Abstract
Cardiovascular diseases (CVDs) are complex in their aetiology, arising due to a combination of genetics, lifestyle and environmental factors. By nature of this complexity, different CVDs vary in their molecular mechanisms, clinical presentation and progression. Although extensive efforts are being made to develop novel therapeutics for CVDs, genetic heterogeneity is often overlooked in the development process. By considering molecular mechanisms at an individual and ancestral level, a richer understanding of the influence of environmental and lifestyle factors can be gained and more refined therapeutic interventions can be developed. It is therefore expedient to understand the molecular and clinical heterogeneity in CVDs that exists across different populations. In this review, we highlight how the mechanisms underlying CVDs vary across diverse population ancestry groups due to genetic heterogeneity. We then discuss how such genetic heterogeneity is being leveraged to inform therapeutic interventions and personalised medicine, highlighting examples across the CVD spectrum. Finally, we present an overview of how polygenic risk scores and Mendelian randomisation can foster more robust insight into disease mechanisms and therapeutic intervention in diverse populations. Fulfilment of the vision of precision medicine requires more exhaustive leveraging of the genetic variability across diverse ancestry populations to improve our understanding of disease onset, progression and response to therapeutic intervention.
Keywords: ancestry, cardiovascular disease, genetics, therapeutics, precision medicine
Impact statement
This review discusses how the genetic basis of cardiovascular disease (CVD) can differ across different ancestries. It focuses on common CVDs such as coronary artery disease (CAD), stroke and their modifiable risk factors (body mass index, type 2 diabetes mellitus, high cholesterol and high blood pressure). It describes how genetic differences, or heterogeneity, can lead to different molecular mechanisms driving CVD across different ancestries. It then discusses how such heterogeneity could be used to improve the early diagnosis of CVD and inform the development of new CVD therapies. For instance, disease mechanisms potentially independent of atherosclerosis may drive CAD in East Asian populations, whereas certain molecular mediators may represent therapeutic targets for stroke that are specific to African ancestry individuals. The review provides insight for researchers, clinicians, funders and healthcare policymakers to understand the importance of genetic heterogeneity across ancestries in the prevention, prediction and treatment of CVD. It highlights instances of genetic ancestry influencing an individual’s response to cardiovascular medication and argues that the practice of precision medicine requires a greater understanding of such influences. Although focused on CVD, the content will pertain to many other disease areas and will be of interest to anyone involved in the application of genomics to clinical medicine.
Introduction
Over the last decade, the field of genetics has rapidly advanced and contributed to understanding of pathogenic mechanisms underlying rare and complex diseases (Gurdasani et al., 2019). Genetics is also increasingly leveraged to successfully identify novel drug targets (Ochoa et al., 2022). Genome-wide association studies (GWASs) and next-generation sequencing methods have been successful in identifying risk loci for disease. However, most of these studies have predominantly been conducted in populations of European ancestry (Fatumo et al., 2022). In fact, as of 2021, 86% of genomic studies have been carried out in individuals of European descent (Fatumo et al., 2022). Disparities in health status and outcomes between different ancestry populations are increasing, and a lack of diversity in genetic research may exacerbate inequities (Bentley et al., 2017). Leveraging genetic data from ancestrally diverse populations can provide deep insights into specific pathogenic variants that differ across population groups (Bentley et al., 2017; Martin et al., 2017; Atutornu et al., 2022).
The genetic basis of disease is classified into Mendelian disorders and complex polygenic diseases. Mendelian diseases are caused by single gene alterations, whereas complex diseases are caused by several genes, each of which play a small, additive role in increasing disease risk. Irrespective of the relative contribution of genetics and environment to traits and diseases, ‘heterogeneity’ is observed in disease outcomes and plays a role in their mechanism (Bomprezzi et al., 2003). Woodward et al. (2022) define heterogeneity as disparities that exist at different taxonomic levels such as cells, tissues and phenotypes. Some of these disparities could either be directly accounted for, and are measurable, whereas others are not (Woodward et al., 2022). In population health, heterogeneity is an inevitable phenomenon that pertains to numerous epidemiological concepts, including disease aetiology, missing heritability and treatment resistance (Woodward et al., 2022). It is important to address this to facilitate tailored disease interventions in multi-ancestry and admixed populations.
In this review, we highlight findings from genetic research of cardiovascular disease (CVD) outcomes: coronary artery disease (CAD) and stroke, and their modifiable risk factors (body mass index [BMI], type 2 diabetes mellitus [T2DM], lipids and hypertension in diverse ancestry population groups). These risk factors were prioritised on the basis of their significant contribution to CVD burden across diverse populations (Yusuf et al., 2020; Fawzy and Lip, 2021; Shah et al., 2021; Wang et al., 2021). Rather than systematically search through all previously published work in this area, we instead prioritise studies that highlight the insights that can be gained by an appreciation of genetic heterogeneity across populations of diverse ancestry groups. Such understanding has the potential to improve our overall ability to assess disease risk, and thus serves as a conduit between precision medicine and public health for improving the well-being of individuals and populations (Wehby et al., 2018; Roberts et al., 2021) (Figure 1).
Figure 1.
Precision medicine approaches in cardiovascular disease (CVD) and challenges to overcome. Multi-ancestry genetic studies play a pivotal role in advancing precision medicine. Comparisons of ancestry-specific and trans-ancestry GWAS findings provide insights into CVD aetiology and its heterogeneity. Secondary analyses of GWAS data, notably using Mendelian randomisation methods, provide additional insights into causal relationships between cardiometabolic risk factors and CVD outcomes. This allows for risk factor prioritisation and optimised risk stratification in diverse ancestry population groups. Integrating ancestry-specific GWAS associations in polygenic risk scores allows for improved predictability of CVD outcomes. Together these approaches contribute to the improved primary prevention, diagnosis and prognosis and targeted therapeutics of CVD. Figure created using BioRender.com (2019).
Genetic heterogeneity
Genetic heterogeneity can be defined as genetic variation that results in the same (or similar) phenotype(s) (Woodward et al., 2022), where a phenotype is an organism’s set of observable characteristics or traits. Genetic heterogeneity can contribute substantially to complex disease phenotypes. Two different types of genetic heterogeneity are well described in the literature: allelic heterogeneity, which arises when different alleles at the same genetic locus result in the same phenotype, and locus heterogeneity, which arises when mutations in different loci lead to the same phenotype (Scriver, 2006; Woodward et al., 2022).
Genetic heterogeneity and ancestral differences in CVD outcome and risk factors
Much attention is currently being paid to how genetic factors may contribute to disparities in health and disease, although the limitations of commonly used ethnic descriptors in explaining the genetic structures in diverse populations have been discussed (Wilson et al., 2001). This begs the question of how race is defined within the scope of genetics. In population studies, the terms ‘race’ and ‘ethnicity’, which take into account cultural, linguistic, biological and geographical aspects, are frequently used interchangeably (Sankar and Cho, 2002), and they also allude to an individual’s phenotypic features (Peterson et al., 2019). Ancestry connotes an individual genetic ancestry as evidenced by the DNA passed down and through generations in a specific group (Peterson et al., 2019).
We highlight below current progress in the genetic study of CVD aetiology for diverse ancestry groups. We prioritised CAD, stroke and modifiable risk factors (BMI, T2DM, lipids and hypertension) in selected ancestry groups. While other CVD endpoints and modifiable risk factors, these were selected according to their burden and contributions to CVD (Wehby et al., 2018; Roth et al., 2020).
Coronary artery disease
CAD is a common polygenic disease, and is a leading cause of morbidity and mortality globally (GBD 2015 Mortality and Causes of Death Collaborators, 2016). CAD typically causes myocardial ischaemia due to narrowing or blockage of the coronary arteries that feed into heart, leading to myocardial infarction. Development of arrhythmia, heart failure and death are also observed consequences of CAD. CAD is known to be highly heritable (Marenberg et al., 1994) with more than 160 CAD susceptibility loci described (Nikpay et al., 2015; van der Harst and Verweij, 2018). Advances in the field of genetics have not only revealed novel CAD disease pathways, but have also enabled the quantification of individual genetic risk and the development of new therapeutic agents (Miyazawa and Ito, 2021). In a recent GWAS for CAD (Koyama et al., 2020), Koyama et al. used the WGS data of 4,930 Japanese individuals and created a reference panel containing disease-specific haplotype (physical grouping of genomic variants usually inherited together) information for 1,782 patients with CAD for imputation. They identified an association between CAD and a missense mutation in RNF213, which has been reported as a causative gene of Moyamoya disease. Here, the genetic investigation of disease via WGS and GWAS efforts in a Japanese population revealed a common genetic risk factor between CAD and Moyamoya disease, providing novel mechanistic insight into CAD. More specifically, this offered insight into the pathological features of Moyamoya disease in relation to atherosclerosis (Houkin et al., 2012). Findings from the Japanese populations have provided evidence of disease mechanisms for CAD potentially separate to that of atherosclerosis, thereby highlighting the heterogeneity in disease mechanisms underlying CAD. It remains to be studied whether the mechanism is specific to East Asian populations or if this translates to other ancestries.
Stroke
Stroke is another leading cause of disability and death worldwide, exerting a significant strain on healthcare systems (GBD 2017 Causes of Death Collaborators, 2018). There are considerable disparities in stroke incidence, subtype and prognosis between those of European and African ancestries, with established stroke risk facts explaining only about half of the variation (Prapiadou et al., 2021). In some studies conducted in the United States, African ancestry individuals aged between 45 and 64 years have a threefold higher risk of stroke compared with non-Africans (although this difference is attenuated by age 85) (Rosamond et al., 1999; G. Howard et al., 2011; V. J. Howard et al., 2011). The disparity observed in this study is ascribed to an increased incidence in African ancestry individuals rather than decreased survival. While many studies have documented interracial differences in the incidence of stroke, the reasons for these differences have not been fully explained, and therefore the identification of ancestry-specific risk factors is important for the treatment and management of stroke. In a study by Harriott et al. (2015), the rs11172113 variant, which mapped on to the LRP1 gene, was associated with stroke among African Americans, but this result failed to replicate in a non-Hispanic White cohort. LRP1 plays a key role in the liver by removing atherogenic lipoproteins and other proatherogenic ligands from circulation (Chen et al., 2021). Anti-P3 (Gly1127-Cys1140) antibodies (Abs) that block the LRP1 (CR9) domain have been demonstrated to stop LRP1-mediated aggregated-LDL (aggLDL) internalisation and aggLDL-induced LRP1 upregulation, preventing foam cell formation in human macrophages and vascular smooth muscle cells (Costales et al., 2015; Bornachea et al., 2020). The strong link between LRP1 and stroke via the atherosclerotic pathway renders LRP1 as a potential therapeutic target for stroke in this population. The multi-ethnic Stroke Prevention in Young Women case–control research discovered two SNPs in the NOS3 gene that were related to ischemic stroke in African ancestry women but not in European women (T. D. Howard et al., 2005). NOS has also been reported to be associated with stroke in a Chinese population (Hou et al., 2001; Berger et al., 2007) without been replicated in a Japanese population (Yahashi et al., 1998). NOS3 catalyses the production of nitric oxide, which is responsible for mediating vascular relaxation in response to vasoactive substances and stress (Förstermann and Sessa, 2012). NOS3 inhibits platelet aggregation and suppresses smooth muscle proliferation. Therefore, NOS3’s properties make it a biologically plausible candidate to investigate as a susceptibility gene in ischemic stroke for particular population groups.
BMI
Obesity has been linked to an increased risk of noncommunicable diseases, including T2DM (Boles et al., 2017) and CVD (Ortega et al., 2016), and is used as a proxy for obesity. Genetics and environmental factors are known to influence BMI in individuals (Bhaskaran et al., 2014). Elevated BMI predisposes individuals to numerous diseases (Bhaskaran et al., 2014; Benjamin et al., 2017), and BMI heritability is estimated to be approximately 40% (Hemani et al., 2013; Yang et al., 2015). GWAS of BMI has identified up to 426 BMI loci (Liu et al., 2008; Thorleifsson et al., 2009; Willer et al., 2009; Speliotes et al., 2010; Kim et al., 2011; Turcot et al., 2018). Notable allele frequency distribution has been observed in BMI-associated variants which consequently confers ancestral differences in BMI. For example, in a trans-ancestry meta-analysis by Downie et al. (2022), wide variation of minor allele frequency was seen across populations for sentinel variants ranging from 0.12 to 0.36 for VEGFA locus and 0.10 to 0.37 for PTEN locus. A population specific locus (LRRC37A5P) was found in individuals that self-identify as African Americans (Downie et al., 2022). The identification of these ancestry specific loci underscores the significance of undertaking genetic studies in diverse populations. The metabolic effects of obesity have been linked to the biological activity of adipose tissue in a manner specific to fat distribution, such as visceral and subcutaneous adiposity or fat accumulation, which can vary substantially across populations (Crowther et al., 2006).
