogenic
genetic variants in cases of rare monogenic diseases (Boycott et al.,
2019), including patients with autoinflammatory diseases
(Kosukcu et al., 2020) such as hereditary fever syndromes. How-
ever, these are the rare exceptions. The genetic causes of most
autoimmune diseases are complex and genetic risk is determined
predominantly by the human leukocyte antigens (HLA) locus,
which has the strongest association to rheumatic diseases. Outside
of the HLA region, which can account for up to 50% of the genetic
risk of a given complex autoimmune trait, hundreds of variants
identified through genome-wide association studies (GWASs) each
have small additive individual effects, making a diagnosis of auto-
immune diseases based solely on genetics currently impossible. In
RA, the number of RA-associated risk alleles weighted by the odds
ratio correlates with disease risk; however, the predictive power of
genetic risk scores is modest and not currently suitable for use in
clinical practice (Karlson et al., 2010; Dudbridge, 2013).

As genetic variants identified by GWAS are common variants
(generally found in 1% or more of the population – a consequence
of study design) and only modestly increase the risk of auto-
immune diseases, rare variants with strong effects may contribute
to the missing heritability of some patients with autoimmune
diseases. For example, following the discovery of mutations in
the TREX1 gene causing the type I interferonopathy Aicardi–
Goutières syndrome, TREX1 variants were identified in up to
0.5–2% of patients with SLE (Lee-Kirsch et al., 2007; Namjou
et al., 2011). More recently, exome sequencing identified two rare
variants in BLK and BANK1 in a subset of patients with SLE that
increased type I interferon (IFN) activity (Jiang et al., 2019). A
recently published paper illustrated the role of rare variants in
TLR-7 in monogenic SLE demonstrating that with more access-
ible and available whole exome and genome sequencing, we will
learn more about the role of rare variants in autoimmune diseases
(Brown et al., 2022). Together, these studies suggest that rare
variants may contribute to the genetic risk and clinical hetero-
geneity of autoimmune diseases. However, the extensive hetero-
geneity within each autoimmune disease suggests that multiple
pathways may contribute to disease; therefore, identifying sub-
groups of patients with shared molecular signatures is the best
avenue to improve the diagnosis and treatment of patients with
autoimmune diseases.

As one example, multiple studies have determined subsets of
patients with SLE using transcriptomic approaches (Lyons et al.,
2012; Banchereau et al., 2016; Toro-Domínguez et al., 2018; Figgett
et al., 2019; Panousis et al., 2019; Andreoletti et al., 2021; Sandling
et al., 2021). Initial investigations found that approximately half of
the patients with SLE exhibit increased peripheral blood expression
of type I IFN-regulated genes, termed the “IFN signature,” associ-
ated with more severe disease (Baechler et al., 2003; Bennett et al.,
2003), suggesting that a subset of patients with SLE may benefit
from therapies targeting the IFN pathway. Consistent with these
findings, the recently approved monoclonal antibody anifrolumab,
which targets the type I IFN receptor subunit 1, is effective in about
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16% of patients with SLE (Morand et al., 2020). However, there are
conflicting reports regarding the effectiveness of stratifying patients
based on IFN gene signatures in clinical trials of type I IFN
inhibition (Khamashta et al., 2016; Furie et al., 2017; Morand
et al., 2020), demonstrating the complexity of the type I IFN
response in SLE and identifying the need for additional stratifica-
tion approaches.

To further refine the IFN signature in SLE, Chiche et al. (2014)
found that three distinct transcriptional IFN groups or modules
were associated with 87% of patients with SLE and that all types of
IFN, not just type I IFN, contributed to the IFN signatures. Import-
antly, patients with SLE could be further stratified based on the
number of active IFN modules (Chiche et al., 2014). In 2016,
Banchereau et al. (2016) confirmed and extended these findings
in a large cohort of pediatric patients with SLE, identifying over-
expression of additional transcriptional modules that correlated
with disease activity and clinical parameters of SLE (Banchereau
et al., 2016). In addition, patients were stratified into seven clusters
based on five immune signatures correlating with disease activity,
including type I IFN-, neutrophil-, and plasmablast-associated
signatures (Banchereau et al., 2016). Using a similar approach,
Toro‐Domínguez et al. (2018, 2019) identified three SLE patient
clusters characterized by a lymphocyte or neutrophil signature that
may respond differently to treatments.

