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BACKGROUND: The association between prenatal household air pollution (HAP) exposure and childhood blood pressure (BP) is unknown.
OBJECTIVE: Within the Ghana Randomized Air Pollution and Health Study (GRAPHS) we examined time-varying associations between a) maternal
prenatal and b) first-year-of-life HAP exposure with BP at 4 years of age and, separately, whether a stove intervention delivered prenatally and contin-
ued through the first year of life could improve BP at 4 years of age.

METHODS: GRAPHS was a cluster-randomized cookstove intervention trial wherein n=1,414 pregnant women were randomized to one of two stove
interventions: a) a liquefied petroleum gas (LPG) stove or improved biomass stove, or b) control (open fire cooking). Maternal HAP exposure over
pregnancy and child HAP exposure over the first year of life was quantified by repeated carbon monoxide (CO) measurements; a subset of women
(n=368) also performed one prenatal and one postnatal personal fine particulate matter (PM2:5) measurement. Systolic and diastolic BP (SBP and
DBP) were measured in n=667 4-y-old children along with their PM2:5 exposure (n=692). We examined the effect of the intervention on resting BP
z-scores. We also employed reverse distributed lag models to examine time-varying associations between a) maternal prenatal and b) first-year-of-life
HAP exposure and resting BP z-scores. Among those with PM2:5 measures, we examined associations between PM2:5 and resting BP z-scores. Sex-
specific effects were considered.
RESULTS: Intention-to-treat analyses identified that DBP z-score at 4 years of age was lower among children born in the LPG arm (LPG b= − 0:20;
95% CI: −0:36, −0:03) as compared with those in the control arm, and females were most susceptible to the intervention. Higher CO exposure in late
gestation was associated with higher SBP and DBP z-score at 4 years of age, whereas higher late-first-year-of-life CO exposure was associated with
higher DBP z-score. In the subset with PM2:5 measurements, higher maternal postnatal PM2:5 exposure was associated with higher SBP z-scores.

DISCUSSION: These findings suggest that prenatal and first-year-of-life HAP exposure are associated with child BP and support the need for reductions
in exposure to HAP, with interventions such as cleaner cooking beginning in pregnancy. https://doi.org/10.1289/EHP13225

Introduction
Blood pressure (BP), a critical component of cardiovascular health
(CVH), may be programmed early in life.1 Evidence from longitu-
dinal cohort studies suggests that children with higher BP are at
increased risk for higher BP in adulthood,2–4 as well as risk for
indicators of cardiovascular disease (CVD), such as subclinical
atherosclerosis.5–7Worldwide, CVD is a leading cause ofmorbidity
and mortality. In Africa, CVD is accounting for an increasingly
greater proportion of total deaths (18% in 2019 compared with 13%
in 2009).8 Despite this disease burden, most evidence informing our
understanding of modifiable risk factors for poorer CVH and
CVD risk comes from high-income countries where risk factors
differ from resource-poor settings. Better characterization of

factors in low- and middle-income countries (LMICs) that
increase risk of poorer CVH and interventions to reduce risk is
imperative.

In most of sub-Saharan Africa, including in Ghana, >75% of
the population burns biomass and other solid fuels to meet their
daily cooking and heating needs,9 resulting in high household air
pollution (HAP) exposures.10 Worldwide, ∼ 2:3million deaths
are attributed to HAP every year, with the highest proportion of
HAP-related deaths (45%) attributable to CVD.11 The effect of
HAP exposure in early life on childhood BP is poorly described,
but evidence from studies focusing on prenatal ambient air pol-
lution exposure supports a plausible link.12,13 Mechanistically,
pollutants may cause an imbalance of the autonomic nervous
system (ANS) with higher sympathetic and lower parasympa-
thetic tone.14,15 In addition, evidence suggests that oxidative
stress, inflammation, and endothelial dysfunction contribute to
increased arterial vasoconstrictor responsiveness, leading to ele-
vated BP.15–17 A few studies suggest sex-specific cardiovascular
effects of prenatal air pollution exposure,18,19 but the evidence is
mixed.12,13

Early life interventions that improve childhood BP, and thus
CVH programming, could be efficient and powerful tools to
address the growing burden of CVD in LMICs.20 Supporting this
concept, studies have examined the impact of early life nutri-
tional interventions on BP, finding that those interventions have
had a sustained effect on BP after the intervention ended.20 For
instance, results from the Special Turku Coronary Risk Factor
Intervention Project for Children (STRIP) study found that a die-
tary intervention started in infancy lowered systolic and diastolic
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BP (SBP and DBP) throughout childhood21 and was effective in
the prevention of metabolic syndrome between 15 and 20 years
of age.22

To evaluate the effect of HAP exposure in early life on childhood
BP, we leveraged a Ghanaian pregnancy cohort derived from the
Ghana Randomized Air Pollution and Health Study (GRAPHS).
GRAPHS primary outcomes were birth weight and childhood pneu-
monia risk, and these findings have been reported elsewhere.23,24

GRAPHS was a cluster-randomized cookstove intervention trial
wherein n=1,414 pregnant women were randomized to one of two
cookstove interventions: a) a liquefied petroleum gas (LPG) stove
or improved biomass stove, or b) control (open fire cooking).25

GRAPHS also measured maternal exposure to HAP as represented
by carbon monoxide (CO) at four time points over pregnancy. In a
randomly selected subset of n=697 children, GRAPHS continued
longitudinal follow-up through 4 years of child age, when resting BP
wasmeasured.Wefirst examinedwhether a stove intervention deliv-
ered prenatally and continued through the first year of life could
improve resting BP at 4 years of age in an intention-to-treat analysis.
We next examined time-varying associations between maternal pre-
natal and childfirst-year-of-life (hereafter,first year of life) CO expo-
sures, and, in a subset pre- and postnatal PM2:5 exposures, as well
as age 4-y resting SBP and DBP. Finally, we explored sex-specific
effects.