Type 2 diabetes mellitus
More than 200 genetic variants have been found through GWAS to be associated with T2DM across various populations (Mahajan et al., 2018). Most have small effects on diabetes risk, but a few have larger effects across different ancestral populations. A study has found that allele frequencies for established T2DM susceptibility variants differ significantly across ancestry groups, with African ancestry groups having the highest genetic risk, East Asians and American Indians having the lowest genetic risk and Europeans having an intermediate risk (Klimentidis et al., 2011). Using genome-wide SNP data from the Human Genome Diversity Panel of 938 individuals from 53 populations, Klimentidis et al. (2011) compared the population differentiation and haplotype pattern of genome-wide significant genes and the rest of the genome. East Asians and sub-Saharan Africans differ the most in terms of differentiation, implying that T2DM-associated genes in these populations have been subject to increased selection pressures. When compared with sub-Saharan Africans and Native Americans, haplotype analysis indicates an excess of obesity loci with signs of recent positive selection among South Asians and Europeans (Klimentidis et al., 2011). The authors of the study suggested that genetic regions around loci driving T2DM have undergone substantial evolutionary changes and selection in the last 100,000 years, most notably in sub-Saharan Africans and East Asians. Therefore, the identification of loci that have undergone this recent selection may be useful in teasing out population-specific risk variants for T2DM treatment. Using a meta-regression model which allows for the description of heterogeneity based on ancestry, environmental factors or study design, Mahajan et al. (2022) explored the effect of heterogeneity in diverse ancestral populations. They found 136 loci associated with T2DM to be driven by ancestral heterogeneity and 27 loci driven by study design or environmental exposures. From these findings, it is suggested that the heterogeneity in effect sizes observed across different ancestral populations is due to genetic variation more than study design or geographical location (Mahajan et al., 2022). In another study by Chen et al. (2012), disease association data from 5,065 papers were manually curated, and T2DM genetic risk was seen to be higher for individuals in the African populations and lower in the Asian populations. Some ancestry-specific gene–environment interaction factors may be responsible for the disparity observed; hence, further GWASs adjusting for many environmental factors could help understand the mechanisms and origin of T2DM across different ancestries. T2DM has been linked to changes in beta-cell activity and reduced insulin production (Haffner et al., 1996; Ferrannini and Mari, 2004; Lorenzo et al., 2010). Although the molecular mechanisms underlying altered beta-cell secretion and insulin kinetics in T2DM patients are unknown, there is clear evidence for genetic (and epigenetic) as well as environmental factors such as physical inactivity and overweight/obesity, which are more prevalent in Africans and Europeans (Kolb and Martin, 2017; Ali et al., 2018; Dendup et al., 2018) (Table 1).
Table 1.
Examples of genes implicated in different CVD outcomes and risk factors that confer heterogeneity across ancestries
| Traits | Genes | References |
|---|---|---|
| Type 2 diabetes | HNF1A, TBC1D4, IRS1, ADAMTS9, ARL15, ZFAND3, PTPRD, TCF7L2, MPHOSPH9, C2CD4A, SLC16A11, DUSP9, AGTR1, IL6, NOS3, TNFA | Hanson et al. (2015); Golden et al. (2019); Shoily et al. (2021) |
| Lipids | GCKR, NRXN3, TTC7B, LPL, LIPC, CETP, PON1, APOE, NOS3 | Chang et al. (2010); Ellman et al. (2015); Shetty et al. (2015) |
| Stroke | COL4A1, PDE3A, CDKN2B | Chauhan and Debette (2016); Kamin Mukaz et al. (2020); Surakka et al. (2022) |
| Hypertension | C10orf107, SH2B3, DPEP1, CACNB2, ALDH2 | Takeuchi et al. (2018) |
| BMI | VEGFA, PTEN, LRRC37A5P | Downie et al. (2022) |
| CAD | APOB, FN1, ATF6B, HDAC9, UBE3B, RPH3A, ADAMTS7, ABO | Matsunaga et al. (2020) |
Abbreviations: BMI, body mass index; CVD, cardiovascular disease.
Lipids
High levels of circulating low-density lipoprotein cholesterol (LDL-c) and low levels of circulating high-density lipoprotein cholesterol (HDL-c) are risk factors for stroke and heart disease (Roger et al., 2011). Of note is the opposing relationship of LDL-c with ischemic and haemorrhagic stroke in Chinese populations (Sun et al., 2019), which highlights the need for careful phenotypic definitions when ascertaining the role of genetic variation across studies considering different populations.
Blood lipid levels, including LDL-c, HDL-c and triglycerides (TG), are heritable, with known genetic variants explaining 10%–15% of phenotypic variations (Pilia et al., 2006). Evaluation of transferability of lipid associations detected in a European discovery GWAS to Asian and African ancestry replication cohorts shows considerable variation in the extent of replication of the three lipid traits (Kuchenbaecker et al., 2019). While more than 75% of variants with strong associations (P-value < 10−100) for HDL-c and LDL-c replicate in all ancestries, only approximately 57% of strong TG associations replicate in the African cohort. Moreover, the associations detected at higher P-values showed much lower transferability (<30% in African populations across lipid traits). Although the transferability of associations to African populations might improve substantially with the use of more trans-ethnic discovery GWASs and larger representative African datasets, there is a strong possibility a sizable portion of these associations might be actually ancestry-specific (Choudhury et al., 2022). For example, the largest multi-ancestry GWAS by Graham et al. (2021) showed that 76% of the 773 lipid associated regions identified in at least one of the five ancestries studied were found in Europeans, 15 loci were unique to Admixed African or Africans, 6 to East Asian, 6 to Hispanics and 1 to South Asians.
Hypertension
Hypertension is a major risk factor for CVD with an estimated heritability between 30% and 60% (Sung et al., 2018), and more than 200 genetic loci are known to be related with hypertension (Ehret et al., 2011, 2016; Surendran et al., 2016). The risk of developing hypertension is attributable to genetic, environmental and demographic factors. The prevalence of hypertension is higher in individuals of East Asian ancestry, who also have a higher risk of stroke than their European counterparts (Takeuchi et al., 2018). To determine if heterogeneity exists in BP traits between East Asians and Europeans, Takeuchi et al. performed a multi-staged GWAS. In this study, they found inter-ancestry heterogeneity in eight loci mapped near CACNB2, C10orf107, SH2B3, DPEP1 and ALDH2 (Takeuchi et al., 2018). ALDH2 is an important enzyme involved in alcohol metabolism. The polymorphism induced by rs671 produces an inactive subunit of ALDH2, which leads to accumulation of acetaldehyde after alcohol intake (Takeshita et al., 1993). Acetaldehyde elevation lowers blood pressure through vasodilation, which is linked to the characteristic physiological effects such as high temperature, increased heart and respiration rates and palpitations seen among ALDH2 *2*2 homozygotes, the frequency of which varies across different ancestry groups (Quertemont and Didone, 2006).
Clinical importance of leveraging genetic heterogeneity across ancestry groups
An appreciation of genetic heterogeneity across ancestries has a number of advantages. First, it would improve our understanding of disease mechanisms given that pathophysiology likely varies across ancestries in part due to genetic variation. For instance, selectively studying those genes that are ancestry-specific would shed more light on the pathogenesis and clinical presentation of CVD. Second, elucidating ancestry-specific molecular pathways involved in a disease can in turn help determine ancestry-specific susceptibility to the disease. Different ancestries carry different combinations of risk alleles that predispose them to disease risk. Identifying how these risk alleles vary across ancestries would help in early detection of individuals at high risk and further help prioritise those individuals who would benefit from intervention. Third, understanding how genetic heterogeneity influences an individual’s response to drugs is important, given that many drugs are primarily developed in European ancestry individuals. Finally, knowledge of differential susceptibility to risk factors improves clinical management of patients. For instance, in the prevention of stroke, blood pressure control may be more important in African ancestry individuals given that the risk of stroke in African ancestry individuals with hypertension is three times higher than that of Europeans (Spence and Rayner, 2018).
Differences in drug response
Ancestry can influence inter-individual differences in drug exposure and/or responsiveness, altering the risk–benefit ratio in certain subgroups of patients (Figure 2). Differences in drug responsiveness between different ancestries may in part be attributable to differences in the distribution of polymorphisms associated with the enzymes involved in drug metabolism. A single-nucleotide variation in a candidate gene can have a significant impact on pharmacological response (Cazzola et al., 2018). Individuals of different ancestries have been shown to respond differently to antihypertensive therapy (Preston et al., 1998; Julius et al., 2004; Wright et al., 2005; Shin and Johnson, 2007; Gong et al., 2016), heart failure therapy (Carson et al., 1999; Beta-Blocker Evaluation of Survival Trial Investigators et al., 2001; Exner et al., 2001; Dries et al., 2002), lipid-lowering therapy (Lee et al., 2005; ‘High-dose atorvastatin after stroke or transient ischemic attack’, 2006; Liao, 2007; Link et al., 2008; Ieiri et al., 2009; SEARCH Collaborative Group, 2010; Hu et al., 2012; H.-K. Lee et al., 2013), antiplatelet therapy (Mega et al., 2010; Chan et al., 2012) and anticoagulant therapy (You et al., 2005; Keeling et al., 2011; Hori et al., 2013; Yamashita et al., 2015) (Table 2).
Figure 2.
Multi-ancestry pharmacogenetics in the scope of personalised drug therapy. Figure created using BioRender.com.
Table 2.
Influence of ancestry on drug response
| Drug class | Drug | Ancestral differences | References |
|---|---|---|---|
| Antihypertensive | Lisinopril | Increased risk of stroke in African ancestry individuals, whereas no such effect was seen in non-Africans. | Wright et al. (2005) |
| Beta-blockers and angiotensin-converting-enzyme (ACE) inhibitors | African ancestry individuals have poorer BP lowering response compared with non-Africans. | Seedat and Parag (1987); Cohn et al. (2004) | |
| Calcium channel blockers (CCBs) | African ancestry individuals showed better response to CCBs when compared with non-Africans. | Nguyen et al. (2009) | |
| ACE | African ancestry was associated with reduction in SBP and DBP response to ACE | Peck et al. (2013) | |
| Isosorbide-hydralazine (I-H) | African ancestry individuals benefited more from I-H than non-Africans. | Carson et al. (1999) | |
| Lipid lowering | Statins | Higher level o-expression of OATP1B1 and OATP1B3 in Asians compared with Europeans. | Peng et al. (2015) |
| Pravastatin | Higher AUC and Cmax was seen in European-Americans compared with African-Americans. | Ho et al. (2007) | |
| Propranolol | 53%–76% clearance in Africans compared with Europeans. | Sowinski et al. (1996) |
Limited transferability of polygenic risk scores across diverse population groups
Risk prediction of cardiometabolic traits and CVD through genetic risk scores may be more clinically applicable through an enhanced understanding of the genetic architecture of complex traits, population risk-stratification and tailored interventions (Márquez-Luna et al., 2017). The use of European data for polygenic risk score (PRS) prediction in non-European and genetically diverse populations reduces prediction accuracy due to ancestral differences in LD patterns and allele frequencies. The lack of PRS optimised for non-European populations is a substantial obstacle in paving the way in the roadmap to precision diagnostics (Fatumo et al., 2022). Using multi-ancestry summary statistics has the potential to enhance PRS performance in diverse populations, as demonstrated for CAD. Conducting trans-ancestry meta-analyses helped discover 35 additional new CAD loci, which enabled the construction of a PRS for CAD that outperformed PRS using either Japanese or European GWAS data alone (Koyama et al., 2020). Similarly, it has been demonstrated that genetic data from African ancestry (both continental and diaspora groups) may enhance PRS performance for lipid traits in sub-Saharan Africans (Graham et al., 2021; Choudhury et al., 2022; Kamiza et al., 2022). Moreover, the consideration of Africa as a homogenous group in PRS evaluation might, at times, be misleading in cases as for lipid traits, as the same PRS model might have very different performance in different African geographic regions (Graham et al., 2021; Kamiza et al., 2022). T2DM PRSs have been widely developed in European populations (Vassy et al., 2012a; Walford et al., 2012) with evidence of high predictive utility beyond that of established risk factors, yet other populations experience higher rates of T2DM incidence. Trans-ancestry PRSs have recently been constructed for T2DM, integrating data from European, African, Hispanic and East Asian populations, with the top 2% of this PRS distribution identifying individuals with a 2.5–4.5-fold increased risk of developing T2D (Ge et al., 2022). A major limitation of the clinical utility of PRS in diverse populations is uncertainty in how best to accurately combine multi-ancestry GWAS data. Trans-ancestry PRSs do not incorporate population-specific allele frequency and LD patterns, and training PRS separately in each ancestry is complicated by discrepancies between self-reported ethnicity and genetic ancestry (Wilson et al., 2001). These limitations can be addressed by expanding data sources of non-European ancestries and conducting larger GWASs in these populations.
Mendelian randomisation studies
In this review, we previously described ancestral differences in cardiometabolic risk factors and CVD incidence that have been explored in observational settings. However, observational data are prone to confounding and reverse causation, which limits the ability to make causal inferences about the role of risk factors in CVD occurrence and progression. Mendelian randomisation (MR) studies help overcome these limitations by using genetic variants as proxies for exposures (risk factors) to study their effects on outcomes (diseases). Given the relative paucity of GWAS data in non-European populations, relatively few MR studies have been conducted in non-European ancestries, thereby hindering our understanding of the causal role of risk factors in disease pathogenesis in different ancestries. Yet, findings from ancestry-specific MR studies can provide substantial insights into disease mechanisms. This is exemplified in a recent study by Fatumo et al. (2021), who investigated the causal effects of T2DM liability and lipid traits on ischaemic stroke risk in African ancestry populations. Their findings highlighted causal effects of T2DM and lipid traits on stroke risk for African ancestry individuals, the estimates of which were similar in European populations. Similarly, Soremekun et al. (2022) investigated the relationship between dyslipidaemia and T2DM in African ancestry individuals. Zheng et al. (2022) showed that the causal relationship between cardiometabolic risk factors and chronic kidney disease (CKD) may vary between Europeans and East Asian ancestry individuals. While eight cardiometabolic risk factors, including BMI, T2DM, nephrolithiasis and lipid biomarkers, showed causal effects on CKD in Europeans, only BMI, T2DM and nephrolithiasis showed evidence of causality in East Asians. It remains unclear, however, how much of this discrepancy can be explained by varying statistical power available for analyses across ancestry groups.
Gene–environment interactions
Disease pathogenesis is a result of the interactions between information coded in the DNA and environmental factors (Zerba and Sing, 1993). Gene–environment interactions exist for almost every polygenic disease, including CVD (Ordovas and Shen, 2008; Andreasen and Andersen, 2009; Andreassi, 2009; Hirvonen, 2009). The study of gene–environment interactions can provide additional insight into disease pathogenesis and can help determine the public health impact of risk factors, thus informing public health policy (Zerba et al., 1996, 2000). Accounting for gene–environment interactions in GWASs can improve our understanding of genetic heterogeneity under different environmental exposures (Zhao et al., 2015). To identify adiposity loci whose effects are mediated by physical activities, Graff et al. (2017) undertook a meta-analysis of BMI and BMI-adjusted waist circumference and waist–hip ratio in Europeans and non-European individuals. They found an interaction with physical activity and FTO gene, and also discovered 11 novel loci for adiposity. As another example, Hindy et al. (2014) found that the increased risk of CVD mediated by rs4977574 is modified by vegetable and wine intake.