Most transcriptomic studies in SLE use whole blood or bulk cell
input making it difficult to discern the affected cell populations.
Therefore, single-cell analyses may be necessary to identify and
refine molecular clusters in disease-relevant cell state (Perez et al.,
2022). Using single-cell RNA sequencing, Nehar-Belaid et al.
(2020) defined the cellular subgroups that contributed to the IFN
signature in pediatric SLE, including T cells, dendritic cells (DCs),
monocytes, and natural killer (NK) cells. Notably, the clustering of
these cell types revealed six distinct subgroups of patients associated
with disease activity (Nehar-Belaid et al., 2020). In a recent study,
Andreoletti et al. (2021) determined unique subgroups of patients
based on the transcriptional profiles of sorted monocytes, B cells,
CD4+ T cells, and NK cells that correlated with disease activity and
ethnicity. In addition, multi-omic approaches may also improve
patient stratification, as seen in a study byGuthridge et al. (2020), in
which integration of transcriptionalmodules and autoantibody and
soluble mediator profiles identified seven patient clusters with
distinct molecular pathways but similar clinical outcomes. In
another study, Lanata et al. (2019) used clinical features to define
three distinct subgroups of SLE with unsupervised clustering that
was supported by differential methylation patterns and ethnicity.
Several of these studies explore multi-ethnic cohorts. There are
known differences in SLE diseasemanifestations and severity across
different racial and ethnic groups. When exploring biological dif-
ferences across different patient groups, it’s important to note the
potential inaccuracy or lack of specification between self-reported
and genetic-driven subgroups which may contribute to interpret-
ation problems as ethnicity may be more predictive of differences
due to disparities than genetic background (Mersha and Abebe,
2015).

Interestingly, genomic studies have found that autoimmune
diseases have shared genetic associations, suggesting that similar
pathogenic mechanisms may contribute to different autoimmune
diseases (Zhernakova et al., 2009; Richard-Miceli and Criswell,
2012). Indeed, transcriptome and methylome analysis of patients
with seven autoimmune diseases demonstrated four patient clus-
ters that differed in the expression of inflammatory, lymphoid, or
IFN signature (Barturen et al., 2021). Notably, patients with

different autoimmune diseases were found within each cluster
(Barturen et al., 2021). Studies using immunophenotyping (Kroef
et al., 2020; Martin‐Gutierrez et al., 2021) and soluble mediator
profiling (Slight-Webb et al., 2021) also found that patients with
different autoimmune diseases share similar molecular signatures.
Thus, diagnosing patients based on molecular signatures in add-
ition to clinical features may be a key step in moving toward
precision medicine and targeted therapeutics.

Taken together, it becomes clear that autoimmune disorders
comprise a wide spectrum of clinical manifestations. With the use
of genomics, transcriptomics, and othermulti-omic approaches, we
can begin to examine these complex disorders under a magnifying
glass to better define patient heterogeneity and identify targetable
genes and pathways.

Defining the Autoantigenome

As autoimmune disorders are characterized by the body’s response
to self, defining that exact “self” is critical to both treatment and
diagnosis. Autoantibodies, a key component of disease that often
directly contribute to outcomes, provide a window into defining
these self-antigens and peptides. Of course, autoantibodies do not
develop in a vacuum, and certain HLA alleles are strongly associ-
ated with autoimmune diseases (Liu et al., 2021), indicating a key
role for T cell help and antigen presentation in disease pathogenesis.
Understanding and defining the interaction of these three compo-
nents – autoantibodies, HLA alleles, and T cell repertoire – could
identify novel therapeutic targets and molecular diagnostics.

The antibody and T cell repertoires are highly diverse due to
recombination of variable, diversity, and joining gene segments,
followed by somatic hypermutation in B cell receptors, making the
identification of antigen specificity challenging. However, recent
advances in Next Generation Sequencing (NGS) and computa-
tional approaches have enabled large-scale sequencing of antibody
and T Cell Receptor (TCR) repertoires in autoimmune diseases
(Zemlin et al., 2002; Schatz and Ji, 2011; Rechavi and Somech, 2017;
Nielsen and Boyd, 2019; Nielsen et al., 2019).

