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Abstract

The goal of lipidomic studies is to provide a broad characterization of cellular lipids present 

and changing in a sample of interest. Recent lipidomic research has significantly contributed 

to revealing the multifaceted roles that lipids play in fundamental cellular processes, including 

signaling, energy storage, and structural support. Furthermore, these findings have shed light on 

how lipids dynamically respond to various perturbations. Continued advancement in analytical 

techniques has also led to improved abilities to detect and identify novel lipid species, resulting 

in increasingly large datasets. Statistical analysis of these datasets can be challenging not only 

because of their vast size, but also because of the highly correlated data structure that exists due 

to many lipids belonging to the same metabolic or regulatory pathways. Interpretation of these 

lipidomic datasets is also hindered by a lack of current biological knowledge for the individual 

lipids. These limitations can therefore make lipidomic data analysis a daunting task. To address 

these difficulties and shed light on opportunities and also weaknesses in current tools, we have 

assembled this review. Here, we illustrate common statistical approaches for finding patterns in 

lipidomic datasets, including univariate hypothesis testing, unsupervised clustering, supervised 

classification modeling, and deep learning approaches. We then describe various bioinformatic 

tools often used to biologically contextualize results of interest. Overall, this review provides 

a framework for guiding lipidomic data analysis to promote a greater assessment of lipidomic 

results, while understanding potential advantages and weaknesses along the way.
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Introduction

Lipids are an important class of biomolecules that play many essential roles in 

cellular functions such as acting as the primary constituents of biological membranes 

and performing various essential processes including signaling and energy storage [1]. 

Dysregulation of lipid metabolism has therefore been linked to numerous disorders and 

diseases [2, 3] including cardiovascular disease [4], diabetes [5, 6], cancer [7], and 

neurological disorders [8]. Among the mechanisms contributing to this dysregulation, the 

impact of xenobiotic exposure has captured attention within the realm of human health 

due to its ability to induce significant shifts in lipid homeostasis [9]. Thus, comprehensive 

lipidomic profiling of chemical exposure and clinically relevant samples has been exploited 

to assess lipid changes and overall metabolic pathway alterations resulting in disease onset 

and progression. Ultimately, these studies are elucidating potential lipid biomarkers for the 

establishment of diagnostic, preventative, and therapeutic initiatives.

While clinical assays often leverage high-throughput techniques to target and quantify a set 

of known lipid markers, discovery-based lipidomics approaches employ slower untargeted 

techniques for global lipid profiling. These untargeted approaches, however, are quite 

complex due to the many possible lipids that exist. Lipids span eight categories and currently 

the known lipid classes and subclasses result in nearly 50,000 unique lipid species as listed 

by the LIPID MAPS Structure Database [10]. Comprehensive untargeted lipidomic studies 

are challenged by this vast number of lipids, as well as their extensive concentration ranges 

in biological samples and highly isomeric nature [11]. These challenges have therefore 

driven recent analytical advancements in sample extraction, derivatization, separations (e.g., 

chromatography and ion mobility spectrometry), mass spectrometry (MS) instrumentation, 

and data processing software to enable more lipid identifications with greater confidence in 

complex biomolecular data [12, 13].

As the ability to detect and identify lipids has improved, the statistical challenges associated 

with these datasets have become apparent [14]. One such challenge is that lipidomic 

experiments often produce high-dimensional datasets in which the number of lipids (p) 

exceeds the number of samples (n). This scenario, known as “large p, small n,” is associated 

with the “curse of dimensionality,” which describes the difficulty of identifying meaningful 

patterns and relationships in datasets as the number of variables increases [15]. Regression 

and other commonly used statistical procedures may fail in such cases because no unique 

solution exists. Moreover, algorithms that handle high-dimensional datasets may become 

computationally infeasible, as the running time may scale with the number of predictors in 

a superlinear fashion [16]. In addition to difficulties associated with the size of lipidomic 

datasets, there are several statistical challenges resulting from the underlying biological 

patterns in these datasets. Lipid species are often highly correlated, such as those belonging 

to the same subclass, due to their shared metabolic or regulatory pathways [17]. This 

multicollinearity can limit the number of appropriate methods, as it violates the assumption 

that input variables are independent. For example, multicollinearity in regression can yield 

unstable coefficient estimates and results in reduced statistical power [18]. Furthermore, 

lipid species vary in abundance across a dataset due to having different levels of expression. 