Methods

Study Participants
GRAPHSwas a cluster-randomized cookstove intervention trial car-
ried out in the Bono East region of Ghana and has been described in
detail elsewhere.25,26 Briefly, 1,414 nonsmoking pregnant women
were enrolled prior to ultrasound-confirmed27 24th week of ges-
tation from communities in the Kintampo North Municipality
and Kintampo South District of Ghana between June 2013 and June
2015. Pregnant women in the intervention arms received either an
LPG stove or two improved biomass stoves; those in the LPG arm
were provided with free fuel from enrollment through the index
child’s first birthday. The primary outcomes of GRAPHSwere birth
weight and severe pneumonia risk, which have been reported else-
where.23,24,26 In 2017, additional funding was obtained to continue
longitudinal follow-up of n=700 mother–child pairs with contin-
ued exposure and health phenotyping assessments,28 including
resting BP at 4 years of age. We intentionally oversampled chil-
dren from the control and LPG study arms because the effect of the
improved biomass stove intervention on exposure reduction was
minimal.29 Table S1 demonstrates baseline characteristics among
the n=697 children enrolled as compared with the n=771 chil-
dren who were not enrolled in the follow-up cohort. Children who
completed the age 4-y study visit with valid BP measures are
included in the present analyses. Procedures were approved by the
Kintampo Health Research Centre (KHRC) Institutional Ethics
Committee (IRB 2017-31), the Ghana Health Service Ethics
Review Committee, and institutional review boards at Columbia
University (IRB-AAAR4373) and Icahn School of Medicine at
Mount Sinai (STUDY-17-01265). Informed consent was obtained
from all mothers.

Stove Interventions
As previously described,25,30 GRAPHS included two stove inter-
ventions, an LPG stove and an improved biomass stove, that were
delivered prenatally and supported until the index infant was 1 year
of age. Women randomized to the control arm continued to cook
with traditional, open fire stoves. In the LPG intervention arm,
households received one two-burner LPG cookstove, two 14:5-kg

LPG cylinders, and LPG cylinder refills as needed. In the improved
biomass stove arm, households received two BioLite Home
Stoves (BioLite Inc.). The improved biomass stove allowed con-
tinued use of solid fuels, but the stove design improves heat trans-
fer efficiency and theoretically increases combustion efficiency
via a thermoelectric-powered fan circulating air through the com-
bustion chamber.31 All study households received mosquito bed
nets and health insurance. Fieldworkers visited each household
weekly to ascertain maternal health over pregnancy and infant
health following delivery, as well as to facilitate stove and mos-
quito net repairs. As previously reported, the LPG intervention
resulted in a 47% [95% confidence interval (CI): 36, 56%] reduc-
tion in average maternal CO exposure between pregnancy and
the first year of life as compared with control, which corresponds
to an absolute reduction of 0:52 ppm (95% CI: 0.28, 0.75 ppm
lower).29 In the post-intervention period (1 y from birth), the
mean± standard deviation ðSDÞ of the maternal personal PM2:5
exposure was 51:5±26:9 lg=m3 in the LPG arm and 74:7±
40:2 lg=m3 in the control arm. When adjusting for monitoring
device wearing (the number of hours the exposure monitoring
device was worn by the participant during each monitoring ses-
sion), this 32% difference between arms increased to 50%.29,32
There was no significant difference in CO or PM2:5 exposure
between the improved biomass and control arms.

At the child age 4-y visit, we queried mothers on household
cooking practices over the past week, specifically, “I want to
ask some questions about cooking [morning, afternoon, or eve-
ning] meals for the household over the past week. What stove
did you use most often to prepare the [morning, afternoon, or
evening] meal?” Categorical responses included the following:
open mokyia (stone/mud/clay), closed mokyia (stone/mud/clay),
metal mokyia, sawdust stove, improved wood stove, coal pot, ker-
osene stove, LPG stove, electric stove, other, and not applicable
(NA)-no meal cooked. The Fisher exact test was used to examine
differences in cooking stove by study arm.

Prenatal and Infant CO Exposures
As previously described,29 maternal CO exposure was assessed
at four time points over pregnancy (with the first assessment
taking place at the time of enrollment and the three others
spaced at 3-wk intervals), and the first-year-of-life CO expo-
sure was assessed at three time points over the child’s first year
of life (when the child was 1 month old, 4 months old, and 1
year old) using the Lascar EL-CO-USB Data Logger (Lascar
Electronics). Each monitoring session lasted 72 h. The devices
were programmed to record CO concentrations every 10 s. The
devices report concentrations between 0 and 1,000 ppm and
have a manufacturer-reported precision of ± 6%. Participants
were asked to wear the personal monitor except while sleeping
or bathing, during which times they were told to keep the mon-
itor nearby and off the floor. The Lascar monitors were exposed
to certified span gas (50 ppm CO in zero air) at the KHRC labo-
ratory every 6 wk to quantify responses and adjust field values.
Additional quality assurance/quality control (QA/QC) checks
on the functioning of the CO monitors were made based on run
time and visual inspection of each deployment, following
GRAPHS protocols.29 As with prior analyses,23,24,30 data used
in this analysis was restricted to the first 48 h of each 72-h
deployment and passed all QA/QC checks (including deploy-
ment duration, visual validity, and correction factor confi-
dence).29 Deployments deemed invalid based on these checks
were excluded. For each CO measurement, we assigned the
gestational or infant age at the time of measurement using the
recorded date of each CO measurement and ultrasound-derived
gestational dates or date of birth, respectively.
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PM2:5 Exposure Measurements
As previously reported,29 a convenience sample subset of pregnant
women performed one 72-h personal, prenatal PM2:5 exposure
measurement and, subsequently, mothers performed one 72-h per-
sonal, postnatal measurement over the infant’s first year of life,
given that the monitors were assumed to be too bulky for the
infants to wear. At child age 4-y, children performed one 48-h per-
sonal PM2:5 exposure measurement ending the day of or prior to
BP measurement. All measurements were performed using the
MicroPEM (RTI International), which provides real-time particle
monitoring using a light-scattering nephelometer and gravimetric
analysis via a Teflon 25-mm filter (Pall Biotech) for integrated
PM2:5 analysis, as well as an accelerometer to assess wearing com-
pliance. The MicroPEM was run following the manufacturer’s
specifications at a 50% duty cycle (30 s on, 30 s off) and flow rate
of 0.4 LPM. Pre and post sampling, filters were stored at 4°C and
shipped on ice (post sampling only) between Columbia University
and KHRC for pre and post weighing.29 Baseline adjustment pre
and post sampling was performed using a high-efficiency particu-
late air filter, and weights were field-blank adjusted as described by
Chillrud et al.29 The net filter weight of PM2:5 was used to adjust
the mean nephelometer response over the entire deployment period.
All PM2:5 measurements were also adjusted for field and laboratory
blanks. Maternal deployments lasting <48 h were removed from
the data analyses, and the mean of the first 48 h was used in the
analyses. Similarly, age 4-y child deployments were included if
they lasted at least 24 h, and the mean of the first 24 h was used in
analyses. These QC measures explain the sample size reductions
when we include PM2:5 in the models.