Anti-citrullinated protein antibodies (ACPAs) that recognize
the posttranslational modification of the amino acid citrulline are a
hallmark of RA and contribute to disease pathogenesis (Kurowska
et al., 2017). Antibodies consist of two heavy- and light-chain pairs,
which both contain antigen-binding domains; therefore, pairing
heavy- and light-chains is necessary to determine antigen specifi-
city (Robinson, 2015). To accomplish this, Tan et al. (2014)
developed a novel DNA barcoding method to sequence heavy-
and light-chain pairs from antibody-producing plasmablasts in
ACPA-positive patients with RA and determined affinity-matured
clonal families of antibodies.Recombinant expressionof 14antibodies
identified four ACPAs with differential targeting of α-enolase, citrul-
linated fibrinogen, and citrullinated histone H2B (Tan et al., 2014).
Additional studies confirmed that ACPAs undergo affinity matur-
ation, resulting in epitope spreading and polyreactivity with other
post-translationally modified proteins (Elliott et al., 2018; Titcombe
et al., 2018; Kongpachith et al., 2019; Steen et al., 2019).

Repertoire analyses of plasmablasts from healthy individuals
with RA-associated autoantibodies demonstrated elevated IgA
responses (Kinslow et al., 2016), suggesting that ACPAs may ori-
ginate from mucosal immune responses. Furthermore, serial ana-
lyses of patients with RA found that ACPAs that persisted over time
were predominantly IgA (Elliott et al., 2018), consistent with con-
tinued mucosal antigen exposure. Therefore, identifying the

Cambridge Prisms: Precision Medicine 3



specific mucosal antigens targeted by these ACPAs may help iden-
tify tolerizing therapies for patients with RA.

Early studies have identified expanded CD4+ T cell clones in the
peripheral blood and synovial tissue of patients with RA (Goronzy
et al., 1994; Ikeda et al., 1996; Schmidt et al., 1996; VanderBorght
et al., 2000; Wagner et al., 2003), including early in the disease
course (Klarenbeek et al., 2012). Phenotypic analysis combining
TCR sequencing and single-cell transcriptomics revealed expanded
memory CD4+ T cell clones with upregulated senescence-related
transcripts, chemokine receptors, and CD5 expression, suggestive
of antigen stimulation and autoreactivity (Ishigaki et al., 2015).
However, the autoantigens targeted by CD4+ T cells in RA remain
elusive.

The HLA-DRB1 RA susceptibility alleles contain five shared
amino acids of the β1 subunit, referred to as the shared epitope,
which is associated with ACPA production (van Gaalen et al., 2004;
Huizinga et al., 2005; Busch et al., 2019). There is also significant
clinical evidence of differential response based on mechanism in
RA patients based on their ACPA/HLA epitope. HLA-DRB1 risk
alleles for RA are associated with differential clinical responsiveness
to abatacept and adalimumab according to the data from a head-to-
head, randomized, single-blind study in autoantibody-positive
early RA (Rigby et al., 2021). GWAS analysis demonstrated that
an amino acid within the P4 pocket of the peptide-binding groove
strongly contributed to the association of HLA-DRB1 and RA
(Raychaudhuri et al., 2012), suggesting that the shared epitope
may allow binding and presentation of citrullinated autoantigens.
Consistent with this hypothesis, antigen discovery analyses using
peptide stimulation or peptide–MHC tetramers revealed Th1 and
Th17 reactivity to citrullinated antigens, including α-enolase,
fibrinogen, vimentin, and aggrecan, in the peripheral blood of
patients with RA (Delwig et al., 2010; Law et al., 2012; Scally
et al., 2013; James et al., 2014; Gerstner et al., 2020). In addition,
T cells specific for citrullinated fibrinogen contribute to the devel-
opment and progression of RA in mouse models (Hill et al., 2008;
Cordova et al., 2013).

Although progress has been made in the identification of auto-
antigens targeted in autoimmune diseases using microarrays, mass
spectrometry, and phage-display assays, these approaches are
limited by the need to prespecify the antigens to be studied. There-
fore, due to the large number and diversity of antibodies and TCRs,
computational methods are needed to predict target antigens from
the TCR or antibody sequence alone. Recent progress has been
made to predict TCR specificity based on the hypothesis that TCRs
that recognize the same antigen share CDR3 sequence motifs. In
two separate studies, Dash et al. (2017) and Glanville et al. (2017)
developed different algorithms (TCRdist – https://tcrdist3.readthe
docs.io/en/latest/ and GLIPH – http://50.255.35.37:8080/, respect-
ively) that clustered TCRs dependent on CDR3 motifs and accur-
ately defined TCR specificity based on these clusters. However,
although these approaches are promising, they are limited by the
availability of pre-existing knowledge of TCR specificities to make
predictions, and large-scale approaches to define these interactions
are required. In a recent study, Zhang et al. (2020) clustered tumor
TCRs based on antigen-specificity using iSMART and identified
novel antigens by integrating TCR clusters, tumor genomics, and
HLA genotypes (Zhang et al., 2020). Therefore, multi-omic
approaches paired with CDR3 clusteringmay also help define novel
antigens targeted in autoimmune diseases.