This phenomenon is often accompanied by the issue of heteroscedasticity, meaning the 
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variance of a lipid measurement varies with its abundance. This trend may result in 

inaccurate results for some statistical models.

Beyond the difficulties associated with statistical analysis, biological interpretation of 

lipidomic data is challenging given the functional diversity and complexity of the lipidome. 

With thousands of distinct lipid species present in cells, each with unique physical and 

chemical properties, deciphering their precise roles can be difficult. Lipid composition also 

varies across organisms, tissues, and cell types, and dynamic fluctuations can occur for each 

of the different species at various times following perturbation [11]. Furthermore, even with 

the application of advanced analytical techniques, a significant portion of lipids remains 

incompletely resolved, leading to a single annotation encompassing multiple isomeric 

species that share identical chemical compositions but have indiscernible distinctions in fatty 

acyl sn-positions, double bond locations, or orientations [12]. This complexity has ultimately 

led to gaps in lipid biology knowledge within pathway databases, as the specific biological 

functions of individual lipids are largely unknown. For example, the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) Pathway Database is limited to the pathway analysis of lipid 

classes rather than lipid species [19]. Thus, while specific lipid annotations may be achieved 

using modern analytical approaches, this information is lost when only averaged class values 

are utilized in pathways.

Based on all the described complexities and limitations, it is evident that choosing 

appropriate statistical methods and tools for biological interpretation is crucial but 

challenging. This review therefore highlights some of the popular methods used for 

associating lipid abundances with their phenotypic outcomes and associated assumptions, 

interpretations, and weaknesses with each. Specifically, we first introduce univariate and 

multivariate approaches and discuss their differences. Next, we cover univariate hypothesis 

testing and discuss how to ensure that certain assumptions are met. We then move 

into multivariate approaches, where we describe the differences between unsupervised 

and supervised methods, followed by some common examples of each (Fig. 1). Current 

bioinformatic tools that aid in a biological evaluation of statistical results are then detailed, 

such as ontology enrichment and pathway analysis. This review thus aims to provide a 

stronger understanding of these methods so better informed decisions can be made for more 

reliable and informative analyses, and ultimately a greater understanding of the lipidome.

Statistical approaches

Preprocessing

Prior to statistical analysis, it may be necessary to preprocess the data in an effort to 

mitigate impacts of instrumental artifacts or unrelated biological variability. The types 

of preprocessing steps are often specific to the data collection platforms and/or the 

experimental design, but may include steps such as noise filtering, correcting for batch 

effects, or missing value imputation. While the specifics of these approaches are not 

thoroughly outlined in this review, we direct readers to the work of Sun and Xia for 

additional information [20].
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Univariate versus multivariate approaches

Both univariate and multivariate approaches play integral roles in lipidomic analyses. 

Univariate methods primarily focus on exploring the connection between a single variable, 

such as the abundance of a specific lipid, and groups of interest. On the other hand, 

multivariate methods concurrently examine the relationships among multiple variables, such 

as the abundances of numerous lipids and associated metadata like age or sex, in relation to 

the groups of interest [21]. As univariate approaches only consider one variable at a time, 

they are typically much simpler to implement, much less computationally intensive, and 

output is often easier to interpret, as they identify individual effects. Furthermore, because 

univariate methods do not need to estimate the relationship between variables, they generally 

require fewer samples [22]. On the other hand, multivariate approaches are often preferred 

because they consider the dependence of numerous input variables, a characteristic that may 

be particularly useful for lipidomic data due to the highly correlated data structure [18]. By 

considering this interdependence, multivariate methods are often able to identify groups of 

variables associated with outcomes that may not be discovered using univariate approaches. 

However, the output from multivariate approaches is often not as easily interpretable 

as univariate cases. Thus, researchers may opt for univariate methods when analyzing 

smaller datasets or to identify individual associations between variables and an outcome. 