BPMeasurements
Child resting BP was measured at an age 4-y visit using the oscil-
lometric and digital OMRON BP742N BP monitor (OMRON
Healthcare) per study clinical protocol. Following a 10-min pe-
riod of seated rest in a standard wooden clinic chair, trained field-
workers measured SBP and DBP using an appropriately fitted
pediatric BP cuff on the left arm. We performed two repeated BP
measurements spaced apart by 5 min of rest. We averaged these
two measurements and performed a z-score transformation by
subtracting the sample mean and dividing by the sample SD. The
z-score of average SBP and DBP measurements were used in
analyses.

Covariates
To aid in isolating the direct association between HAP exposure
and child BP beyond the cluster-randomized nature of the cook-
stove intervention (which itself then may largely determine HAP
exposures), we assembled a range of variables that could plausibly
covary with both the exposure and outcome. These variables were
selected using directed acyclic graph theory.33 Information on
maternal ethnicity (categorical variable) and secondhand smoke
exposure, defined as a smoking household member (categorical
variable; yes vs. no), were collected through questionnaires during
the GRAPHS enrollment visit. Ethnicity is expected to be a con-
founder because it predicts cooking practices (which are associ-
ated with HAP exposure) and food choices (which are associated
with BP). Numerical labels were employed to represent ethnic
groups owing to discrimination and privacy concerns. As previ-
ously described,30 questionnaires assessed household character-
istics, which were enumerated as counts and used to generate a
household asset index, a measure of relative household wealth.34
Maternal SBP and DBP were measured once at enrollment fol-
lowing 10 min of seated rest and using an oscillometric BP
machine. Child sex (female vs. male) was determined at birth

from the birth record or, in the event of a home birth, the mother.
At the age 4-y visit, we measured child weight (Seca Clara 803
Digital Scale) and height (Seca 213 Portable Stadiometer) in
duplicate to calculate child body mass index (BMI; continuous
variable in kilograms per meter squared). REDCAP boundaries
flagged implausible values; during data analysis, anthropometry
data distributions were examined and fieldworker manual entry
books were referenced to confirm or correct entries.

Statistical Analyses
We first examined differences in personal PM2:5 exposure meas-
urements by study arm by clustered Wilcoxon rank sum testing
among all study children with valid age 4-y PM2:5 measures. We
then performed unadjusted intention-to-treat using generalized lin-
ear regression to examine whether the GRAPHS stove arm (LPG
or improved biomass as compared with control) was associated
with BP z-scores at 4 years of age. We explored sex-specific
effects, first, by introducing a study arm (control, LPG, improved
biomass) × sex interaction term in the main regression models,
and, second, by examining associations in models stratified by
child sex. Given prior associations, a sensitivitymodel additionally
adjusted for maternal BP at the time of enrollment. All models
included cluster-robust standard errors (SEs) at the level of the
community (intervention cluster).

We next employed distributed lag models (DLMs), a data-
driven statisticalmethod, to examine associations between prenatal
and first-year-of-life CO exposures, considered separately, and BP
z-scores.35 DLMs yield time-varying estimates of underlying ex-
posure–response relationships while adjusting for both exposures
at other time points and covariates. This approach has been exten-
sively applied to studies examining the effects of prenatal environ-
mental exposures on child health outcomes.36,37 Traditional DLMs
require each participant to have an exposure measure at each time
point (corresponding, in our case, to a givenweek either over gesta-
tion or over the first year of life); however, recently developed sta-
tistical methods have extended this model by interchanging the
outcome and exposure and employing a functional spline model
with time-varying coefficients (e.g., a reversed DLM; rDLM) to
allow for exposuremeasurements occurring at differing time points
over gestation or the first year of life.35,38 Using the gamm4 pack-
age,39 we implemented rDLMs with cubic splines; penalty selec-
tion parameter was done using the default restricted maximum
likelihood. Along with point estimates from these models, we
report p-values from F-tests on smooth terms, which are joint tests
for equality to zero for all the coefficients making up a single spline
term.

We examined the distribution of gestational and infant age in
weeks for all available COmeasurements (Figure S1A,B).We per-
formed separate rDLMs for prenatal and first-year-of-life CO
exposures, which were standardized using the interquartile range
(IQR; the range comprised between the 25th and 75th percentile of
the distribution). Leveraging the rDLM framework, we examined
associations between repeated CO exposures and age 4-y resting
SBP andDBP z-scores, considered separately. For each regression,
we plotted the rDLM model output with 95% CIs to demonstrate
the time-varying associations. A sensitive window of exposure
was identified where the estimated CIs did not include zero. All
models included a random effect for the participant to account for
the repeated CO measurements. Multivariable model 1 adjusted
for child sex and BMI, maternal ethnicity and enrollment BP, sec-
ondhand tobacco smoke exposure, and household asset index.
Multivariable model 2 additionally adjusted for child age 4-y
PM2:5 exposure, and we included inverse probability weights to
account for the age 4-y PM2:5 exposure measurements available in
only a subset. Models investigating the association between first-
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year-of-life CO exposure and age-y 4 BP additionally adjusted for
maternal prenatal average CO exposure to isolate the effect of first-
year-of-life CO exposure. Sex-specific effects were explored
through stratifiedmodels usingmultivariablemodel 1.