Fairness, bias and future perspectives
As recently as 2019, it was estimated that 72% of GWAS participants were recruited in just three countries: the United States, the United Kingdom and Iceland (Peterson et al., 2019) Accordingly, there is an imperative to increase representation of non-European ancestries in large cross-ancestry GWAS’ conducted in Europe and North America, and to conduct large-scale CVD GWAS’ in developing countries, where the age-standardised death rate attributable to CVD is increasing rapidly (Roth et al., 2020). Academics in lower resource settings must be empowered if we are to seriously address such stark selection bias. Greater collaboration between those institutions in which large-scale genomic methods are most established and those institutions best placed to recruit underrepresented populations will be critical. The allocation of research funding should also give more explicit consideration to ancestry-related disparities in recruitment.
As outlined in this review, an inadequate understanding of genetic heterogeneity across ancestries may exacerbate existing inequalities in CVD outcomes. A lack of appreciation of differences in drug responsiveness may lead to individuals from certain ancestries being prescribed less effective medications. The absence of diverse ancestry information in PRSs can lead to poor prediction of disease in non-European ancestry populations. The preferential application of novel genetic methods such as MR in European ancestry populations could lead to the licencing of treatments for which the evidence base in other ancestries is extrapolative, uncertain and ultimately less efficacious or safe.
We illustrate some of these considerations with the following example. Hypertension is much more prevalent in African ancestry individuals (Spence and Rayner, 2018). According to the NICE guidelines, first-line antihypertensive agents differ for African ancestry individuals, with a preference for calcium channel blockers or diuretics over ACE inhibitors, given the relatively weaker response to the latter (Sinnott et al., 2020). The risk of stroke in hypertensive African ancestry individuals is three times greater than that of hypertensive Europeans (Spence and Rayner, 2018). An absence of any appreciation of genetic heterogeneity across ancestries could easily result in, and indeed may partly explain, the well-documented disparity in stroke outcomes between African ancestry and European ancestry individuals (Stansbury et al., 2005) Conversely, an understanding of such genetic heterogeneity can produce an appropriately higher index of suspicion of hypertension in African ancestry individuals, a tailored approach to treating and managing their hypertension and ultimately and an improvement in stroke-related disability in such individuals. Furthermore, genes such as LRP1, which are selectively associated with stroke in African ancestry individuals, could be both incorporated to improve stroke PRS and investigated as a novel target for the treatment of stroke, specifically in African ancestry individuals.
Conclusions
In this review, we highlight and discuss the growing appreciation of genetic heterogeneity across ancestries in the development and progression of CVD. By elucidating such heterogeneity, we can better identify those molecular mechanisms that are common across different ancestries and those that are specific to certain ancestries. An understanding of such heterogeneity can facilitate the practice of precision medicine in three key ways. First, we can incorporate such heterogeneity to improve the clinical utility of PRSs in population risk stratification and primary prevention of CVD. Second, we can better understand how ancestry can produce differences in drug responsiveness, which can inform prescribing practises. Third, we can leverage tools such as MR to therapeutically target those mechanisms causally driving CVD both within and across ancestries.
Acknowledgement
The authors would like to thank Ananyo Choudhury for providing helpful comments on an earlier draft of this review.
Open peer review
To view the open peer review materials for this article, please visit http://doi.org/10.1017/pcm.2022.13.
Data availability statement
All data used are publicly available and cited in the article.
Author contributions
O.S., M.-J.D., S.R. and D.G. drafted the manuscript. All authors revised the manuscript for intellectual content. All authors approved the final version.
Financial support
O.S. is supported by the Africa Research Excellence Fund (AREF-325-SORE-F-C0904). S.F. is supported by the Wellcome Trust grant (220740/Z/20/Z) at the MRC/UVRI and LSHTM. D.G. is supported by the British Heart Foundation Centre of Research Excellence at Imperial College London (RE/18/4/34215).
Competing interest
D.G. is employed part-time by Novo Nordisk outside the submitted work. The remaining authors declare no relevant competing interest.
Ethics standards
This review article is based on published work, and no ethical approval was sought.
References
- Ali SA, Soo C, Agongo G, Alberts M, Amenga-Etego L, Boua RP, Choudhury A, Crowther NJ, Depuur C, Gómez-Olivé FX, Guiraud I, Haregu TN, Hazelhurst S, Kahn K, Khayeka-Wandabwa C, Kyobutungi C, Lombard Z, Mashinya F, Micklesfield L, Mohamed SF, Mukomana F, Nakanabo-Diallo S, Natama HM, Ngomi N, Nonterah EA, Norris SA, Oduro AR, Somé AM, Sorgho H, Tindana P, Tinto H, Tollman S, Twine R, Wade A, Sankoh O and Ramsay M (2018) Genomic and environmental risk factors for cardiometabolic diseases in Africa: Methods used for Phase 1 of the AWI-Gen population cross-sectional study. Global Health Action 11(sup2), 1507133. 10.1080/16549716.2018.1507133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andreasen CH and Andersen G (2009) Gene–environment interactions and obesity – Further aspects of genomewide association studies. Nutrition (Burbank, Los Angeles County, Calif.) 25(10), 998–1003. 10.1016/j.nut.2009.06.001. [DOI] [PubMed] [Google Scholar]
- Andreassi MG (2009) Metabolic syndrome, diabetes and atherosclerosis: Influence of gene-environment interaction. Mutation Research 667(1–2), 35–43. 10.1016/j.mrfmmm.2008.10.018. [DOI] [PubMed] [Google Scholar]
- Atutornu J, Milne R, Costa A, Patch C and Middleton A (2022) Towards equitable and trustworthy genomics research. eBioMedicine 76, 103879. 10.1016/j.ebiom.2022.103879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS and Muntner P (2017) Heart disease and stroke statistics – 2017 update: A report from the American Heart Association. Circulation 135(10), e146–e603. 10.1161/CIR.0000000000000485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley AR, Callier S and Rotimi CN (2017) Diversity and inclusion in genomic research: Why the uneven progress? Journal of Community Genetics 8(4), 255–266. 10.1007/s12687-017-0316-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger K, Stögbauer F, Stoll M, Wellmann J, Huge A, Cheng S, Kessler C, John U, Assmann G, Ringelstein EB and Funke H (2007) The glu298asp polymorphism in the nitric oxide synthase 3 gene is associated with the risk of ischemic stroke in two large independent case–control studies. Human Genetics 121(2), 169–178. 10.1007/s00439-006-0302-2. [DOI] [PubMed] [Google Scholar]
- Beta-Blocker Evaluation of Survival Trial Investigators, Eichhorn EJ, Domanski MJ, Krause-Steinrauf H, Bristow MR and Lavori PW (2001) A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. New England Journal of Medicine 344(22), 1659–1667. 10.1056/NEJM200105313442202. [DOI] [PubMed] [Google Scholar]
- Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA and Smeeth L (2014) Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. The Lancet 384(9945), 755–765. 10.1016/S0140-6736(14)60892-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boles A, Kandimalla R and Reddy PH (2017) Dynamics of diabetes and obesity: Epidemiological perspective. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863(5), 1026–1036. 10.1016/j.bbadis.2017.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bomprezzi R, Kovanen PE and Martin R (2003) New approaches to investigating heterogeneity in complex traits. Journal of Medical Genetics 40(8), 553–559. 10.1136/jmg.40.8.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornachea O, Benitez-Amaro A, Vea A, Nasarre L, de Gonzalo-Calvo D, Escola-Gil JC, Cedo L, Iborra A, Martínez-Martínez L, Juarez C, Camara JA, Espinet C, Borrell-Pages M, Badimon L, Castell J and Llorente-Cortés V (2020) Immunization with the Gly(1127)-Cys(1140) amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies. Theranostics 10(7), 3263–3280. 10.7150/thno.37305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson P, Ziesche S, Johnson G, Cohn JN and Vasodilator-Heart Failure Trial Study Group (1999) Racial differences in response to therapy for heart failure: Analysis of the vasodilator-heart failure trials. Journal of Cardiac Failure 5(3), 178–187. 10.1016/s1071-9164(99)90001-5. [DOI] [PubMed] [Google Scholar]
- Cazzola M, Calzetta L, Matera MG, Hanania NA and Rogliani P (2018) How does race/ethnicity influence pharmacological response to asthma therapies? Expert Opinion on Drug Metabolism & Toxicology 14(4), 435–446. 10.1080/17425255.2018.1449833. [DOI] [PubMed] [Google Scholar]
- Chan MY, Tan K, Tan H-C, Huan P-T, Li B, Phua Q-H, Lee H-K, Lee C-H, Low A, Becker RC, Ong W-C, Richards MA, Salim A, Tai E-S and Koay E (2012) CYP2C19 and PON1 polymorphisms regulating clopidogrel bioactivation in Chinese, Malay and Indian subjects. Pharmacogenomics 13(5), 533–542. 10.2217/pgs.12.24. [DOI] [PubMed] [Google Scholar]
- Chang M, Yesupriya A, Ned RM, Mueller PW and Dowling NF (2010) Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey. BMC Medical Genetics 11, 62. Available at https://stacks.cdc.gov/view/cdc/3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chauhan G and Debette S (2016) Genetic risk factors for ischemic and hemorrhagic stroke. Current Cardiology Reports 18(12), 124. 10.1007/s11886-016-0804-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J, Su Y, Pi S, Hu B and Mao L (2021) The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Frontiers in Cardiovascular Medicine 8, 682389. 10.3389/fcvm.2021.682389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen R, Corona E, Sikora M, Dudley JT, Morgan AA, Moreno-Estrada A, Nilsen GB, Ruau D, Lincoln SE, Bustamante CD and Butte AJ (2012) Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genetics 8(4), e1002621. 10.1371/journal.pgen.1002621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choudhury A, Brandenburg J-T, Chikowore T, Sengupta D, Boua PR, Crowther NJ, Agongo G, Asiki G, Gómez-Olivé FX, Kisiangani I, Maimela E, Masemola-Maphutha M, Micklesfield LK, Nonterah EA, Norris SA, Sorgho H, Tinto H, Tollman S, Graham SE, Willer CJ, Hazelhurst S, Ramsay M, study A-G and Consortium H (2022) Meta-analysis of sub-Saharan African studies provides insights into genetic architecture of lipid traits. Nature Communications 13(1), 2578. 10.1038/s41467-022-30098-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn JN, Julius S, Neutel J, Weber M, Turlapaty P, Shen Y, Dong V, Batchelor A, Guo W and Lagast H (2004) Clinical experience with perindopril in African-American hypertensive patients: A large United States community trial. American Journal of Hypertension 17(2), 134–138. 10.1016/j.amjhyper.2003.09.017. [DOI] [PubMed] [Google Scholar]
- Costales P, Fuentes-Prior P, Castellano J, Revuelta-Lopez E, Corral-Rodríguez MÁ, Nasarre L, Badimon L and Llorente-Cortes V (2015) K domain CR9 of low density lipoprotein (LDL) receptor-related protein 1 (LRP1) is critical for aggregated LDL-induced foam cell formation from human vascular smooth muscle cells. The Journal of Biological Chemistry 290(24), 14852–14865. 10.1074/jbc.M115.638361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowther NJ, Ferris WF, Ojwang PJ and Rheeder P (2006) The effect of abdominal obesity on insulin sensitivity and serum lipid and cytokine concentrations in African women. Clinical Endocrinology 64(5), 535–541. 10.1111/j.1365-2265.2006.02505.x. [DOI] [PubMed] [Google Scholar]