When dealing with high-dimensional data or when the relationships between variables are 

complex, multivariate methods may be a more appropriate choice. For example, Hines and 

Xu utilized a univariate method to compare individual phospholipid alterations in wild-type 

versus knockout Escherichia coli strains [23], whereas Bifarin et al. employed multivariate 

methods to understand how hundreds of serum lipids changed in an ovarian cancer mouse 

and identify multiple markers of disease progression [24].

Univariate approaches

Hypothesis testing—In order to identify relationships between individual lipids and 

groups of interest, the most common statistical approach to employ is hypothesis testing. 

Hypothesis testing allows for the formal assessment of differences between populations 

based on studied samples [25]. In these assessments, the null hypothesis typically states that 

the mean abundance of a given lipid is equal across the groups of interest, and the main 

result of interest is the p-value, which indicates the probability of seeing the observed or 

greater difference in abundance given that the null hypothesis is true. Thus, to determine if 

a result is statistically significant, the p-value is compared to the researcher-chosen alpha 

level, which gives the probability of rejecting a true null hypothesis. For example, an alpha 

level of 0.05 means that there is a 5% threshold for considering results as statistically 

significant. Therefore, if the p-value is less than the alpha level, it suggests that the observed 

difference in lipid abundance between the groups is unlikely to have occurred by chance 

under the assumption of the null hypothesis, and the result is considered significant. By 

default, the alpha level is often set to 0.05, which has become a widely accepted standard in 

many scientific fields, as it is thought to offer a reasonable balance between the risk of a type 

I error and a type II error. Here, type I error is defined as the incorrect rejection of a true null 

hypothesis, resulting in a false positive conclusion that a relationship or effect exists when it 
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does not. A type II error is defined as the failure to reject a false null hypothesis, resulting in 

the failure to detect a true relationship or effect that exists in the population [26].

Conveniently, most univariate hypothesis tests can be performed in any standard statistical 

software; however, the challenge of choosing the correct type of test remains. Because 

each test has underlying assumptions about the input data, application of an inappropriate 

test may result in incorrect interpretations or reduced statistical power [27]. The choice 

of test thus relates back to study design characteristics, as well as characteristics of the 

data. While study design characteristics, such as the number of groups, are usually easy to 

pinpoint, data characteristics are more difficult to verify, as the underlying distribution of 

a particular lipid is generally unknown. Therefore, it is common practice to evaluate data 

within groups either graphically or statistically to assess whether certain assumptions are 

met. One common assumption in univariate hypothesis tests is the normality of abundances. 

In lipidomic data, a strong right skew in the raw abundances is often observed due to the 

presence of a few lipids with exceptionally high concentrations, so it is standard practice 

to apply data transformations in an attempt to obtain normality. Specifically, raw lipid 

abundances are often log transformed, and/or normalized, using values such as the total 

ion current (TIC), median abundance value, or others [28]. To visually assess normality, 

histograms, probability plots, or Q-Q plots can be used to check if the data follow expected 

patterns for a normal population. However, as the number of detected lipids in an experiment 

increases, particularly in untargeted studies, this approach can become quite cumbersome 

as many plots may need to be examined to assess normality. Formally, normality can be 

assessed using a number of tests, such as Shapiro-Wilk or Kolmogorov-Smirnov. While 

these tests may allow for a more rapid assessment of the normality of different lipids, their 

use has been described as paradoxical, as groups with a low number of samples may not 

have enough statistical power to detect deviations from normality, while groups with a larger 

number of samples may be safeguarded from the assumption of normality due to the central 

limit theorem [29]. Another common assumption is homogeneity of variances, which can 

be assessed visually with boxplots to assess the distribution of each sample. This approach, 

similar to visual approaches for normality, may become infeasible as the number of detected 

lipids increases. Alternatively, statistical methods such as Levene’s and Bartlett’s tests may 

be used [30], but these may become less reliable when dealing with non-normally distributed 

data or when the sample sizes in each group are unequal. Thus, the main bottleneck for 

univariate analyses is the need to verify conditions for potentially hundreds of individual 

lipids.