PM2:5 measurements were available at only three time points,
and only a subset had all three measurements. Therefore, we used
generalized linear regression to examine associations between all
available pre- and postnatal PM2:5 exposure and BP z-scores,
modeled per IQR increase, in the subset of participants with these
measures. Specifically, we performed bivariate analyses and mul-
tivariable analyses with models 1 and 2 as above. Point estimates
were considered significant if the associated p-value was <0:05.

Analyses were run in R [version 4.2.2 (“Innocent and Trusting”);
R Development Core Team]. The clusrank package40 was used to
perform the clustered Wilcoxon rank sum test. The sandwich pack-
age41 was used for estimating cluster-robust SEs. The rDLM frame-
workwas implemented using the gamm4 package.39

Results
Cohort characteristics, which were similar for participants included
in the longitudinal cohort (Table S2) compared with those who
were not (Table S3), are presented in Table 1. Of the n=697 chil-
dren recruited into the longitudinal cohort study, n=669 (96%)
had resting BP data. Two hundred ninety (43%) children were
born to mothers randomized to the control arm, 124 (19%) to the
improved biomass arm, and 255 (38%) to the LPG arm. Of these,
n=663 (99%) had at least one valid maternal prenatal CO

measurement and n=540 (81%) had at least one valid first-year-
of-life CO measurement. Repeated CO measures were common
for both maternal prenatal and first-year-of-life periods. For exam-
ple, n=273 (41%) children with valid maternal prenatal CO had at
least three prenatal COmeasures and n=240 (36%) had two prena-
tal measures, whereas n=69 (13%) infants with valid first-year-of-
life CO had three first-year-of-life CO measures and n=206 (38%)
had two first-year-of-life COmeasures. Among those with repeated
COmeasurements, the repeatedprenatal andfirst-year-of-lifemeasures
weremoderately correlated (correlation of eachmeasurewith individu-
al’s average, prenatal r=0:59; child r=0:69). Approximately half of
the cohort had a valid maternal prenatal (n=368, 55%) and maternal
postnatal (n=359, 54%) PM2:5 measurement. Of the 692 children
who performed age 4-y PM2:5 personal exposure monitoring, 494
(71%) had valid 24-h estimates and 396 (57%) had valid 48-h estimates
following QA/QC protocols. Average prenatal and first-year-of-life
CO exposures were not correlated with the age 4-y 24-h PM2:5 expo-
sure (prenatal r=0:001, p=0:89; postnatal r= − 0:03, p=0:53); a
complete correlation matrix of exposure measures is presented in
Figure S2. Exposure results for the original GRAPHS cohort are
described elsewhere.29

Approximately half (n=339, 51%) of the children were female,
and the median age at BP measurement was 4.0 y (IQR: 3.9–4.2).
The repeated systolic and diastolic measures within individuals
were correlated (r=0:70 and r=0:62, respectively). Median SBP
and DBP were 90mmHg (IQR: 84–96) and 64mmHg (IQR: 59–
68), respectively. At 4 years of child age, cooking habits were col-
lected on n=691 households (Table S4). Across all meals, no

Table 1. GRAPHS cohort characteristics, women and children (n=669), Ghana.

Variable
Overall
(n=669)

Males
(n=330)

Females
(n=339)

Intervention arm [n (%)]
Control 290 (43.3) 133 (40.3) 157 (46.3)
Improved biomass 124 (18.5) 71 (21.5) 53 (15.7)
LPG 255 (38.1) 126 (38.2) 129 (38.1)
Ethnicity [n (%)]a

1 98 (14.6) 47 (14.2) 51 (15)
2 97 (14.5) 50 (15.2) 47 (13.9)
3 444 (66.4) 218 (66.1) 226 (66.7)
4 30 (4.5) 15 (4.5) 15 (4.4)
Secondhand smoke exposure [n (%)]
Yes 132 (19.7) 67 (20.3) 65 (19.2)
No 537 (80.3) 263 (79.7) 274 (80.8)
Asset index [median (IQR)] −0:42 (−1:30 to 0.80) −0:37 (−1:27 to 0.94) −0:49 (−1:31 to 0.7)
Child age [y; median (IQR)] 4.0 (3.9–4.2) 4.0 (3.9–4.2) 4.0 (3.9–4.2)
Child sex [n (%)]
Male 330 (49.3) — —
Female 339 (50.7) — —
Child BMI [kg=m2; median (IQR)] 15.1 (14.4–16.0) 15.4 (14.6–16.2) 14.9 (14.3–15.8)
Missing [n (%)] 2 (0.3) 0 (0) 2 (0.6)
SBP [mmHg; median (IQR)] 90 (84–96) 91 (85–97) 88.5 (83.3–95)
DBP [mmHg; median (IQR)] 63.5 (58.5–68) 62.8 (58.5–69) 63.5 (59–68)
Maternal prenatal 48-h CO average [ppm; median (IQR)]b 0.97 (0.6–1.56) 0.95 (0.59–1.52) 1.01 (0.61–1.61)
Missing [n (%)] 36 (5.4) 19 (5.8) 17 (5.0)
Child postnatal 48-h CO average [ppm; median (IQR)]c 0.49 (0.23–0.99) 0.48 (0.22–0.99) 0.5 (0.24–1)
Missing [n (%)] 129 (19.3) 63 (19.1) 66 (19.5)
Maternal prenatal 48-h PM2:5 [lg=m3; median (IQR)]d 58.1 (38.5–91.3) 55.7 (37.8–92.1) 63.1 (42–85.4)
Missing [n (%)] 301 (45.0) 139 (42.1) 162 (47.8)
Maternal postnatal 48-h PM2:5 [lg=m3; median (IQR)]d 55 (37–80.5) 54.4 (34.6–77.2) 56.2 (37.8–84.1)
Missing [n (%)] 310 (46.3) 151 (45.8) 159 (46.9)
Child age 4-y 24-h PM2:5 [lg=m3; median (IQR)] 55.9 (34.3–84.9) 60 (34.6–86.2) 53.8 (34.1–82.8)
Missing [n (%)] 196 (29.3) 100 (30.3) 96 (28.3)