- Dendup T, Feng X, Clingan S and Astell-Burt T (2018) Environmental risk factors for developing type 2 diabetes mellitus: A systematic review. International Journal of Environmental Research and Public Health 15(1). 10.3390/ijerph15010078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downie CG, Dimos SF, Bien SA, Hu Y, Darst BF, Polfus LM, Wang Y, Wojcik GL, Tao R, Raffield LM, Armstrong ND, Polikowsky HG, Below JE, Correa A, Irvin MR, Rasmussen-Torvik LJF, Carlson CS, Phillips LS, Liu S, Pankow JS, Rich SS, Rotter JI, Buyske S, Matise TC, North KE, Avery CL, Haiman CA, Loos RJF, Kooperberg C, Graff M and Highland HM (2022) Multi-ethnic GWAS and fine-mapping of glycaemic traits identify novel loci in the PAGE study. Diabetologia 65(3), 477–489. 10.1007/s00125-021-05635-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dries DL, Strong MH, Cooper RS and Drazner MH (2002) Efficacy of angiotensin-converting enzyme inhibition in reducing progression from asymptomatic left ventricular dysfunction to symptomatic heart failure in black and white patients. Journal of the American College of Cardiology 40(2), 311–317. 10.1016/s0735-1097(02)01943-5. [DOI] [PubMed] [Google Scholar]
- Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, Petersen A-K, Pihur V, Strawbridge RJ, Shungin D, Hughes MF, Meirelles O, Kaakinen M, Bouatia-Naji N, Kristiansson K, Shah S, Kleber ME, Guo X, Lyytikäinen L-P, Fava C, Eriksson N, Nolte IM, Magnusson PK, Salfati EL, Rallidis LS, Theusch E, Smith AJP, Folkersen L, Witkowska K, Pers TH, Joehanes R, Kim SK, Lataniotis L, Jansen R, Johnson AD, Warren H, Kim YJ, Zhao W, Wu Y, Tayo BO, Bochud M, Absher D, Adair LS, Amin N, Arking DE, Axelsson T, Baldassarre D, Balkau B, Bandinelli S, Barnes MR, Barroso I, Bevan S, Bis JC, Bjornsdottir G, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Bornstein SR, Brown MJ, Burnier M, Cabrera CP, Chambers JC, Chang I-S, Cheng C-Y, Chines PS, Chung R-H, Collins FS, Connell JM, Döring A, Dallongeville J, Danesh J, Faire U de, Delgado G, Dominiczak AF, Doney ASF, Drenos F, Edkins S, Eicher JD, Elosua R, Enroth S, Erdmann J, Eriksson P, Esko T, Evangelou E, Evans A, Fall T, Farrall M, Felix JF, Ferrières J, Ferrucci L, Fornage M, Forrester T, Franceschini N, Duran OHF, Franco-Cereceda A, Fraser RM, Ganesh SK, Gao H, Gertow K, Gianfagna F, Gigante B, Giulianini F, Goel A, Goodall AH, Goodarzi MO, Gorski M, Gräßler J, Groves C, Gudnason V, Gyllensten U, Hallmans G, Hartikainen A-L, Hassinen M, Havulinna AS, Hayward C, Hercberg S, Herzig K-H, Hicks AA, Hingorani AD, Hirschhorn JN, Hofman A, Holmen J, Holmen OL, Hottenga J-J, Howard P, Hsiung CA, Hunt SC, Ikram MA, Illig T, Iribarren C, Jensen RA, Kähönen M, Kang H, Kathiresan S, Keating BJ, Khaw K-T, Kim YK, Kim E, Kivimaki M, Klopp N, Kolovou G, Komulainen P, Kooner JS, Kosova G, Krauss RM, Kuh D, Kutalik Z, Kuusisto J, Kvaløy K, Lakka TA, Lee NR, Lee I-T, Lee W-J, Levy D, Li X, Liang K-W, Lin H, Lin L, Lindström J, Lobbens S, Männistö S, Müller G, Müller-Nurasyid M, Mach F, Markus HS, Marouli E, McCarthy MI, McKenzie CA, Meneton P, Menni C, Metspalu A, Mijatovic V, Moilanen L, Montasser ME, Morris AD, Morrison AC, Mulas A, Nagaraja R, Narisu N, Nikus K, O’Donnell CJ, O’Reilly PF, Ong KK, Paccaud F, Palmer CD, Parsa A, Pedersen NL, Penninx BW, Perola M, Peters A, Poulter N, Pramstaller PP, Psaty BM, Quertermous T, Rao DC, Rasheed A, Rayner NWNWR, Renström F, Rettig R, Rice KM, Roberts R, Rose LM, Rossouw J, Samani NJ, Sanna S, Saramies J, Schunkert H, Sebert S, Sheu WH-H, Shin Y-A, Sim X, Smit JH, Smith A V, Sosa MX, Spector TD, Stančáková A, Stanton A, Stirrups KE, Stringham HM, Sundstrom J, Swift AJ, Syvänen A-C, Tai E-S, Tanaka T, Tarasov K V, Teumer A, Thorsteinsdottir U, Tobin MD, Tremoli E, Uitterlinden AG, Uusitupa M, Vaez A, Vaidya D, Duijn CM van, Iperen EPA van, Vasan RS, Verwoert GC, Virtamo J, Vitart V, Voight BF, Vollenweider P, Wagner A, Wain L V, Wareham NJ, Watkins H, Weder AB, Westra H-J, Wilks R, Wilsgaard T, Wilson JF, Wong TY, Yang T-P, Yao J, Yengo L, Zhang W, Zhao JH, Zhu X, Bovet P, Cooper RS, Mohlke KL, Saleheen D, Lee J-Y, Elliott P, Gierman HJ, Willer CJ, Franke L, Hovingh GK, Taylor KD, Dedoussis G, Sever P, Wong A, Lind L, Assimes TL, Njølstad I, Schwarz PE, Langenberg C, Snieder H, Caulfield MJ, Melander O, Laakso M, Saltevo J, Rauramaa R, Tuomilehto J, Ingelsson E, Lehtimäki T, Hveem K, Palmas W, März W, Kumari M, Salomaa V, Chen Y-DI, Rotter JI, Froguel P, Jarvelin M-R, Lakatta EG, Kuulasmaa K, Franks PW, Hamsten A, Wichmann H-E, Palmer CNA, Stefansson K, Ridker PM, Loos RJF, Chakravarti A, Deloukas P, Morris AP, Newton-Cheh C and Munroe PB (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics 48(10), 1171–1184. 10.1038/ng.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith A V, Tobin MD, Verwoert GC, Hwang S-J, Pihur V, Vollenweider P, O’Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sõber S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, Harst P van der, Kao WHL, Sjögren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen K-DH, Lehtimäki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CGP, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CSPM, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang Y-PC, O’Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day INM, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kähönen M, Viikari J, Adair LS, Lee NR, Chen M-H, Olden M, Pattaro C, Bolton JAH, Köttgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grässler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw K-T, Weder AB, Hunt SC, Sun Y V, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand S-M, Staessen JA, Wang TJ, Burton PR, Soler Artigas M, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann H-E, Cho YS, Kim H-L, Lee J-Y, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stančáková A, Raffel LJ, Yao J, Kathiresan S, O’Donnell CJ, Schwartz SM, Ikram MA, Longstreth WTJ, Mosley TH, Seshadri S, Shrine NRG, Wain L V, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJL, Gilst WH van, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FUS, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikäinen L-P, Soininen P, Tukiainen T, Würtz P, Ong RT-H, Dörr M, Kroemer HK, Völker U, Völzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MVK, Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FGR, Charchar FJ, Schwarz PEH, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, Schouw YT van der, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han B-G, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJG, Altshuler D, Loos RJF, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JCM, Hartikainen A-L, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Järvelin M-R, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, Duijn CM van, Newton-Cheh C, Levy D, Caulfield MJ and Johnson T (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367), 103–109. 10.1038/nature10405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellman N, Keswell D, Collins M, Tootla M and Goedecke JH (2015) Ethnic differences in the association between lipid metabolism genes and lipid levels in black and white South African women. Atherosclerosis 240(2), 311–317. 10.1016/j.atherosclerosis.2015.03.027. [DOI] [PubMed] [Google Scholar]
- Exner DV, Dries DL, Domanski MJ and Cohn JN (2001) Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. The New England Journal of Medicine 344(18), 1351–1357. 10.1056/NEJM200105033441802. [DOI] [PubMed] [Google Scholar]
- Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR and Kuchenbaecker K (2022) A roadmap to increase diversity in genomic studies. Nature Medicine 28(2), 243–250. 10.1038/s41591-021-01672-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fatumo S, Karhunen V, Chikowore T, Sounkou T, Udosen B, Ezenwa C, Nakabuye M, Soremekun O, Daghlas I, Ryan DK, Taylor A, Mason AM, Damrauer SM, Vujkovic M, Keene KL, Fornage M, Järvelin M-R, Burgess S and Gill D (2021) Metabolic traits and stroke risk in individuals of African ancestry: Mendelian randomization analysis. Stroke 52(8), 2680–2684. 10.1161/STROKEAHA.121.034747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fawzy AM and Lip GYH (2021) Cardiovascular disease prevention: Risk factor modification at the heart of the matter. The Lancet Regional Health – Western Pacific 17, 100291. 10.1016/j.lanwpc.2021.100291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrannini E and Mari A (2004) Beta cell function and its relation to insulin action in humans: A critical appraisal. Diabetologia 47(5), 943–956. 10.1007/s00125-004-1381-z. [DOI] [PubMed] [Google Scholar]
- Förstermann U and Sessa WC (2012) Nitric oxide synthases: Regulation and function. European Heart Journal 33(7), 829–837, 837a–837d. 10.1093/eurheartj/ehr304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ge T, Irvin MR, Patki A, Srinivasasainagendra V, Lin Y-F, Tiwari HK, Armstrong ND, Benoit B, Chen C-Y, Choi KW, Cimino JJ, Davis BH, Dikilitas O, Etheridge B, Feng Y-CA, Gainer V, Huang H, Jarvik GP, Kachulis C, Kenny EE, Khan A, Kiryluk K, Kottyan L, Kullo IJ, Lange C, Lennon N, Leong A, Malolepsza E, Miles AD, Murphy S, Namjou B, Narayan R, O’Connor MJ, Pacheco JA, Perez E, Rasmussen-Torvik LJ, Rosenthal EA, Schaid D, Stamou M, Udler MS, Wei W-Q, Weiss ST, Ng MCY, Smoller JW, Lebo MS, Meigs JB, Limdi NA and Karlson EW (2022) Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations. Genome Medicine 14(1), 70. 10.1186/s13073-022-01074-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GBD 2017 Causes of Death Collaborators (2018) Lancet (London, England) 392(10159), 1736–1788. 10.1016/S0140-6736(18)32203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GBD 2015 Mortality and Causes of Death Collaborators (2016) Lancet (London, England) 388(10053), 1459–1544. 10.1016/S0140-6736(16)31012-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golden SH, Yajnik C, Phatak S, Hanson RL and Knowler WC (2019) Racial/ethnic differences in the burden of type 2 diabetes over the life course: A focus on the USA and India. Diabetologia 62(10), 1751–1760. 10.1007/s00125-019-4968-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong Y, Wang Z, Beitelshees AL, McDonough CW, Langaee TY, Hall K, Schmidt SOF, Curry RW, Gums JG, Bailey KR, Boerwinkle E, Chapman AB, Turner ST, Cooper-DeHoff RM and Johnson JA (2016) Pharmacogenomic genome-wide meta-analysis of blood pressure response to β-blockers in hypertensive African Americans. Hypertension 67(3), 556–563. 10.1161/HYPERTENSIONAHA.115.06345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D, Xue L, Workalemahu T, Heard-Costa NL, Hoed M den, Ahluwalia TS, Qi Q, Ngwa JS, Renström F, Quaye L, Eicher JD, Hayes JE, Cornelis M, Kutalik Z, Lim E, Luan J, Huffman JE, Zhang W, Zhao W, Griffin PJ, Haller T, Ahmad S, Marques-Vidal PM, Bien S, Yengo L, Teumer A, Smith AV, Kumari M, Harder MN, Justesen JM, Kleber ME, Hollensted M, Lohman K, Rivera N V, Whitfield JB, Zhao JH, Stringham HM, Lyytikäinen L-P, Huppertz C, Willemsen G, Peyrot WJ, Wu Y, Kristiansson K, Demirkan A, Fornage M, Hassinen M, Bielak LF, Cadby G, Tanaka T, Mägi R, Most PJ van der, Jackson AU, Bragg-Gresham JL, Vitart V, Marten J, Navarro P, Bellis C, Pasko D, Johansson Å, Snitker S, Cheng Y-C, Eriksson J, Lim U, Aadahl M, Adair LS, Amin N, Balkau B, Auvinen J, Beilby J, Bergman RN, Bergmann S, Bertoni AG, Blangero J, Bonnefond A, Bonnycastle LL, Borja JB, Brage S, Busonero F, Buyske S, Campbell H, Chines PS, Collins FS, Corre T, Smith GD, Delgado GE, Dueker N, Dörr M, Ebeling T, Eiriksdottir G, Esko T, Faul JD, Fu M, Færch K, Gieger C, Gläser S, Gong J, Gordon-Larsen P, Grallert H, Grammer TB, Grarup N, Grootheest G van, Harald K, Hastie ND, Havulinna AS, Hernandez D, Hindorff L, Hocking LJ, Holmens OL, Holzapfel C, Hottenga JJ, Huang J, Huang T, Hui J, Huth C, Hutri-Kähönen N, James AL, Jansson J-O, Jhun MA, Juonala M, Kinnunen L, Koistinen HA, Kolcic I, Komulainen P, Kuusisto J, Kvaløy K, Kähönen M, Lakka TA, Launer LJ, Lehne B, Lindgren CM, Lorentzon M, Luben R, Marre M, Milaneschi Y, Monda KL, Montgomery GW, Moor MHM De, Mulas A, Müller-Nurasyid M, Musk AW, Männikkö R, Männistö S, Narisu N, Nauck M, Nettleton JA, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Paternoster L, Perez J, Perola M, Peters A, Peters U, Peyser PA, Prokopenko I, Puolijoki H, Raitakari OT, Rankinen T, Rasmussen-Torvik LJ, Rawal R, Ridker PM, Rose LM, Rudan I, Sarti C, Sarzynski MA, Savonen K, Scott WR, Sanna S, Shuldiner AR, Sidney S, Silbernagel G, Smith BH, Smith JA, Snieder H, Stančáková A, Sternfeld B, Swift AJ, Tammelin T, Tan S-T, Thorand B, Thuillier D, Vandenput L, Vestergaard H, Vliet-Ostaptchouk J V van, Vohl M-C, Völker U, Waeber G, Walker M, Wild S, Wong A, Wright AF, Zillikens MC, Zubair N, Haiman CA, Lemarchand L, Gyllensten U, Ohlsson C, Hofman A, Rivadeneira F, Uitterlinden AG, Pérusse L, Wilson JF, Hayward C, Polasek O, Cucca F, Hveem K, Hartman CA, Tönjes A, Bandinelli S, Palmer LJ, Kardia SLR, Rauramaa R, Sørensen TIA, Tuomilehto J, Salomaa V, Penninx BWJH, Geus EJC de, Boomsma DI, Lehtimäki T, Mangino M, Laakso M, Bouchard C, Martin NG, Kuh D, Liu Y, Linneberg A, März W, Strauch K, Kivimäki M, Harris TB, Gudnason V, Völzke H, Qi L, Järvelin M-R, Chambers JC, Kooner JS, Froguel P, Kooperberg C, Vollenweider P, Hallmans G, Hansen T, Pedersen O, Metspalu A, Wareham NJ, Langenberg C, Weir DR, Porteous DJ, Boerwinkle E, Chasman DI, Consortium C, Consortium E-I, Consortium P, Abecasis GR, Barroso I, McCarthy MI, Frayling TM, O’Connell JR, Duijn CM van, Boehnke M, Heid IM, Mohlke KL, Strachan DP, Fox CS, Liu C-T, Hirschhorn JN, Klein RJ, Johnson AD, Borecki IB, Franks PW, North KE, Cupples LA, Loos RJF and Kilpeläinen TO (2017) Genome-wide physical activity interactions in adiposity – A meta-analysis of 200,452 adults. PLoS Genetics 13(4), e1006528. 