In terms of precision medicine, a better understanding of the
antigens, TCRs, HLAs, and BCRs driving disease offers a therapeutic
window into these diverse disorders. Tolerizing therapies that target

specific peptides or regulatory CAR-T cells offer a way to directly
suppress autoimmune responses on a patient-by-patient basis.

The path to targeted therapeutics

Recent genomic and transcriptomic approaches have determined
novel pathogenic mechanisms and begun to unravel the heterogen-
eity of autoimmune diseases, revealing potential therapeutic targets
for precision medicine. This section will discuss current work
applying knowledge obtained through genomic and transcriptomic
studies toward precision medicine approaches.

Discovering novel therapeutic targets

Genetic analyses of monogenic autoinflammatory diseases have
been pivotal in identifying druggable targets that are now used in
clinical care (Manthiram et al., 2017). For example, therapies
targeting IL-1, such as anakinra, are approved for the inflamma-
somopathy cryopyrin-associated periodic fever syndrome
(Hoffman, 2009). Genetic studies have also revealed efficacious
therapeutic targets in polygenic autoimmune disorders. Genetic
variation in the Janus kinase family member tyrosine kinase
2 (TYK2), required for type 1 IFN, IL-12 and IL-23 signaling
(Sohn et al., 2013; Burke et al., 2019), is associated with auto-
immune diseases, including psoriasis (Genetic Analysis of Psoriasis
Consortium & the Wellcome Trust Case Control Consortium 2
et al., 2010; Ellinghaus et al., 2012; Tsoi et al., 2012), psoriatic
arthritis (Mease et al., 2022), Crohn’s disease (Franke et al.,
2010), and SLE (Sigurdsson et al., 2005; Graham et al., 2011; Tang
et al., 2015; Lee and Bae, 2016). In phase II and III clinical trials, the
TYK2 inhibitor deucravacitinib (BMS-986165) was more effective
compared to placebo in patients with moderate-to-severe plaque
psoriasis (Papp et al., 2018), and is now approved in theUS, EU, and
other regions. In addition, deucravacitinib is being investigated in
early trials of Crohn’s disease and SLE demonstrating efficacy in
phase II trials in PsA (Mease et al., 2022) and SLE (Morand et al.,
2023). However, with polygenic autoimmune diseases, not all iden-
tified gene variantsmay be effective drug targets. Therefore, moving
beyond individual genes toward gene networks using in silico drug
efficacy screening, such as drug–disease network proximity ana-
lyses (Kim et al., 2020), to predict potential therapies is needed for
drug discovery in autoimmunity. Using this approach, Cordell et al.
(2021) recently identified 56 genetic variants associated with pri-
mary biliary cholangitis in a genome-wide meta-analysis and pre-
dicted several candidate therapies for the disease, including
approved treatments of other autoimmune diseases.

Translating genomics to cell function may also identify poten-
tially targetable pathways. Smillie et al. (2019) created a cell atlas of
UC using single-cell transcriptomics, highlighting the cells that
change in proportions or gene expression compared to healthy
tissues. In addition, mapping UC-associated risk alleles onto the
cell atlas demonstrated enrichment of risk alleles in individual cell
lineages, including M-like cells that exhibited high expression of
multiple risk alleles, providing important information about dis-
ease etiology and molecular pathways (Smillie et al., 2019). There
are several other large-scale efforts to generate single-cell transcrip-
tomic and proteomic datasets in RA and SLE as well as other
autoimmune diseases that are able to elucidate cell type specific
disease associated genes and pathways (Zhang et al., 2019). How-
ever, comprehensivemulti-disease cell atlases are needed to provide
further insights, which require the integration of multiple large-
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scale studies and data sets that may have been collected under
different conditions. To avoid confounding variables between stud-
ies, multiple computational approaches have been created to
remove batch effects (Butler et al., 2018; Haghverdi et al., 2018;
Hie et al., 2019; Korsunsky et al., 2019; Polański et al., 2020; Tran
et al., 2020). As one example, the algorithm Harmony (Korsunsky
et al., 2019) was used to integrate single-cell transcriptomic profiles
from multiple disease datasets, revealing a CXCL10+CCL2+
inflammatorymacrophage phenotype in the tissues of patients with
RA, Crohn’s disease, UC, and COVID-19 (Consortium et al., 2021),
suggesting that the same pathway may be targeted in distinct
diseases.