Note: —, not applicable; BMI, body mass index; CO, carbon monoxide; DBP, diastolic blood pressure; GRAPHS, Ghana Randomized Air Pollution and Health Study; IQR, interquar-
tile range; LPG, liquefied petroleum gas; PM2:5, fine particulate matter (PM with an aerodynamic diameter of ≤2:5 lm); SBP, systolic blood pressure.
aNumerical labels were employed owing to discrimination and privacy concerns.
bPrenatal maternal personal CO exposure was measured in parts per million at four time points. Prenatal average CO exposures include pre- and post-intervention exposure
measurements.
cPostnatal child personal CO exposure was measured in parts per million at three time points.
dPre- and postnatal maternal PM2:5 exposure measurements were performed once in each time point.
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mother reported using the LPG stove, which was not unexpected
given that the trial had ended roughly 3 y prior and thus families no
longer had access to free LPG cylinder refills. The open mokyia
stove (i.e., the traditional stone, mud, or clay open fire stove) was
the primary stove used almost exclusively across all former study
participants. Among children who had valid age 4-y 24-h or 48-h
PM2:5 measurements there was no difference in exposure by study
arm [24-h median (IQR): control 61lg=m3 (38.1–90.6); improved
biomass 68:1 lg=m3 (41.1–95.7); LPG 45:7lg=m3 (29.6–73.8);
clustered Wilcoxon rank sum p=0:10. 48-h median (IQR): control
58:8 lg=m3 (37.6–87.4); improved biomass 75:9lg=m3 (42.8–
104.4); LPG 49:4 lg=m3 (31.9–73.8); clustered Wilcoxon rank
sum p=0:26].

Estimated Associations between Stove Intervention
Assignment and BP at 4 Years of Age
In intention-to-treat models (n=669), we observed that children
born to mothers randomized to the LPG arm had lower DBP
z-scores (LPG b= − 0:20; 95% CI: −0:36, −0:03; p=0:02) as
compared with control (Figure 1; Table S5). In millimeters mer-
cury, this reduction is equivalent on average to a 1:64-mmHg
(95% CI: 0.25, 2.95), or 3%, reduction in DBP at 4 years of age.
No association was seen between the improved biomass stove
intervention and SBP or DBP. Sensitivity analysis additionally
adjusting for maternal BP (n=669) found that children in the
LPG arm had lower DBP z-scores (LPG b= − 0:24; 95% CI:
−0:40, −0:07; p<0:01) and suggested lower SBP z-scores (LPG
b= − 0:15; 95% CI: −0:31, 0.02; p=0:07) as compared with
control (Figure S3).

In sex-stratified models, we observed that females born to
mothers randomized to the LPG arm had lowerDBP z-scores (LPG
b= − 0:27; 95% CI: −0:49, −0:04) and lower SBP z-scores (LPG
b= − 0:23; 95% CI: −0:46, −0:01) as compared with control
(n=339; Table 2). In millimeters mercury, this reduction is equiv-
alent on average to a 2:22-mmHg (95%CI: 0.33, 4.04) or 4% reduc-
tion in DBP and a 2:03mmHg (95% CI: 0.09, 4.06) or 2%
reduction in SBP at 4 years of age. There was no difference in SBP
or DBP among females in the improved biomass arm as compared

with control. Among males (n=330), no differences in SBP or
DBP in either arm were identified as compared with control.
Sensitivity models additionally adjusting for maternal BP did not
substantively alter these findings (Figure S3).

Estimated Time-Varying Effect of Maternal Prenatal CO
Exposure on BP at 4 Years of Age
Using multivariable rDLM models (model 1 n=1,475 observa-
tions from n=631 children; model 2 n=1,212 observations from
n=464 children), we found that CO exposure in late gestation
(second half of the third trimester) was positively associated with
SBP z-score (multivariable model 1 p=0:08, multivariable model
2 p=0:02). Multivariable model 2 identified a sensitive window
between 31 and 40 wk, where higher prenatal CO exposure was
positively associated with SBP z-score (Figure 2A; Figure S4).
Similarly, we found that CO exposure in late gestation was pos-
itively associated with DBP z-score (multivariable model 1
p=0:01, multivariable model 2 p<0:01). Both models identified
a sensitive window of exposure in late gestation (multivariable
model 1: 31–40wk of gestation; multivariablemodel 2: 29–40wk of
gestation), where CO exposure was positively associated with DBP
z-score (Figure 2B; Figure S4). In sex-specific analyses, age 4-y
females (n=828 observations from n=321 children; p<0:01)
whose mothers were exposed to higher CO exposure during late
gestation had higher DBP z-scores (Figure 3C). We did not
observe an association between maternal prenatal CO exposure
and SBP in males (n=826 observations from n=319 children;
p=0:04) or females (Figure 3A,B).

Estimated Time-Varying Effect of First-Year-of-Life CO
Exposure on BP at 4 Years of Age
Using multivariable rDLM models (model 1 n=827 observations
from n=520 children; model 2 n=618 observations from n=382
children), we identified a positive association between first-year-
of-life CO exposure and DBP z-score in multivariable model 1
(p<0:01) with a sensitive window between 30 and 40 wk (here-
after referred to as late first year of life); however, this association

Figure 1. Systolic and diastolic blood pressure (SBP and DBP) z-scores by GRAPHS stove intervention arm. This figure shows the intention-to-treat associa-
tions between GRAPHS stove intervention arm and SBP and DBP z-scores at 4 years of age, using cluster-robust generalized linear regression models. In
GRAPHS, pregnant women were randomized to open fire (control), liquefied petroleum gas (LPG), or improved biomass stoves that were supported over preg-
nancy and through the index child’s first year of life. Resting SBP and DBP were measured at the child age 4-y visit, 3 y after support for the intervention
ended. The pinteraction term was only significant for DBP z-score in females in the improved biomass arm (pinteraction = 0:03); all other pinteraction terms were
>0:10. Numeric values can be found in Table S3. Note: GRAPHS, Ghana Randomized Air Pollution and Health Study; LPG, liquefied petroleum gas.
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was not identified in multivariable model 2 (p=0:16; Figure 4B;
Figure S5). No association was identified between first-year-of-life
CO exposure and SBP (Figure 4A; Figure S5). Amongmales only,
we observed a trend for association between child CO exposure
and DBP z-score (n=415 observations from n=262 children;
p=0:05); no other sex-specific associations were identified with
child CO exposure (Figure 5A–D).