Multiple testing correction—As the number of hypothesis tests performed increases, so 

does the likelihood of a false positive occurring [31]. To address this issue, several methods 

have been developed to “correct” or adjust p-values post hoc. One of the earliest approaches 

for multiple testing correction was the Bonferroni procedure, which adjusts the significance 

threshold by dividing by the number of tests performed [32]. Doing so decreases the family-

wise error rate, or the probability of a type I error. Other corrections which control the rate 

of false positives include Hochberg, Sidak, and Dunnett’s. However, it should be noted that 

because the threshold for significance becomes increasingly stringent as the number of tests 

increases, the probability of false negatives (type II errors) increases with corrections, and 
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statistical power consequently decreases. Due to these limitations, methods that control the 

false discovery rate (FDR), or the expected proportion of false positive findings among all 

reject hypotheses, may be preferred. Rather than attempting to eliminate all false positives, 

FDR corrections allow for a controlled proportion of false discoveries while maintaining 

a higher power to detect true discoveries. The most commonly used FDR method is the 

Benjamini-Hochberg procedure, which adjusts individual p-values by considering their rank 

in a sorted list of p-values and the user-chosen allowed FDR [32].

Fold change—While p-values provide information about the statistical significance of 

differences in lipid abundances between groups, it provides no insight about the magnitude 

or direction of that difference. This distinction is important because it is possible that the 

p-value will illustrate a statistically significant result for a particular lipid, but the magnitude 

of difference may not be biologically relevant. To this end, it has become common practice 

to combine the results of hypothesis testing with fold change. To calculate fold change, 

the average abundance of the “case” group is divided by the average abundance of the 

“control” group to provide a single fold change value for each lipid. The resulting fold 

changes are then often log transformed, making the values symmetric about zero. A log 

fold change threshold is then commonly applied to identify lipids of interest, ensuring both 

significance and effect size have been assessed [33]. In lipidomic studies, log2 fold changes 

are commonly used, as they provide a straightforward interpretation of changes in lipid 

abundance on a binary scale.

Multivariate approaches

Broadly, all multivariate methods can be distinguished as being either unsupervised or 

supervised with the primary difference being that supervised approaches are trained on a 

labeled dataset (i.e., each sample has group information), while unsupervised approaches 

are trained on an unlabeled dataset (i.e., samples do not have group information). Because 

unsupervised methods do not have access to group labels, their goal is to infer natural 

patterns present in the data. For this reason, unsupervised approaches are often valuable 

for exploratory purposes, as they may uncover unexpected relationships for further analysis. 

Conversely, supervised approaches try to learn relationships between input data and specific 

outcomes of interest. This makes supervised learning useful for building classification 

models. However, supervised methods may require a larger sample size than unsupervised 

methods, as they need enough labeled data to learn relationships between the input features 

and outcomes of interest [34]. It also may be informative to combine these approaches. For 

instance, Bifarin et al. utilized unsupervised learning to evaluate sample groupings based 

on overall lipidome changes and then applied supervised learning to enable classification 

of double-knock-out versus control mice based on their lipid signatures [24]. Details and 

specific methods for each approach are further described below.

Unsupervised learning

Principal components analysis: Principal components analysis (PCA) is a widely used 

method for dimension reduction and exploration of complex, high-dimensional datasets. Its 

goal is to identify a new, reduced set of variables called principal components that capture 

a majority of the variability in the original dataset. These components are created as linear 
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combinations of the original variables and are orthogonal, or uncorrelated. This property 

makes PCA particularly useful for analyzing data with high levels of multicollinearity, a 

characteristic commonly seen in lipidomic datasets. By plotting data using the top principal 

components (PCs), patterns and relationships between samples can be visualized, enabling 

the detection of outliers and other anomalies that may not be apparent in the original 

high-dimensional space. PCA can also be used for data compression and feature selection, 

and as a preprocessing step for other multivariate analysis techniques [35, 36]. The most 

common graphical representation of PCA is a scores plot, where each sample in a dataset 