10.1371/journal.pgen.1006528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham SE, Clarke SL, Wu K-HH, Kanoni S, Zajac GJM, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW, Locke AE, Marouli E, Hwang MY, Han S, Narita A, Choudhury A, Bentley AR, Ekoru K, Verma A, Trivedi B, Martin HC, Hunt KA, Hui Q, Klarin D, Zhu X, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Ruotsalainen SE, Havulinna AS, Veturi Y, Feng Q, Rosenthal EA, Lingren T, Pacheco JA, Pendergrass SA, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Hindy G, Rasheed A, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao J-H, Matsuda F, Jang H-M, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Willemsen G, Wood AR, Ji Y, Gao Z, Haworth S, Mitchell RE, Chai JF, Aadahl M, Yao J, Manichaikul A, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Sidore C, Fiorillo E, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Thuesen BH, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Daw EW, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Feitosa MF, Wojczynski MK, Preuss M, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Kember RL, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Leonard HL, Marten J, Schmidt B, Arendt M, Smyth LJ, Cañadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kähönen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Ahmed M, Jackson AU, Irvin MR, Oldmeadow C, Kim H-N, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Chai X, Prasad G, Lorés-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Hung Y-J, Chen S, Liu F, Yang J, Kentistou KA, Gorski M, Brumat M, Meidtner K, Bielak LF, Smith JA, Hebbar P, Farmaki A-E, Hofer E, Lin M, Xue C, Zhang J, Concas MP, Vaccargiu S, Most PJ van der, Pitkänen N, Cade BE, Lee J, Laan SW van der, Chitrala KN, Weiss S, Zimmermann ME, Lee JY, Choi HS, Nethander M, Freitag-Wolf S, Southam L, Rayner NW, Wang CA, Lin S-Y, Wang J-S, Couture C, Lyytikäinen L-P, Nikus K, Cuellar-Partida G, Vestergaard H, Hildalgo B, Giannakopoulou O, Cai Q, Obura MO, Setten J van, Li X, Schwander K, Terzikhan N, Shin JH, Jackson RD, Reiner AP, Martin LW, Chen Z, Li L, Highland HM, Young KL, Kawaguchi T, Thiery J, Bis JC, Nadkarni GN, Launer LJ, Li H, Nalls MA, Raitakari OT, Ichihara S, Wild SH, Nelson CP, Campbell H, Jäger S, Nabika T, Al-Mulla F, Niinikoski H, Braund PS, Kolcic I, Kovacs P, Giardoglou T, Katsuya T, Bhatti KF, Kleijn D de, Borst GJ de, Kim EK, Adams HHH, Ikram MA, Zhu X, Asselbergs FW, Kraaijeveld AO, Beulens JWJ, Shu X-O, Rallidis LS, Pedersen O, Hansen T, Mitchell P, Hewitt AW, Kähönen M, Pérusse L, Bouchard C, Tönjes A, Chen Y-DI, Pennell CE, Mori TA, Lieb W, Franke A, Ohlsson C, Mellström D, Cho YS, Lee H, Yuan J-M, Koh W-P, Rhee SY, Woo J-T, Heid IM, Stark KJ, Völzke H, Homuth G, Evans MK, Zonderman AB, Polasek O, Pasterkamp G and Hoefer IE (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600(7890), 675–679. 10.1038/s41586-021-04064-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurdasani D, Barroso I, Zeggini E and Sandhu MS (2019) Genomics of disease risk in globally diverse populations. Nature Reviews Genetics 20(9), 520–535. 10.1038/s41576-019-0144-0. [DOI] [PubMed] [Google Scholar]
- Haffner SM, D’Agostino R, Saad MF, Rewers M, Mykkänen L, Selby J, Howard G, Savage PJ, Hamman RF and Wagenknecht LE (1996) Increased insulin resistance and insulin secretion in nondiabetic African-Americans and Hispanics compared with non-Hispanic whites: The Insulin Resistance Atherosclerosis Study. Diabetes 45(6), 742–748. 10.2337/diab.45.6.742. [DOI] [PubMed] [Google Scholar]
- Hanson RL, Rong R, Kobes S, Muller YL, Weil EJ, Curtis JM, Nelson RG and Baier LJ (2015) Role of established type 2 diabetes-susceptibility genetic variants in a high prevalence American Indian population. Diabetes 64(7), 2646–2657. 10.2337/db14-1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harriott AM, Heckman MG, Rayaprolu S, Soto-Ortolaza AI, Diehl NN, Kanekiyo T, Liu C-C, Bu G, Malik R, Cole JW, Meschia JF and Ross OA (2015) Low density lipoprotein receptor related protein 1 and 6 gene variants and ischaemic stroke risk. European Journal of Neurology 22(8), 1235–1241. 10.1111/ene.12735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemani G, Yang J, Vinkhuyzen A, Powell JE, Willemsen G, Hottenga J-J, Abdellaoui A, Mangino M, Valdes AM, Medland SE, Madden PA, Heath AC, Henders AK, Nyholt DR, Geus EJC de, Magnusson PKE, Ingelsson E, Montgomery GW, Spector TD, Boomsma DI, Pedersen NL, Martin NG and Visscher PM (2013) Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. American Journal of Human Genetics 93(5), 865–875. 10.1016/j.ajhg.2013.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- High-dose atorvastatin after stroke or transient ischemic attack (2006) New England Journal of Medicine 355(6), 549–559. 10.1056/NEJMoa061894. [DOI] [PubMed] [Google Scholar]
- Hindy G, Ericson U, Hamrefors V, Drake I, Wirfält E, Melander O and Orho-Melander M (2014) The chromosome 9p21 variant interacts with vegetable and wine intake to influence the risk of cardiovascular disease: A population based cohort study. BMC Medical Genetics 15, 1220. 10.1186/s12881-014-0138-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirvonen A (2009) Gene-environment interactions in chronic pulmonary diseases. Mutation Research 667(1–2), 132–141. 10.1016/j.mrfmmm.2008.12.013. [DOI] [PubMed] [Google Scholar]
- Ho RH, Choi L, Lee W, Mayo G, Schwarz UI, Tirona RG, Bailey DG, Stein CM and Kim RB (2007) Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenetics and Genomics 17(8), 647–656. 10.1097/FPC.0b013e3280ef698f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori M, Connolly SJ, Zhu J, Liu LS, Lau C-P, Pais P, Xavier D, Kim SS, Omar R, Dans AL, Tan RS, Chen J-H, Tanomsup S, Watanabe M, Koyanagi M, Ezekowitz MD, Reilly PA, Wallentin L and Yusuf S (2013) Dabigatran versus warfarin: Effects on ischemic and hemorrhagic strokes and bleeding in Asians and non-Asians with atrial fibrillation. Stroke 44(7), 1891–1896. 10.1161/STROKEAHA.113.000990. [DOI] [PubMed] [Google Scholar]
- Hou L, Osei-Hyiaman D, Yu H, Ren Z, Zhang Z, Wang B and Harada S (2001) Association of a 27-bp repeat polymorphism in ecNOS gene with ischemic stroke in Chinese patients. Neurology 56(4), 490–496. 10.1212/wnl.56.4.490. [DOI] [PubMed] [Google Scholar]
- Houkin K, Ito M, Sugiyama T, Shichinohe H, Nakayama N, Kazumata K and Kuroda S (2012) Review of past research and current concepts on the etiology of moyamoya disease. Neurologia Medico-Chirurgica 52(5), 267–277. 10.2176/nmc.52.267. [DOI] [PubMed] [Google Scholar]
- Howard G, Cushman M, Kissela BM, Kleindorfer DO, McClure LA, Safford MM, Rhodes JD, Soliman EZ, Moy CS, Judd SE and Howard VJ (2011) Traditional risk factors as the underlying cause of racial disparities in stroke: Lessons from the half-full (empty?) glass. Stroke 42(12), 3369–3375. 10.1161/STROKEAHA.111.625277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard TD, Giles WH, Xu J, Wozniak MA, Malarcher AM, Lange LA, Macko RF, Basehore MJ, Meyers DA, Cole JW and Kittner SJ (2005) Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women. Stroke 36(9), 1848–1851. 10.1161/01.STR.0000177978.97428.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard VJ, Kleindorfer DO, Judd SE, McClure LA, Safford MM, Rhodes JD, Cushman M, Moy CS, Soliman EZ, Kissela BM and Howard G (2011) Disparities in stroke incidence contributing to disparities in stroke mortality. Annals of Neurology 69(4), 619–627. 10.1002/ana.22385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu M, Cheung BMY and Tomlinson B (2012) Safety of statins: An update. Therapeutic Advances in Drug Safety 3(3), 133–144. 10.1177/2042098612439884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ieiri I, Higuchi S and Sugiyama Y (2009) Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: Implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opinion on Drug Metabolism & Toxicology 5(7), 703–729. 10.1517/17425250902976854. [DOI] [PubMed] [Google Scholar]
- Julius S, Alderman MH, Beevers G, Dahlöf B, Devereux RB, Douglas JG, Edelman JM, Harris KE, Kjeldsen SE, Nesbitt S, Randall OS and Wright JTJ (2004) Cardiovascular risk reduction in hypertensive black patients with left ventricular hypertrophy: The LIFE study. Journal of the American College of Cardiology 43(6), 1047–1055. 10.1016/j.jacc.2003.11.029. [DOI] [PubMed] [Google Scholar]
- Kamin Mukaz D, Zakai NA, Cruz-Flores S, McCullough LD and Cushman M (2020) Identifying genetic and biological determinants of race-ethnic disparities in stroke in the United States. Stroke 51(11), 3417–3424. 10.1161/STROKEAHA.120.030425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamiza AB, Toure SM, Vujkovic M, Machipisa T, Soremekun OS, Kintu C, Corpas M, Pirie F, Young E, Gill D, Sandhu MS, Kaleebu P, Nyirenda M, Motala AA, Chikowore T and Fatumo S (2022) Transferability of genetic risk scores in African populations. Nature Medicine 28(6), 1163–1166. 10.1038/s41591-022-01835-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keeling D, Baglin T, Tait C, Watson H, Perry D, Baglin C, Kitchen S, Makris M and British Committee for Standards in Haematology (2011) Guidelines on oral anticoagulation with warfarin – Fourth edition. British Journal of Haematology 154(3), 311–324. 10.1111/j.1365-2141.2011.08753.x. [DOI] [PubMed] [Google Scholar]
- Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, Hwang J-Y, Oh JH, Kim D-J, Kim NH, Kim S, Hong EJ, Kim J-H, Min H, Kim Y, Zhang R, Jia W, Okada Y, Takahashi A, Kubo M, Tanaka T, Kamatani N, Matsuda K, Park T, Oh B, Kimm K, Kang D, Shin C, Cho NH, Kim H-L, Han B-G, Lee J-Y and Cho YS (2011) Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nature Genetics 43(10), 990–995. 10.1038/ng.939. [DOI] [PubMed] [Google Scholar]
- Klimentidis YC, Abrams M, Wang J, Fernandez JR and Allison DB (2011) Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Human Genetics 129(4), 407–418. 10.1007/s00439-010-0935-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolb H and Martin S (2017) Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine 15(1), 131. 10.1186/s12916-017-0901-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koyama S, Ito K, Terao C, Akiyama M, Horikoshi M, Momozawa Y,Matsunaga H, Ieki H, Ozaki K, Onouchi Y, Takahashi A, Nomura S, Morita H, Akazawa H, Kim C, Seo J, Higasa K, Iwasaki M, Yamaji T, Sawada N, Tsugane S, Koyama T, Ikezaki H, Takashima N, Tanaka K, Arisawa K, Kuriki K, Naito M, Wakai K, Suna S, Sakata Y, Sato H, Hori M, Sakata Y, Matsuda K, Murakami Y, Aburatani H, Kubo M, Matsuda F, Kamatani Y and Komuro I (2020) Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nature Genetics 52(11), 1169–1177. 10.1038/s41588-020-0705-3. [DOI] [PubMed] [Google Scholar]
- Kuchenbaecker K, Telkar N, Reiker T, Walters RG, Lin K, Eriksson A, Gurdasani D, Gilly A, Southam L, Tsafantakis E, Karaleftheri M, Seeley J, Kamali A, Asiki G, Millwood IY, Holmes M, Du H, Guo Y, Kumari M, Dedoussis G, Li L, Chen Z, Sandhu MS, Zeggini E, Benzeval M, Burton J, Buck N, Jäckle A, Laurie H, Lynn P, Pudney S, Rabe B, Wolke D and Understanding Society Scientific Group (2019) The transferability of lipid loci across African, Asian and European cohorts. Nature Communications 10(1), 4330. 10.1038/s41467-019-12026-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H, Moore R, Lee C, Chen Y and Schneck D (2005) Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clinical Pharmacology and Therapeutics 78(4), 330–341. 10.1016/j.clpt.2005.06.013. [DOI] [PubMed] [Google Scholar]
- Lee H-K, Hu M, Lui SS, Ho C-S, Wong C-K and Tomlinson B (2013) Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 14(11), 1283–1294. 10.2217/pgs.13.115. [DOI] [PubMed] [Google Scholar]
- Liao JK (2007) Safety and efficacy of statins in Asians. The American Journal of Cardiology 99(3), 410–414. 10.1016/j.amjcard.2006.08.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M and Collins R (2008) SLCO1B1 variants and statin-induced myopathy – A genomewide study. The New England Journal of Medicine 359(8), 789–799. 10.1056/NEJMoa0801936. [DOI] [PubMed] [Google Scholar]