Estimated Associations between Maternal Pre- and
Postnatal PM2:5 and BP at 4 Years of Age
Using multivariable model 1 (n=237) considering both maternal
pre- and postnatal PM2:5 but not additionally adjusting for age 4-y
PM2:5 exposure, we found no association between maternal prena-
tal PM2:5 exposure and SBP or DBP z-scores (Table 2). Higher
maternal postnatal PM2:5 exposure was associated with higher
SBP z-score (b=0:18; 95% CI: 0.02, 0.33, per IQR increase in
PM2:5 exposure; Table 2). No association was identified between
maternal postnatal PM2:5 exposure and DBP z-score. In models
additionally adjusting for age 4-y PM2:5 exposure (n=168), we
found that higher maternal postnatal PM2:5 exposure was posi-
tively but not statistically significantly associated with SBP z-score

(b=0:15; 95% CI: −0:02, 0.32; p=0:079) per IQR increase in
PM2:5 exposure.

Discussion
By combining evidence from a randomized controlled LPG inter-
vention begun prenatally and continued through the first year of
life and exposure–response analyses, these data provide evidence
for the harmful effects of HAP exposure on child BP beginning
prenatally. Specifically, this work provides evidence that a prena-
tally delivered LPG stove intervention with previously demon-
strated exposure reductions29 is associated with lower DBP at 4
years of age, 3 y after the intervention support ended and at a time
when no household reported LPG stove use. Further, we find that
higher late gestation exposures are associated with higher SBP
and DBP at 4 years of age and late-first-year-of-life CO expo-
sures are associated with higher DBP at 4 years of age. In a lim-
ited subset of children with PM2:5 exposures, we found evidence
suggesting an association between higher maternal postnatal
PM2:5 exposure and higher SBP. Taken together, these results
suggest that early life HAP exposure negatively impacts BP,
with implications for life course CVD risk, and they establish

Table 2. Associations between pre- and postnatal maternal PM2:5 exposures (per interquartile range increase) and child age 4-y blood pressure in the GRAPHS
intervention study, Ghana.

Outcomes

Prenatal PM2:5 Postnatal PM2:5

n b 95% CI p-Value n b 95% CI p-Value

Bivariate model
SBP z-score 370 0.06 −0:07, 0.18 0.38 359 0.09 −0:04, 0.22 0.16
DBP z-score 370 0.11 −0:01, 0.24 0.08 359 0.11 −0:02, 0.23 0.11
Multivariable model 1
SBP z-score 237 0.02 −0:13, 0.17 0.77 237 0.18 0.02, 0.33 0.03
DBP z-score 237 0.07 −0:08, 0.23 0.35 237 0.11 −0:05, 0.26 0.18
Multivariable model 2
SBP z-score 165 −0:01 −0:17, 0.15 0.92 165 −0:18 −0:34, −0:01 0.03
DBP z-score 165 −0:10 −0:28, 0.07 0.24 165 −0:09 −0:26, 0.09 0.33

Note: Bivariate model considered pre- and postnatal maternal PM2:5 separately. Multivariable model 1 considered both prenatal and child age 1-y maternal PM2:5, maternal BP on
enrollment (systolic or diastolic depending on the child BP end point), child sex, child age 4-y BMI, ethnicity, asset index, and secondhand smoke exposure. Multivariable model 2 is
multivariable model 1 plus additional adjustment for child age 4-y PM2:5 exposure measurement. The pre- and postnatal PM2:5 IQRs were 52.8 and 43:5 lg=m3, respectively. BMI,
body mass index; CI, confidence interval; DBP, diastolic blood pressure; GRAPHS, Ghana Randomized Air Pollution and Health Study; IQR, interquartile range; PM2:5, fine particu-
late matter (PM with an aerodynamic diameter of ≤2:5 lm); SBP, systolic blood pressure.
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Figure 2. Time-varying associations between prenatal household air pollution exposure, as represented by personal carbon monoxide (CO), and resting
(A) systolic blood pressure (SBP) and (B) diastolic BP (DBP) z-scores at 4 years of age in the GRAPHS intervention study, Ghana. The multivariable model 1
(n=1,654 observations from n=640 children) adjusted for child sex and BMI; maternal ethnicity, secondhand tobacco smoke exposure and enrollment BP;
and household asset index. The y-axis represents the time-varying association between BP z-score and an interquartile (IQR) increase in CO exposure; the
x-axis depicts gestational age in weeks at CO measurement. The solid line shows the predicted estimate, and the shaded area represents the 95% CI. A sen-
sitive window was identified when the CIs did not include zero. Data are included in Excel Table S1. Note: BMI, body mass index; CI, confidence inter-
val; GRAPHS, Ghana Randomized Air Pollution and Health Study.
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the potential for cleaner-burning stove interventions to reduce
risks.

Establishing and maintaining ideal CVH in early life is criti-
cal; earlier development of CVD risk factors is associated with
higher risk for subsequent CVD.42–44 Barker et al. documented
that lower weights at birth and at 1 year of age were associated
with higher risk of CVD death, highlighting the importance of early
life exposures on programming adult CVD risk.45 Childhood BP
tracks into adulthood and is associated with CVD risk. Childhood
BP has been linked to future target-organ damage, including carotid
intima-media thickness (cIMT), pulse-wave velocity reflecting arte-
rial stiffness, and left ventricular mass.7,46–48 Subclinical athero-
sclerosis has been observed at autopsy in children as young as 2
years of age, and more extensive lesions were associated with more
risk factors.49,50 CVH in adolescence has been associated with
adult cardiac structure and function.6 These data warrant continued
cohort follow-up to characterize BP over childhood and understand
whether these associations persist into later childhood.