Antigen-specific therapies

Identifying antigens targeted by antibodies and T cells in auto-
immune diseases will allow for the development of antigen-specific
therapies, aiming to restore immune tolerance in autoreactive
lymphocytes while maintaining overall immune surveillance to
infections and cancer. Tolerogenic DCs have been tested in early
phase clinical trials for multiple autoimmune diseases, such as RA,
Crohn’s disease, and MS (Phillips et al., 2017). In a recent phase 1b
trial, autologous tolerogenic DCs loaded with myelin-derived anti-
gens and aquaporin-4 were analyzed for efficacy in MS and neu-
romyelitis optica spectrum disorders (NMOSDs; Zubizarreta et al.,
2019). The tolerogenic DC therapy was well-tolerated and induced
IL-10 production by peptide-stimulated cells and a trend toward an
increase in regulatory T cells, compatible with tolerance induction
(Zubizarreta et al., 2019).

The therapeutic potential of polyclonal regulatory T cells has
also been demonstrated in some autoimmune diseases, including
MS (Kohm et al., 2002); however, the effects are mostly modest,
possibly because of nonspecific regulatory T cells (Raffin et al.,
2020). Therefore, based on knowledge acquired from T cell ther-
apies in oncology, another approach is the generation of autologous
antigen-specific regulatory T cells by transfecting TCRs or CARs
for autoantigens. Kim et al. (2018) transduced human regulatory T
cells with a myelin-basic protein-specific TCR isolated from anMS
patient and demonstrated that the MBP-specific regulatory T cells
suppressed MBP-specific effector cells in vitro and ameliorated
disease in a mouse model of MS. Therefore, although still in the
preclinical phase, antigen-specific regulatory T cells show promise
for the treatment of MS.

Computational drug repurposing

Identifying new uses for approved drugs, or drug repurposing, will
also benefit precision medicine in autoimmune diseases, as con-
ventional drug discovery is often costly and time consuming
(DiMasi et al., 2003). However, traditional drug repurposing relies
on high-throughput screening technologies that can also be costly;
therefore, novel methods are required to expand drug repurposing
efforts. Sirota et al. (2011) developed a systematic computational
approach to predict disease–drug relationships by comparing gene
expression signatures of diseases with those of FDA-approved
drugs. This approach identified a novel therapeutic association
of an antiepileptic drug, topiramate, with inflammatory bowel
disease that was efficacious in a rodent model of colitis (Dudley
et al., 2011).

Caveats and conclusions

Autoimmune disorders are a highly heterogeneous class of con-
ditions. Even within a single clinically diagnosed condition, such
as SLE, the underlying causes and manifestations are highly
variable. To better treat these disorders and transition toward a
precision medicine framework, the last decade of research has
used in-depth genetic and genomic studies to better resolve
patient heterogeneity and identify the autoantigenome. The pro-
gress described in this review represents a substantial leap forward
in both our understanding of these complex diseases and their
potential treatments.

Although these are not the focus of the current review, there are
several additional considerations that are important to note. For
complex autoimmune diseases, environment, the interaction of
genetics and environment as well as dietary, and lifestyle factors
play an important role in affecting disease pathogenesis, progres-
sion, and treatment response. For instance, a recent study has
shown that oral mucosal breaks trigger anti-citrullinated bacterial
and human protein antibody responses in RA demonstrating the
role of pathogens and environment in the disease (Brewer et al.,
2023). Studies focusing on molecular pathological epidemiology
research, which can investigate those factors in relation to molecu-
lar pathologies and clinical outcomes have been explored for other
conditions such as cancer (Hamada et al., 2017; Hughes et al., 2017;
Ogino et al., 2018). It is also important to note that the majority of
existing studies in molecular profiling, genomics and genetics of
autoimmune diseases have been carried out in patients of European
background. If precisionmedicine is truly the goal, there is a need to
explore social determinants of health in the context of disease
progression and treatment response in diverse populations. More
extensive studies are needed to explore the combination and inter-
action of the molecular, clinical, social, and environmental factors
in diverse patient populations to achieve precision medicine for
autoimmunity.

From using genetics to identify new gene targets, to using single-
cell genomics to identify cellular and molecular subsets of disease,
to computational approaches that aim tomerge all this together and
repurpose medicine in a targeted fashion, precision medicine in
autoimmunity is an endeavor that will continue to yield enormous
insights and lead to better – and more importantly – error-free
therapeutics.
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