- Liu Y-J, Liu X-G, Wang L, Dina C, Yan H, Liu J-F, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei Y-F, Zhang L, Recker RR, Froguel P and Deng H-W (2008) Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Human Molecular Genetics 17(12), 1803–1813. 10.1093/hmg/ddn072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenzo C, Wagenknecht LE, D’Agostino RBJ, Rewers MJ, Karter AJ and Haffner SM (2010) Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: The insulin resistance atherosclerosis Study. Diabetes Care 33(1), 67–72. 10.2337/dc09-1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, Yu GZ, Rüeger S, Speidel L, Kim YJ, Horikoshi M, Mercader JM, Taliun D, Moon S, Kwak S-H, Robertson NR, Rayner NW, Loh M, Kim B-J, Chiou J, Miguel-Escalada I, Briotta Parolo P della, Lin K, Bragg F, Preuss MH, Takeuchi F, Nano J, Guo X, Lamri A, Nakatochi M, Scott RA, Lee J-J, Huerta-Chagoya A, Graff M, Chai J-F, Parra EJ, Yao J, Bielak LF, Tabara Y, Hai Y, Steinthorsdottir V, Cook JP, Kals M, Grarup N, Schmidt EM, Pan I, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Long J, Sun M, Tong L, Chen W-M, Ahmad M, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen C-H, Raffield LM, Lecoeur C, Prins BP, Nicolas A, Yanek LR, Chen G, Jensen RA, Tajuddin S, Kabagambe EK, An P, Xiang AH, Choi HS, Cade BE, Tan J, Flanagan J, Abaitua F, Adair LS, Adeyemo A, Aguilar-Salinas CA, Akiyama M, Anand SS, Bertoni A, Bian Z, Bork-Jensen J, Brandslund I, Brody JA, Brummett CM, Buchanan TA, Canouil M, Chan JCN, Chang L-C, Chee M-L, Chen J, Chen S-H, Chen Y-T, Chen Z, Chuang L-M, Cushman M, Das SK, Silva HJ de, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt K-U, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Fornage M, Franco OH, Frayling TM, Freedman BI, Fuchsberger C, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Goodarzi MO, Gordon-Larsen P, Gorkin D, Gross M, Guo Y, Hackinger S, Han S, Hattersley AT, Herder C, Howard A-G, Hsueh W, Huang M, Huang W, Hung Y-J, Hwang MY, Hwu C-M, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang H-M, Jasmine F, Jiang G, Jonas JB, Jørgensen ME, Jørgensen T, Kamatani Y, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor C-C, Kibriya MG, Kim D-H, Kohara K, Kriebel J, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee M-S, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Ligthart S, Lindgren CM, Linneberg A, Liu C-T, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lyssenko V, Mamakou V, Mani KR, Meitinger T, Metspalu A, Morris AD, Nadkarni GN, Nadler JL, Nalls MA, Nayak U, Nongmaithem SS, Ntalla I, Okada Y, Orozco L, Patel SR, Pereira MA, Peters A, Pirie FJ, Porneala B, Prasad G, Preissl S, Rasmussen-Torvik LJ, Reiner AP, Roden M, Rohde R, Roll K, Sabanayagam C, Sander M, Sandow K, Sattar N, Schönherr S, Schurmann C, Shahriar M, Shi J, Shin DM, Shriner D, Smith JA, So WY, Stančáková A, Stilp AM, Strauch K, Suzuki K, Takahashi A, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tomlinson B, Torres JM, Tsai F-J, Tuomilehto J, Tusie-Luna T, Udler MS, Valladares-Salgado A, Dam RM van, Klinken JB van, Varma R, Vujkovic M, Wacher-Rodarte N, Wheeler E, Whitsel EA, Wickremasinghe AR, Dijk KW van, Witte DR, Yajnik CS, Yamamoto K, Yamauchi T, Yengo L, Yoon K, Yu C, Yuan J-M, Yusuf S, Zhang L, Zheng W, Rüeger S, Briotta Parolo P della, Joo YY, Hayes MG, Raffel LJ, Igase M, Ipp E, Redline S, Cho YS, Lind L, Province MA, Hanis CL, Peyser PA, Ingelsson E, Zonderman AB, Psaty BM, Wang Y-X, Rotimi CN, Becker DM, Matsuda F, Liu Y, Zeggini E, Yokota M, Rich SS, Kooperberg C, Pankow JS, Engert JC, Chen Y-DI, Froguel P, Wilson JG, Sheu WHH, Kardia SLR, Wu J-Y, Hayes MG, Ma RCW, Wong T-Y, Groop L, Mook-Kanamori DO, Chandak GR, FinnGen and eMERGE Consortium (2022) Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics 54(5), 560–572. 10.1038/s41588-022-01058-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Mägi R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss MH, Prins BP, Guo X, Bielak LF, Below JE, Bowden DW, Chambers JC, Kim YJ, Ng MCY, Petty LE, Sim X, Zhang W, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Ec Kardt K-U, Fischer K, Kardia SLR, Kronenberg F, Läll K, Liu C-T, Locke AE, Luan J, Ntalla I, Nylander V, Schönherr S, Schurmann C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, Ford I, Franco OH, Frayling TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jørgensen ME, Jørgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stančáková A, Strauch K, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu A, Dehghan A, Köttgen A, Abecasis GR, Meigs JB, Rotter JI, Marchini J, Pedersen O, Hansen T, Langenberg C, Wareham NJ, Stefansson K, Gloyn AL, Morris AP, Boehnke M andMcCarthy MI (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics 50(11), 1505–1513. 10.1038/s41588-018-0241-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marenberg ME, Risch N, Berkman LF, Floderus B and de Faire U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. The New England Journal of Medicine 330(15), 1041–1046. 10.1056/NEJM199404143301503. [DOI] [PubMed] [Google Scholar]
- Márquez-Luna C, Loh P-R and Price AL (2017) Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genetic Epidemiology 41(8), 811–823. 10.1002/gepi.22083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD and Kenny EE (2017) Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics 100(4), 635–649. 10.1016/j.ajhg.2017.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsunaga H, Ito K, Akiyama M, Takahashi A, Koyama S, Nomura S, Ieki H, Ozaki K, Onouchi Y, Sakaue S, Suna S, Ogishima S, Yamamoto M, Hozawa A, Satoh M, Sasaki M, Yamaji T, Sawada N, Iwasaki M, Tsugane S, Tanaka K, Arisawa K, Ikezaki H, Takashima N, Naito M, Wakai K, Tanaka H, Sakata Y, Morita H, Sakata Y, Matsuda K, Murakami Y, Akazawa H, Kubo M, Kamatani Y and Komuro I (2020) Transethnic meta-analysis of genome-wide association studies identifies three new loci and characterizes population-specific differences for coronary artery disease. Circulation: Genomic and Precision Medicine 13(3), e002670. 10.1161/CIRCGEN.119.002670. [DOI] [PubMed] [Google Scholar]
- Mega JL, Simon T, Collet J-P, Anderson JL, Antman EM, Bliden K, Cannon CP, Danchin N, Giusti B, Gurbel P, Horne BD, Hulot J-S, Kastrati A, Montalescot G, Neumann F-J, Shen L, Sibbing D, Steg PG, Trenk D, Wiviott SD and Sabatine MS (2010) Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: A meta-analysis. JAMA 304(16), 1821–1830. 10.1001/jama.2010.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazawa K and Ito K (2021) Genetic analysis for coronary artery disease toward diverse populations. Frontiers in Genetics 12, 766485. Available at https://www.frontiersin.org/articles/ 10.3389/fgene.2021.766485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen TT, Kaufman JS, Whitsel EA and Cooper RS (2009) Racial differences in blood pressure response to calcium channel blocker monotherapy: A meta-analysis. American Journal of Hypertension 22(8), 911–917. 10.1038/ajh.2009.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S,Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan A, Alver M, Armasu SM, Auro K, Bjonnes A, Chasman DI, Chen S, Ford I, Franceschini N, Gieger C, Grace C, Gustafsson S, Huang J, Hwang S-J, Kim YK, Kleber ME, Lau KW, Lu X, Lu Y, Lyytikäinen L-P, Mihailov E, Morrison AC, Pervjakova N, Qu L, Rose LM, Salfati E, Saxena R, Scholz M, Smith A V, Tikkanen E, Uitterlinden A, Yang X, Zhang W, Zhao W, Andrade M de, Vries PS de, Zuydam NR van, Anand SS, Bertram L, Beutner F, Dedoussis G, Frossard P, Gauguier D, Goodall AH, Gottesman O, Haber M, Han B-G, Huang J, Jalilzadeh S, Kessler T, König IR, Lannfelt L, Lieb W, Lind L, Lindgren CM, Lokki M-L, Magnusson PK, Mallick NH, Mehra N, Meitinger T, Memon F-U-R, Morris AP, Nieminen MS, Pedersen NL, Peters A, Rallidis LS, Rasheed A, Samuel M, Shah SH, Sinisalo J, Stirrups KE, Trompet S, Wang L, Zaman KS, Ardissino D, Boerwinkle E, Borecki IB, Bottinger EP, Buring JE, Chambers JC, Collins R, Cupples LA, Danesh J, Demuth I, Elosua R, Epstein SE, Esko T, Feitosa MF, Franco OH, Franzosi MG, Granger CB, Gu D, Gudnason V, Hall AS, Hamsten A, Harris TB, Hazen SL, Hengstenberg C, Hofman A, Ingelsson E, Iribarren C, Jukema JW, Karhunen PJ, Kim B-J, Kooner JS, Kullo IJ, Lehtimäki T, Loos RJF, Melander O, Metspalu A, März W, Palmer CN, Perola M, Quertermous T, Rader DJ, Ridker PM, Ripatti S, Roberts R, Salomaa V, Sanghera DK, Schwartz SM, Seedorf U, Stewart AF, Stott DJ, Thiery J, Zalloua PA, O’Donnell CJ, Reilly MP, Assimes TL, Thompson JR, Erdmann J, Clarke R, Watkins H, Kathiresan S, McPherson R, Deloukas P, Schunkert H, Samani NJ and Farrall M (2015) A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nature Genetics 47(10), 1121–1130. 10.1038/ng.3396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ochoa D, Karim M, Ghoussaini M, Hulcoop DG, McDonagh EM and Dunham I (2022) Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nature Reviews. Drug Discovery 21(8), 551. 10.1038/d41573-022-00120-3. [DOI] [PubMed] [Google Scholar]
- Ordovas JM and Shen J (2008) Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. Journal of Periodontology 79(8 Suppl), 1508–1513. 10.1902/jop.2008.080232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortega FB, Lavie CJ and Blair SN (2016) Obesity and cardiovascular disease. Circulation Research 118(11), 1752–1770. 10.1161/CIRCRESAHA.115.306883. [DOI] [PubMed] [Google Scholar]
- Peck RN, Smart LR, Beier R, Liwa AC, Grosskurth H, Fitzgerald DW and Schmidt BMW (2013) Difference in blood pressure response to ACE-inhibitor monotherapy between black and white adults with arterial hypertension: A meta-analysis of 13 clinical trials. BMC Nephrology 14(1), 201. 10.1186/1471-2369-14-201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng K, Bacon J, Zheng M, Guo Y and Wang MZ (2015) Ethnic variability in the expression of hepatic drug transporters: Absolute quantification by an optimized targeted quantitative proteomic approach. Drug Metabolism and Disposition: The Biological Fate of Chemicals 43(7), 1045–1055. 10.1124/dmd.115.063362. [DOI] [PubMed] [Google Scholar]
- Peterson RE, Kuchenbaecker K, Walters RK, Chen C-Y, Popejoy AB, Periyasamy S, Lam M, Iyegbe C, Strawbridge RJ, Brick L, Carey CE, Martin AR, Meyers JL, Su J, Chen J, Edwards AC, Kalungi A, Koen N, Majara L, Schwarz E, Smoller JW, Stahl EA, Sullivan PF, Vassos E, Mowry B, Prieto ML, Cuellar-Barboza A, Bigdeli TB, Edenberg HJ, Huang H and Duncan LE (2019) Genome-wide association studies in ancestrally diverse populations: Opportunities, methods, pitfalls, and recommendations. Cell 179(3), 589–603. 10.1016/j.cell.2019.08.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilia G, Chen W-M, Scuteri A, Orrú M, Albai G, Dei M, Lai S, Usala G, Lai M, Loi P, Mameli C, Vacca L, Deiana M, Olla N, Masala M, Cao A, Najjar SS, Terracciano A, Nedorezov T, Sharov A, Zonderman AB, Abecasis GR, Costa P, Lakatta E and Schlessinger D (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genetics 2(8), e132. 10.1371/journal.pgen.0020132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prapiadou S, Demel SL and Hyacinth HI (2021) Genetic and genomic epidemiology of stroke in people of African ancestry. Genes 12(11). 10.3390/genes12111825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preston RA, Materson BJ, Reda DJ, Williams DW, Hamburger RJ, Cushman WC and Anderson RJ (1998) Age-race subgroup compared with renin profile as predictors of blood pressure response to antihypertensive therapy. Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. JAMA 280(13), 1168–1172. 10.1001/jama.280.13.1168. [DOI] [PubMed] [Google Scholar]
- Quertemont E and Didone V (2006) Role of acetaldehyde in mediating the pharmacological and behavioral effects of alcohol. Alcohol Research & Health: The Journal of the National Institute on Alcohol Abuse and Alcoholism 29(4), 258–265. [PMC free article] [PubMed] [Google Scholar]
- Roberts MC, Fohner AE, Landry L, Olstad DL, Smit AK, Turbitt E and Allen CG (2021) Advancing precision public health using human genomics: Examples from the field and future research opportunities. Genome Medicine 13(1), 97. 10.1186/s13073-021-00911-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, Simone G de, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND and Wylie-Rosett J (2011) Heart disease and stroke statistics – 2011 update: A report from the American Heart Association. Circulation 123(4), e18–e209. 10.1161/CIR.0b013e3182009701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosamond WD, Folsom AR, Chambless LE, Wang CH, McGovern PG, Howard G, Copper LS and Shahar E (1999) Stroke incidence and survival among middle-aged adults: 9-year follow-up of the atherosclerosis risk in communities (ARIC) cohort. Stroke 30(4), 736–743. 10.1161/01.str.30.4.736. [DOI] [PubMed] [Google Scholar]
- Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C and Fuster V (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology 76(25), 2982–3021. 10.1016/j.jacc.2020.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankar P and Cho MK (2002) Genetics. Toward a new vocabulary of human genetic variation. Science 298(5597), 1337–1338. 10.1126/science.1074447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scriver CR (2006) Allelic and locus heterogeneity. eLS. 10.1038/npg.els.0005481. [DOI] [Google Scholar]
- Seedat YK and Parag KB (1987) A comparison of lisinopril and atenolol in black and Indian patients with mild-to-moderate essential hypertension. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde 71(3), 149–153. [PubMed] [Google Scholar]
- Shah ASV, Lee KK, Pérez JAR, Campbell D, Astengo F, Logue J,Gallacher PJ, Katikireddi SV, Bing R, Alam SR, Anand A, Sudlow C, Fischbacher CM, Lewsey J, Perel P, Newby DE, Mills NL and McAllister DA (2021) Clinical burden, risk factor impact and outcomes following myocardial infarction and stroke: A 25-year individual patient level linkage study. The Lancet Regional Health – Europe 7, 100141. 10.1016/j.lanepe.2021.100141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shetty PB, Tang H, Feng T, Tayo B, Morrison AC, Kardia SLR, Hanis CL, Arnett DK, Hunt SC, Boerwinkle E, Rao DC, Cooper RS, Risch N and Zhu X (2015) Variants for HDL-C, LDL-C, and triglycerides identified from admixture mapping and fine-mapping analysis in African American families. Circulation. Cardiovascular Genetics 8(1), 106–113. 10.1161/CIRCGENETICS.114.000481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin J and Johnson JA (2007) Pharmacogenetics of beta-blockers. Pharmacotherapy 27(6), 874–887. 10.1592/phco.27.6.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoily SS, Ahsan T, Fatema K and Sajib AA (2021) Common genetic variants and pathways in diabetes and associated complications and vulnerability of populations with different ethnic origins. Scientific Reports 11(1), 7504. 10.1038/s41598-021-86801-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinnott S, Douglas IJ, Smeeth L, Williamson E, Tomlinson LA (2020). First linedrug treatment for hypertension and reductions in blood pressure according to age and ethnicity: cohort study in UK primary care. BMJ 371, m4080 10.1136/bmj.m4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soremekun O, Karhunen V, He Y, Rajasundaram S, Liu B, Gkatzionis A, Soremekun C, Udosen B, Musa H, Silva S, Kintu C, Mayanja R, Nakabuye M, Machipisa T, Mason A, Vujkovic M, Zuber V, Soliman M, Mugisha J, Nash O, Kaleebu P, Nyirenda M, Chikowore T, Nitsch D, Burgess S, Gill D and Fatumo S (2022) Lipid traits and type 2 diabetes risk in African ancestry individuals: A Mendelian randomization study. eBioMedicine 78, 103953. 10.1016/j.ebiom.2022.103953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowinski KM, Lima JJ, Burlew BS, Massie JD and Johnson JA (1996) Racial differences in propranolol enantiomer kinetics following simultaneous i.v. and oral administration. British Journal of Clinical Pharmacology 42(3), 339–346. 10.1046/j.1365-2125.1996.03879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Allen HL, Lindgren CM, Luan J, Mägi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segrè A V, Estrada K, Liang L, Nemesh J, Park J-H, Gustafsson S, Kilpeläinen TO, Yang J, Bouatia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M, Raychaudhuri S, Scherag A, Smith AV, Welch R, Zhao JH, Aben KK, Absher DM, Amin N, Dixon AL, Fisher E, Glazer NL, Goddard ME, Heard-Costa NL, Hoesel V, Hottenga J-J, Johansson Å, Johnson T, Ketkar S, Lamina C, Li S, Moffatt MF, Myers RH, Narisu N, Perry JRB, Peters MJ, Preuss M, Ripatti S, Rivadeneira F, Sandholt C, Scott LJ, Timpson NJ, Tyrer JP, Wingerden S van, Watanabe RM, White CC, Wiklund F, Barlassina C, Chasman DI, Cooper MN, Jansson J-O, Lawrence RW, Pellikka N, Prokopenko I, Shi J, Thiering E, Alavere H, Alibrandi MTS, Almgren P, Arnold AM, Aspelund T, Atwood LD, Balkau B, Balmforth AJ, Bennett AJ, Ben-Shlomo Y, Bergman RN, Bergmann S, Biebermann H, Blakemore AIF, Boes T, Bonnycastle LL, Bornstein SR, Brown MJ, Buchanan TA, Busonero F, Campbell H, Cappuccio FP, Cavalcanti-Proença C, Chen Y-DI, Chen C-M, Chines PS, Clarke R, Coin L, Connell J, Day INM, Heijer M den, Duan J, Ebrahim S, Elliott P, Elosua R, Eiriksdottir G, Erdos MR, Eriksson JG, Facheris MF, Felix SB, Fischer-Posovszky P, Folsom AR, Friedrich N, Freimer NB, Fu M, Gaget S, Gejman P V, Geus EJC, Gieger C, Gjesing AP, Goel A, Goyette P, Grallert H, Gräßler J, Greenawalt DM, Groves CJ, Gudnason V, Guiducci C, Hartikainen A-L, Hassanali N, Hall AS, Havulinna AS, Hayward C, Heath AC, Hengstenberg C, Hicks AA, Hinney A, Hofman A, Homuth G, Hui J, Igl W, Iribarren C, Isomaa B, Jacobs KB, Jarick I, Jewell E, John U, Jørgensen T, Jousilahti P, Jula A, Kaakinen M, Kajantie E, Kaplan LM, Kathiresan S, Kettunen J, Kinnunen L, Knowles JW, Kolcic I, König IR, Koskinen S, Kovacs P, Kuusisto J, Kraft P, Kvaløy K, Laitinen J, Lantieri O, Lanzani C, Launer LJ, Lecoeur C, Lehtimäki T, Lettre G, Liu J, Lokki M-L, Lorentzon M, Luben RN, Ludwig B, Manunta P, Marek D, Marre M, Martin NG, McArdle WL, McCarthy A, McKnight B, Meitinger T, Melander O, Meyre D, Midthjell K, Montgomery GW, Morken MA, Morris AP, Mulic R, Ngwa JS, Nelis M, Neville MJ, Nyholt DR, O’Donnell CJ, O’Rahilly S, Ong KK, Oostra B, Paré G, Parker AN, Perola M, Pichler I, Pietiläinen KH, Platou CGP, Polasek O, Pouta A, Rafelt S, Raitakari O, Rayner NW, Ridderstråle M, Rief W, Ruokonen A, Robertson NR, Rzehak P, Salomaa V, Sanders AR, Sandhu MS, Sanna S, Saramies J, Savolainen MJ, Scherag S, Schipf S, Schreiber S, Schunkert H, Silander K, Sinisalo J, Siscovick DS, Smit JH, Soranzo N, Sovio U, Stephens J, Surakka I, Swift AJ, Tammesoo M-L, Tardif J-C, Teder-Laving M, Teslovich TM, Thompson JR, Thomson B, Tönjes A, Tuomi T, Meurs JBJ van, Ommen G-J van, Vatin V, Viikari J, Visvikis-Siest S, Vitart V, Vogel CIG, Voight BF, Waite LL, Wallaschofski H, Walters GB, Widen E, Wiegand S, Wild SH, Willemsen G, Witte DR, Witteman JC, Xu J, Zhang Q, Zgaga L, Ziegler A, Zitting P, Beilby JP, Farooqi IS, Hebebrand J, Huikuri H V, James AL, Kähönen M, Levinson DF, Macciardi F, Nieminen MS, Ohlsson C, Palmer LJ, Ridker PM, Stumvoll M, Beckmann JS, Boeing H, Boerwinkle E, Boomsma DI, Caulfield MJ, Chanock SJ, Collins FS, Cupples LA, Smith GD, Erdmann J, Froguel P and MAGIC (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics 42(11), 937–948. 10.1038/ng.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spence JD and Rayner BL (2018) Hypertension in blacks. Hypertension 72(2), 263–269. 10.1161/HYPERTENSIONAHA.118.11064. [DOI] [PubMed] [Google Scholar]
- Stansbury JP, Jia H, Williams LS, Vogel WB and Duncan PW (2005) Ethnic disparities in stroke: Epidemiology, acute care, and postacute outcomes. Stroke 36(2), 374–386. 10.1161/01.STR.0000153065.39325.fd. [DOI] [PubMed] [Google Scholar]
- Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group (2010) Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: A double-blind randomised trial. The Lancet 376(9753), 1658–1669. 10.1016/S0140-6736(10)60310-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun L, Clarke R, Bennett D, Guo Y, Walters RG, Hill M, Parish S, Millwood IY, Bian Z, Chen Y, Yu C, Lv J, Collins R, Chen J, Peto R, Li L and Chen Z (2019) Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. Nature Medicine 25(4), 569–574. 10.1038/s41591-019-0366-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sung YJ, Winkler TW, de Las Fuentes L, Bentley AR, Brown MR, Kraja AT, Schwander K, Ntalla I, Guo X, Franceschini N, Lu Y, Cheng C-Y, Sim X, Vojinovic D, Marten J, Musani SK, Li C, Feitosa MF, Kilpeläinen TO, Richard MA, Noordam R, Aslibekyan S, Aschard H, Bartz TM, Dorajoo R, Liu Y, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Warren HR, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, Horimoto ARVR, Hsu F-C, Jackson AU, Kähönen M, Kasturiratne A, Kühnel B, Leander K, Lee W-J, Lin K-H, ’an Luan J, McKenzie CA, Meian H, Nelson CP, Rauramaa R, Schupf N, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, Most PJ van der, Varga T V, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking D, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cabrera CP, Cade B, Caizheng Y, Campbell A, Canouil M, Chakravarti A, Chauhan G, Christensen K, Cocca M, Collins FS, Connell JM, Mutsert R de, Silva HJ de, Debette S, Dörr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Fisher VA, Forouhi NG, Franco OH, Friedlander Y, Gao H, Gigante B, Graff M, Gu CC, Gu D, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng C-K, Hirata M, Hofman A, Howard B V, Hunt S, Irvin MR, Jia Y, Joehanes R, Justice AE, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh W-P, Koistinen HA, Komulainen P, Kooperberg C, Krieger JE, Kubo M, Kuusisto J, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lewis CE, Li Y, Lim SH, Lin S, Liu C-T, Liu J, Liu J, Liu K, Liu Y, Loh M, Lohman KK, Long J, Louie T, Mägi R, Mahajan A, Meitinger T, Metspalu A, Milani L, Momozawa Y, Morris AP, Mosley THJ, Munson P, Murray AD, Nalls MA, Nasri U, Norris JM, North K, Ogunniyi A, Padmanabhan S, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Raitakari OT, Renström F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Seshadri S, Sever P, Sitlani CM, Smith JA, Snieder H, Starr JM, Strauch K, Tang H, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, Waldenberger M, Wang L, Wang YX, Wei W Bin, Williams C, Wilson G, Wojczynski MK, Yao J, Yuan J-M, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Chen Y-DI, Faire U de, Deary IJ, Esko T, Farrall M, Forrester T, Franks PW, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Hung Y-J, Jonas JB, Kato N, Kooner JS, Laakso M, Lehtimäki T, Liang K-W, Magnusson PKE, Newman AB, Oldehinkel AJ, Pereira AC, Redline S, Rettig R, Samani NJ, Scott J, Shu X-O, Harst P van der, Wagenknecht LE, Wareham NJ, Watkins H, Weir DR, Wickremasinghe AR, Wu T, Zheng W, Kamatani Y, Laurie CC, Bouchard C, Cooper RS, Evans MK, Gudnason V, Kardia SLR, Kritchevsky SB, Levy D, O’Connell JR, Psaty BM, Dam RM van, Sims M, Arnett DK, Mook-Kanamori DO, Kelly TN, Fox ER, Hayward C, Fornage M, Rotimi CN, Province MA, Duijn CM van, Tai ES, Wong TY, Loos RJF, Reiner AP, Rotter JI, Zhu X, Bierut LJ, Gauderman WJ, Caulfield MJ, Elliott P, Rice K, Munroe PB, Morrison AC, Cupples LA, Rao DC and Chasman DI (2018) A large-scale multi-ancestry genome-wide Study accounting for smoking behavior identifies multiple significant loci for blood pressure. American Journal of Human Genetics 102(3), 375–400. 10.1016/j.ajhg.2018.01.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surakka I, Wu K-H, Hornsby W, Wolford BN, Shen F, Zhou W, Huffman JE, Pandit A, Hu Y, Brumpton B, Skogholt AH, Gabrielsen ME, Walters RG, Hveem K, Kooperberg C, Zöllner S, Wilson PWF, Sutton NR, Daly MJ, Neale BM and Willer CJ (2022) Multi-ancestry meta-analysis identifies 2 novel loci associated with ischemic stroke and reveals heterogeneity of effects between sexes and ancestries. MedRxiv, 2022.02.28.22271647. 10.1101/2022.02.28.22271647. [DOI] [PMC free article] [PubMed]
- Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Fallgaard Nielsen S, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig K-H, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud A-C, Nelson CP, Poveda A, Varga T V, Caslake M, Craen AJ de, Trompet S, Luan J, Scott RA, Harris SE, Liewald DC, Marioni R, Menni C, Farmaki A-E, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF, Uria-Nickelsen M, Malarstig A, Reily DF, Hoek M, Vogt T, Lin H, Lieb W, Traylor M, Markus HF, Highland HM, Justice AE, Marouli E, Lindström J, Uusitupa M, Komulainen P, Lakka TA, Rauramaa R, Polasek O, Rudan I, Rolandsson O, Franks PW, Dedoussis G, Spector TD, Jousilahti P, Männistö S, Deary IJ, Starr JM, Langenberg C, Wareham NJ, Brown MJ, Dominiczak AF, Connell JM, Jukema JW, Sattar N, Ford I, Packard CJ, Esko T, Mägi R, Metspalu A, Boer RA de, Meer P van der, Harst P van der, Gambaro G, Ingelsson E, Lind L, Bakker PI de, Numans ME, Brandslund I, Christensen C, Petersen ER, Korpi-Hyövälti E, Oksa H, Chambers JC, Kooner JS, Blakemore AI, Franks S, Jarvelin M-R, Husemoen LL, Linneberg A, Skaaby T, Thuesen B, Karpe F, Tuomilehto J, Doney AS, Morris AD, Palmer CN, Holmen OL, Hveem K, Willer CJ, Tuomi T, Groop L, Käräjämäki A, Palotie A, Ripatti S, Salomaa V, Alam DS, Shafi Majumder A Al, Angelantonio E Di, Chowdhury R, McCarthy MI, Poulter N, Stanton A V, Sever P, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, Deloukas P, Elliott P, Zeggini E, Kathiresan S, Melander O, Kuusisto J, Laakso M, Padmanabhan S, Porteous D, Hayward C, Scotland G, Collins FS, Mohlke KL, Hansen T, Pedersen O, Boehnke M, Stringham HM, Frossard P, Newton-Cheh C, Tobin MD, Nordestgaard BG, Caulfield MJ, Mahajan A, Morris AP, Tomaszewski M, Samani NJ, Saleheen D, Asselbergs FW, Lindgren CM, Danesh J, Wain L V, Butterworth AS, Howson JM and Munroe PB (2016) Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics 48(10), 1151–1161. 10.1038/ng.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeshita T, Morimoto K, Mao XQ, Hashimoto T and Furuyama J (1993). Phenotypic differences in low Km aldehyde dehydrogenase in Japanese workers. Lancet (London, England) 341, 837–838. [PubMed] [Google Scholar]