A growing literature supports an association between HAP
exposure and CVH51–53; our results extend this evidence to
include prenatal and early childhood associations. Inefficient bio-
mass stoves emit high levels of a complex mixture of pollutants,
many of which have known cardiometabolic effects (e.g., PM2:5,
CO, black carbon).54–56 Cross-sectional studies and those docu-
menting cookstove type by questionnaire suggest associations

with CVD risk in adults.52,57 For example, the Shanghai Putuo
study found that reported solid fuel use was associated with higher
odds for self-reported hypertension, coronary heart disease, and di-
abetes as compared with never users.58 However, studies directly
measuring personal exposure remain limited. Our group and others
have found associations between higher short-term HAP exposure
and BP in adult women.59,60 Kanagasabai et al. found that higher
annual PM2:5 exposure was associated with higher SBP and DBP
and greater cIMT.53 A cross-sectional HAP study from Honduras
reported associations with PM2:5 exposures and CVD risk factors
in adults, including metabolic syndrome.57 To our knowledge,
only one cross-sectional study has examined associations between
HAP and BP in children,51 although ambient air pollution studies
do support this association.61 Our results thus extend these prior
findings to observe that higher HAP exposures, particularly dur-
ing the prenatal period, are associated with higher SBP and
DBP in early childhood.

Prior evidence of the effect of a stove intervention on BP is
mixed and limited to adults. For example, with the RESPIRE trial,
McCracken et al. found that the improved stove intervention was
associated with lower DBP.62 Conversely, in the multicounty
Household Air Pollution Intervention Network (HAPIN) trial, Ye
et al. reported higher SBP and DBP in the LPG intervention arm as
compared with control.63 We now report that a prenatally intro-
duced LPG stove supported through child age 1 year, but with no
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Figure 3. Sex-specific associations between prenatal household air pollution exposure, as represented by personal maternal carbon monoxide (CO) measure-
ments, and resting diastolic blood pressure (DBP) and systolic BP (SBP) at 4 years of age in children in the GRAPHS intervention study, Ghana. This figure
demonstrates the association between maternal personal CO exposure measurements over pregnancy and SBP and DBP at 4 years of age assuming week-spe-
cific effects among females [(A,C) n=828 observations from n=321 children] and males [(B,D) n=826 observations from n=319 children]. The multivari-
able model 1 adjusted for child BMI; maternal ethnicity, secondhand tobacco smoke exposure, and enrollment BP; and household asset index. The y-axis
represents the time-varying association between BP z-score and an interquartile (IQR) increase in CO exposure; the x-axis depicts gestational age in weeks at
CO measurement. The solid line shows the predicted estimate, and the shaded area represents the 95% CI. A sensitive window was identified when the CIs did
not include zero. Data are included in Excel Table S2. Note: BMI, body mass index; CI, confidence interval; GRAPHS, Ghana Randomized Air Pollution and
Health Study.
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evidence of continued use at 4 years of age or exposure differen-
tial between groups, was associated with a 1:64-mmHg, or 3%,
reduction in DBP relative to children whose mothers used a tradi-
tional open fire stove throughout pregnancy. In females, the LPG
intervention was associated with a 2:22-mmHg, or 4%, reduction in
DBP and a 2:03-mmHg, or 2%, reduction in SBP as compared with
control. These findings are similar in magnitude to the effect of die-
tary interventions on BP in adults. For example, a systematic review
and meta-analysis of 24 nutritional intervention trials in adults with
and without hypertension at baseline found that the overall pooled
net effect of diet onDBPwas−1:81mmHg.64 Although on the indi-
vidual level these reductions may appear small, on the population
level they may translate to large reductions in CVD risk even
though, to our knowledge, population-wide studies of BP and CVD
health in LMICs are as yet unavailable. Still, the FraminghamHeart
Study and the National Health and Nutrition Examination Survey II
found that among US White, normotensive adults 35–64 years of
age, an average 2-mmHg reduction in DBP would result in a 17%
decrease in hypertension prevalence, a 6% reduction in coronary
heart disease risk and a 15% reduction in risk of stroke and transient
ischemic attacks.65 These effects may be further amplified in a
resource-poor setting, where limited access to preventive medicine
and therapeutics restrict the detection and treatment of hyperten-
sion.66 Continued follow-up of the cohort to understand whether
these associations persist into later childhood and adulthood is
warranted.

Despite our LPG intervention ending upon the index child’s
first birthday, we observed lower DBP at 4 years of age, suggesting
a lasting effect of the early life stove intervention. These results are
supported by early life nutrition intervention studies that also dem-
onstrated a sustained effect on BP into later life. For example, in
STRIP, a nutrition intervention study of 1,000 infants who were
followed until 20 years of age, investigators observed a reduction
in the prevalence of metabolic syndrome among control vs. inter-
vention participants driven by reductions in BP.22 In a second
study, n=476 Dutch newborn infants were randomized to low- vs.
normal-sodium formula. At 25-wk of age, infants in the low-
sodium arm had on average 2:1-mmHg lower SBP as compared
with those in the control arm.67 Investigators recontacted a subset
of the study participants at 15 years of age and found adolescents
who had been in the low-sodium arm had on average 3:6-mmHg
lower SBP than those who had been in the control arm.68 Taken

together with our exposure–response analyses, these data suggest
that the early life periodmay be a critical windowof cardiovascular
developmental plasticity when interventions to improve CVHmay
have sustained effects. These health findings, identified years after
an originally null randomized controlled trial, underscore the im-
portance of working alongside community and policy partners to
ensure that study results can meaningfully drive public health pol-
icy. These results identify pregnancy and early childhood as critical
windows where HAP exposure programs future CVH and justify
continued investments in cleaner cooking and novel ways to ensure
that vulnerable communities have access to cleaner cooking fuels
and technology.

Time-varying analyses allowed for the identification of two sen-
sitive windows: one in late pregnancy, and the other close to the
child’s first birthday. Although the parasympathetic nervous system
rapidly develops from 25 wk gestation to birth,69,70 parasympathetic
tone starts dominating basal fetal cardiovascular function at
∼ 37–38 wk gestation.69,71 Animal studies suggest that insults that
occur during this period of pregnancy lead to changes in the renin–
angiotensin system that can alter kidney development.72 Further,
maternal exposure to air pollutants could induce maternal oxidative
stress and inflammation, provoking an imbalance in the ANS and
increasing arterial vasoconstriction,73,74 with impacts on these inter-
related systems in the developing fetus.75 Maternal HAP exposure
could also impact placental functioning in several ways, including
thrombotic placental lesions,76 placental inflammation,77 and abnor-
mal placental vascularization.78 Sex differences in these pathways
have been observed, which may partly explain sex differences in
disease outcomes and severity later in life.72 Similarly to maternal
pathways, air pollution exposure in childhood may trigger systemic
inflammation and oxidative stress, which can affect vascular func-
tion.79 Our results pointing to sensitive windows in both the prena-
tal and late-first-year-of-life period suggests that repeated injury
may occur and warrants further investigation.

Continued follow-up of the cohort with tracking of BP over
childhood will be important to understand howBP at 4 years of age
relates to BP over childhood. DBP reflects resting vascular tone;
higher DBP suggests higher peripheral resistance. Higher DBP in
adults, for example, in personswith isolated diastolic hypertension,
is associated with higher risk for CVD events, heart failure, atrial
fibrillation, and chronic kidney diseases.80 Although less exten-
sively studied, DBP in childhood correlates with adolescent or
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Figure 4. Time-varying associations between child household air pollution exposure, as represented by maternal personal carbon monoxide (CO), and resting
(A) systolic blood pressure (SBP) and (B) diastolic BP (DBP) z-scores at 4 years of age in children in the GRAPHS intervention study, Ghana. The multivari-
able model 1 (n=827 observations from n=520 children) adjusted for child sex and BMI; maternal ethnicity, secondhand tobacco smoke exposure, average
prenatal CO exposure and enrollment BP; and household asset index. The y-axis represents the time-varying association between BP z-score and an interquar-
tile (IQR) increase in CO exposure; the x-axis depicts gestational age in weeks at CO measurement. The solid line shows the predicted estimate, and the shaded
area represents the 95% CI. A sensitive window was identified when the CIs did not include zero. Data are included in Excel Table S3. Note: BMI, body mass
index; CI, confidence interval; GRAPHS, Ghana Randomized Air Pollution and Health Study.
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young adult DBP and has also been found to predict CVD risk.81

Among hypertensive youth, elevated peripheral DBP was superior
to SBP in predicting future CVD.82 Similarly, Flint et al. found that
DBP independently influenced cardiovascular outcomes.83 In the
Fels Longitudinal Study, DBP >80mmHg in adolescents was
associated with 1.9 times the risk for hypertension at 35 years of
age.84

Our intention-to-treat results suggest that females may be more
susceptible to the effect of HAP exposure on BP programming than
males. This finding is consistent with our prior work, which found
female infants were more susceptible to HAP exposure for a
number of health outcomes, including lung function,85 pneumo-
nia risk,24 and some metrics of infant growth,30 as well as a bio-
marker of oxidative stress.30,86 Prior studies have reported a
cardiovascular effect of air pollution exposure by sex with mixed

results.18 A study by Curto et al. in peri-urban India concluded
that higher within-village PM2:5 exposure was associated with
higher SBP among women compared with men. In that study, the
association for DBP was also positive but did not reach statistical
significance.87 Although mechanisms underlying sex-specific
effects are hypothetical, heightened vulnerability of hypothala-
mic–pituitary–adrenal axis development in females in response
to prenatal stressors has been identified.88 Supporting this, one
study identified associations between PM2:5 exposure over preg-
nancy and disrupted cardiac vagal tone in infancy, with explora-
tory analyses suggesting that females who are more highly
exposed prenatally may have a reduced ability to recover from a
stressor as compared with males.89

We note several study strengths. We leveraged the well-
characterized GRAPHS cohort, derived from a cluster-randomized
cookstove intervention delivered prenatally and continued through
the first year of life. GRAPHS also included repeated personal ex-
posure assessments over pregnancy and postnatally at 4 years of
age (Table S6). Current follow-up included resting BP at 4 years
of age, a valid measure of childhood CVH. Ultrasound-established
gestational dating allowed us to accurately identify the gestational
age of each prenatal and child CO exposure measurement, thus
allowing us to employ advanced statistical models to identify sen-
sitive windows of exposure. Questionnaires captured individual-
and household-level covariates.

We also acknowledge limitations. Funding limitations only
allowed continued longitudinal follow-up of a subset of theGRAPHS
cohort. BP measurements predominantly occurred in the morning,
although we did not record the exact time nor activity or diet in the
30–60 min before measurement. However, we hypothesize that these
data would be nondifferentially associated with exposure or interven-
tion arm, thus resulting in measurement noise that would bias to the
null. It would have also been beneficial to take more BP measure-
ments, aswell as BPmeasurements, on consecutive days but the latter
proved unfeasible from a fieldwork perspective. Further, GRAPHS
primary exposure measure was CO; we lacked PM2:5 measurements
on the entire cohort and repeated PM2:5 measurements over the inter-
vention period. PM2:5 measurements of the mother were taken as a
proxy for infant measurements, introducing exposure misclassifica-
tion bias. Finally, although the rDLM models allowed us to circum-
vent the issue of unaligned exposure measurements, they did not
provide standard association estimates owing to the reverse temporal-
ity of the outcome–exposure relationship and they did not clearly
account for confounding given that the right-hand side included both
outcome and adjustment variables.

Conclusion
In summary, we found that children born to mothers randomized
to the LPG arm of the GRAPHS cookstove intervention had
lower DBP at 4 years of age and exposure–response analyses
support an association between early life HAP exposure and BP
at 4 years of age. These findings support the need for reductions
in exposure to HAP, beginning in pregnancy.
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Figure 5. Sex-specific associations between child household air pollution ex-
posure, as represented by maternal personal carbon monoxide (CO), and
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ciation between BP z-score and an interquartile (IQR) increase in CO expo-
sure; the x-axis depicts gestational age in weeks at CO measurement. The
solid line shows the predicted estimate, and the shaded area represents the
95% CI. A sensitive window was identified when the CIs did not include
zero. Data are included in Excel Table S4. Note: BMI, body mass index; CI,
confidence interval; GRAPHS, Ghana Randomized Air Pollution and Health
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