- Takeuchi F, Akiyama M, Matoba N, Katsuya T, Nakatochi M, Tabara Y, Narita A, Saw W-Y, Moon S, Spracklen CN, Chai J-F, Kim Y-J, Zhang L, Wang C, Li H, Li H, Wu J-Y, Dorajoo R, Nierenberg JL, Wang YX, He J, Bennett DA, Takahashi A, Momozawa Y, Hirata M, Matsuda K, Rakugi H, Nakashima E, Isono M, Shirota M, Hozawa A, Ichihara S, Matsubara T, Yamamoto K, Kohara K, Igase M, Han S, Gordon-Larsen P, Huang W, Lee NR, Adair LS, Hwang MY, Lee J, Chee ML, Sabanayagam C, Zhao W, Liu J, Reilly DF, Sun L, Huo S, Edwards TL, Long J, Chang L-C, Chen C-H, Yuan J-M, Koh W-P, Friedlander Y, Kelly TN, Wei W Bin, Xu L, Cai H, Xiang Y-B, Lin K, Clarke R, Walters RG, Millwood IY, Li L, Chambers JC, Kooner JS, Elliott P, Harst P van der, Loh M, Verweij N, Zhang W, Lehne B, Mateo Leach I, Drong A, Abbott J, Tan S-T, Scott WR, Campanella G, Chadeau-Hyam M, Afzal U, Esko T, Harris SE, Hartiala J, Kleber ME, Saxena R, Stewart AFR, Ahluwalia TS, Aits I, Couto Alves ADS, Das S, Hopewell JC, Koivula RW, Lyytikäinen L-P, Postmus I, Raitakari OT, Scott RA, Sorice R, Tragante V, Traglia M, White J, Barroso I, Bjonnes A, Collins R, Davies G, Delgado G, Doevendans PA, Franke L, Gansevoort RT, Grammer TB, Grarup N, Grewal J, Hartikainen A-L, Hazen SL, Hsu C, Husemoen LLN, Justesen JM, Kumari M, Lieb W, Liewald DCM, Mihailov E, Milani L, Mills R, Mononen N, Nikus K, Nutile T, Parish S, Rolandsson O, Ruggiero D, Sala CF, Snieder H, Spasø THW, Spiering W, Starr JM, Stott DJ, Stram DO, Szymczak S, Tang WHW, Trompet S, Turjanmaa V, Vaarasmaki M, Gilst WH van, Veldhuisen DJ van, Viikari JS, Asselbergs FW, Ciullo M, Franke A, Franks PW, Franks S, Gross MD, Hansen T, Jarvelin M-R, Jørgensen T, Jukema WJ, Kähönen M, Kivimaki M, Lehtimäki T, Linneberg A, Pedersen O, Samani NJ, Toniolo D, Allayee H, Deary IJ, März W, Metspalu A, Wijmenga C, Wolffenbuttel BHW, Vineis P, Kyrtopoulos SA, Kleinjans JCS, McCarthy MI, Scott J, Chen Z, Sasaki M, Shu X-O, Jonas JB, He J, Heng C-K, Chen Y-T, Zheng W, Lin X, Teo Y-Y, Tai E-S, Cheng C-Y, Wong TY, Sim X, Mohlke KL, Yamamoto M, Kim B-J, Miki T, Nabika T, Yokota M, Kamatani Y, Kubo M and Kato N (2018) Interethnic analyses of blood pressure loci in populations of east Asian and European descent. Nature Communications, 9(1), 5052. 10.1038/s41467-018-07345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, Styrkarsdottir U, Gretarsdottir S, Thorlacius S, Jonsdottir I, Jonsdottir T, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Jonsson F, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T, Lauritzen T, Aben KK, Verbeek ALM, Roeleveld N, Kampman E, Yanek LR, Becker LC, Tryggvadottir L, Rafnar T, Becker DM, Gulcher J, Kiemeney LA, Pedersen O, Kong A, Thorsteinsdottir U and Stefansson K (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics 41(1), 18–24. 10.1038/ng.274. [DOI] [PubMed] [Google Scholar]
- Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen Y-DI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D’Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Angelantonio E Di, Drenos F, Du M, Dubé M-P, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki A-E, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe H-J, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson J-H, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin K-H, Lin L-A, Lin X, Lind L, Lindström J, Linneberg A, Liu C-T, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen L-P, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O’Connel JR, O’Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y and Sattar N (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics 50(1), 26–41. 10.1038/s41588-017-0011-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Harst P and Verweij N (2018) Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circulation Research 122(3), 433–443. 10.1161/CIRCRESAHA.117.312086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vassy JL, Durant NH, Kabagambe EK, Carnethon MR, Rasmussen-Torvik LJ, Fornage M, Lewis CE, Siscovick DS and Meigs JB (2012a) A genotype risk score predicts type 2 diabetes from young adulthood: The CARDIA study. Diabetologia 55(10), 2604–2612. 10.1007/s00125-012-2637-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walford GA, Green T, Neale B, Isakova T, Rotter JI, Grant SFA, Fox CS, Pankow JS, Wilson JG, Meigs JB, Siscovick DS, Bowden DW, Daly MJ and Florez JC (2012) Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55(2), 331–339. 10.1007/s00125-011-2353-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang T, Zhao Z, Yu X, Zeng T, Xu M, Xu Y, Hu R, Chen G, Su Q, Mu Y, Chen L, Tang X, Yan L, Qin G, Wan Q, Gao Z, Wang G, Shen F, Luo Z, Qin Y, Chen L, Huo Y, Li Q, Ye Z, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Zhao J, Xu Y, Li M, Chen Y, Wang S, Ning G, Bi Y, Shi L, Lu J and Wang W (2021) Age-specific modifiable risk factor profiles for cardiovascular disease and all-cause mortality: A nationwide, population-based, prospective cohort study. The Lancet Regional Health – Western Pacific 17, 100277. 10.1016/j.lanwpc.2021.100277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wehby GL, Domingue BW and Wolinsky FD (2018) Genetic risks for chronic conditions: Implications for long-term wellbeing. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 73(4), 477–483. 10.1093/gerona/glx154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, Lim N, Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC, Roccasecca RM, Sanna S, Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko I, Soranzo N, Tanaka T, Timpson NJ, Almgren P, Bennett A, Bergman RN, Bingham SA, Bonnycastle LL, Brown M, Burtt NP, Chines P, Coin L, Collins FS, Connell JM, Cooper C, Smith GD, Dennison EM, Deodhar P, Elliott P, Erdos MR, Estrada K, Evans DM, Gianniny L, Gieger C, Gillson CJ, Guiducci C, Hackett R, Hadley D, Hall AS, Havulinna AS, Hebebrand J, Hofman A, Isomaa B, Jacobs KB, Johnson T, Jousilahti P, Jovanovic Z, Khaw K-T, Kraft P, Kuokkanen M, Kuusisto J, Laitinen J, Lakatta EG, Luan J, Luben RN, Mangino M, McArdle WL, Meitinger T, Mulas A, Munroe PB, Narisu N, Ness AR, Northstone K, O’Rahilly S, Purmann C, Rees MG, Ridderstråle M, Ring SM, Rivadeneira F, Ruokonen A, Sandhu MS, Saramies J, Scott LJ, Scuteri A, Silander K, Sims MA, Song K, Stephens J, Stevens S, Stringham HM, Tung YCL, Valle TT, Duijn CM Van, Vimaleswaran KS, Vollenweider P, Waeber G, Wallace C, Watanabe RM, Waterworth DM, Watkins N, Witteman JCM, Zeggini E, Zhai G, Zillikens MC, Altshuler D, Caulfield MJ, Chanock SJ, Farooqi IS, Ferrucci L, Guralnik JM, Hattersley AT, Hu FB, Jarvelin M-R, Laakso M, Mooser V, Ong KK, Ouwehand WH, Salomaa V, Samani NJ, Spector TD, Tuomi T, Tuomilehto J, Uda M, Uitterlinden AG, Wareham NJ, Deloukas P, Frayling TM, Groop LC, Hayes RB, Hunter DJ, Mohlke KL, Peltonen L, Schlessinger D, Strachan DP, Wichmann H-E, McCarthy MI, Boehnke M, Barroso I, Abecasis GR and Hirschhorn JN (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics 41(1), 25–34. 10.1038/ng.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, Bradman N and Goldstein DB (2001) Population genetic structure of variable drug response. Nature Genetics 29(3), 265–269. 10.1038/ng761. [DOI] [PubMed] [Google Scholar]
- Woodward AA, Urbanowicz RJ, Naj AC and Moore JH (2022) Genetic heterogeneity: Challenges, impacts, and methods through an associative lens. Genetic Epidemiology 46(8), 555–571. 10.1002/gepi.22497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright JTJ, Dunn JK, Cutler JA, Davis BR, Cushman WC, Ford CE, Haywood LJ, Leenen FHH, Margolis KL, Papademetriou V, Probstfield JL, Whelton PK and Habib GB (2005) Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril. JAMA 293(13), 1595–1608. 10.1001/jama.293.13.1595. [DOI] [PubMed] [Google Scholar]
- Yahashi Y, Kario K, Shimada K and Matsuo M (1998) The 27-bp repeat polymorphism in intron 4 of the endothelial cell nitric oxide synthase gene and ischemic stroke in a Japanese population. Blood Coagulation & Fibrinolysis: An International Journal in Haemostasis and Thrombosis 9(5), 405–409. 10.1097/00001721-199807000-00002. [DOI] [PubMed] [Google Scholar]
- Yamashita T, Inoue H, Okumura K, Atarashi H and Origasa H (2015) Warfarin anticoagulation intensity in Japanese nonvalvular atrial fibrillation patients: A J-RHYTHM registry analysis. Journal of Cardiology 65(3), 175–177. 10.1016/j.jjcc.2014.07.013. [DOI] [PubMed] [Google Scholar]
- Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, Robinson MR, Perry JRB, Nolte IM, Vliet-Ostaptchouk J V van, Snieder H, Esko T, Milani L, Mägi R, Metspalu A, Hamsten A, Magnusson PKE, Pedersen NL, Ingelsson E, Soranzo N, Keller MC, Wray NR, Goddard ME, Visscher PM and Study TLC (2015) Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nature Genetics 47(10), 1114–1120. 10.1038/ng.3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- You JHS, Chan FWH, Wong RSM and Cheng G (2005) Is INR between 2.0 and 3.0 the optimal level for Chinese patients on warfarin therapy for moderate-intensity anticoagulation? British Journal of Clinical Pharmacology 59(5), 582–587. 10.1111/j.1365-2125.2005.02361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, Brauer M, Kutty VR, Gupta R, Wielgosz A, AlHabib KF, Dans A, Lopez-Jaramillo P, Avezum A, Lanas F, Oguz A, Kruger IM, Diaz R, Yusoff K, Mony P, Chifamba J, Yeates K, Kelishadi R, Yusufali A, Khatib R, Rahman O, Zatonska K, Iqbal R, Wei L, Bo H, Rosengren A, Kaur M, Mohan V, Lear SA, Teo KK, Leong D, O’Donnell M, McKee M and Dagenais G (2020) Modifiable risk factors, cardiovascular disease, and mortality in 155,722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. The Lancet 395(10226), 795–808. 10.1016/S0140-6736(19)32008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zerba KE, Ferrell RE and Sing CF (1996) Genotype-environment interaction: Apolipoprotein E (ApoE) gene effects and age as an index of time and spatial context in the human. Genetics 143(1), 463–478. 10.1093/genetics/143.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zerba KE, Ferrell RE and Sing CF (2000) Complex adaptive systems and human health: The influence of common genotypes of the apolipoprotein E (ApoE) gene polymorphism and age on the relational order within a field of lipid metabolism traits. Human Genetics 107(5), 466–475. 10.1007/s004390000394. [DOI] [PubMed] [Google Scholar]
- Zerba KE and Sing CF (1993) The role of genome type–environment interaction and time in understanding the impact of genetic polymorphisms on lipid metabolism. Current Opinion in Lipidology, 4(2), 152–162. Available at https://journals.lww.com/co-lipidology/Fulltext/1993/04000/The_role_of_genome_type_environment_interaction.11.aspx [Google Scholar]
- Zhao G, Marceau R, Zhang D and Tzeng J-Y (2015) Assessing gene–environment interactions for common and rare variants with binary traits using gene-trait similarity regression. Genetics 199(3), 695–710. 10.1534/genetics.114.171686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng J, Zhang Y, Rasheed H, Walker V, Sugawara Y, Li J, Leng Y, Elsworth B, Wootton RE, Fang S, Yang Q, Burgess S, Haycock PC, Borges MC, Cho Y, Carnegie R, Howell A, Robinson J, Thomas LF, Brumpton BM, Hveem K, Hallan S, Franceschini N, Morris AP, Köttgen A, Pattaro C, Wuttke M, Yamamoto M, Kashihara N, Akiyama M, Kanai M, Matsuda K, Kamatani Y, Okada Y, Walters R, Millwood IY, Chen Z, Davey Smith G, Barbour S, Yu C, Åsvold BO, Zhang H and Gaunt TR (2022) Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease. International Journal of Epidemiology 50(6), 1995–2010. 10.1093/ije/dyab203. [DOI] [PMC free article] [PubMed] [Google Scholar]