is plotted according to its values for the PCs of interest. Generally, this is done using 

the first two PCs, as they explain the most variance. In these plots, similar samples will 

appear closely in space, and often the goal is to determine if sample points are separable 

based on a known group or characteristic [35]. An example PCA is shown in Fig. 2A, 

where phospholipid differences in viscera from three fish species, Lateolabrax japonicas, 
Ctenopharyngodon idellus, and Carassius auratus, were evaluated [37]. From the PCA, 

samples from the different species are separable with 92% of the variance explained by the 

first two PCs. Following visualization with scores plots, it is often of interest to determine 

which lipids are contributing considerably to top PCs. To do so, the loadings for each PC can 

be examined, which indicate the correlation between each original lipid and that PC. Lipids 

with high absolute loadings contribute most heavily to a PC and are thus considered more 

important. The loadings for individual phospholipids in the analysis in Fig. 2A are shown in 

Fig. 2B. Phospholipids with low absolute loadings are concentrated toward the center of the 

plot, while those with high loadings deviate further out. This plot suggests that PS 40:6, PI 

38:4, and PI 38:5 are the phospholipids that contribute most significantly to the separation 

between the different species seen in Fig. 2A.

t-distributed stochastic neighbor embedding (t-SNE): Similar to PCA, t-distributed 

stochastic neighbor embedding or t-SNE is a dimension reduction technique used for 

exploring high-dimensional datasets. However, unlike PCA, t-SNE does not assume that 

the underlying structure of the data can be represented with linear combinations of the 

original features, and thus, t-SNE may be better suited for datasets with complex, non-linear 

relationships [40]. t-SNE starts by calculating pairwise similarity between all data points in 

the original high-dimensional space using a Gaussian kernel. Points close together have a 

high probability under this distribution, while those further apart have a lower probability. 

Next, t-SNE randomly projects the data points into a lower-dimensional space (e.g., two-

dimensional) and uses gradient descent to iteratively adjust positions of data points to 

make the pairwise similarities match those in the high-dimensional space as closely as 

possible. To achieve this, t-SNE employs the t-distribution (Student’s t-distribution) as the 

probability distribution in the lower-dimensional space. The final result of t-SNE is a scatter 

plot where the data points are positioned based on their optimized representation in the 

second dimension. In these plots, similar data points are typically clustered together, while 

dissimilar points are spread apart [40].

When performing t-SNE, the main decision one must make is what value to use for 

the perplexity parameter. The perplexity parameter controls the effective number of 

neighbors each data point considers during optimization. A low perplexity focuses more 
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on local relationships to capture fine-grained structures in the data, while a high perplexity 

emphasizes global relationships, capturing broader patterns. Selecting the perplexity is 

critical, as an inappropriate value may obscure patterns in the dataset. In general, this 

value is set between 5 and 50, and it is common to test different values within this 

range and assess the resulting visualizations to make the final choice [40]. In lipidomics, 

t-SNE is commonly employed when analyzing imaging or single-cell data [41]. Hancock 

et al. used this approach when validating a method they developed for detection and 

quantification of phosphatidylcholine and sphingomyelin species from single cells [38]. 

In this analysis, two different cell lines, C2C12 and HepG2, were grown in either control 

or docosahexaenoic acid (DHA)-supplemented media. Applying t-SNE to the resulting 

lipidomic datasets demonstrated that cells could be separated based on both their cell line 

and growth conditions (Fig. 2C).

Hierarchical clustering: Clustering analysis is a common approach for identifying groups, 

or clusters, of data points with the goal of having highly similar data points in the same 

cluster and distinct data points in different clusters. In lipidomics, it is common to apply 

clustering at the sample level to identify samples with similar lipid profiles, and at the 

lipid level, to identify lipids with similar abundance profiles across the samples in the study 

[42]. When performing hierarchical clustering, the first step is to calculate the distance, 

or dissimilarity, between all pairs of data points. There are several equations that can be 

used to calculate distance, such as Euclidean distance, Manhattan distance, or Mahalanobis 

distance [43]. After distance is calculated, the next step is to create a proximity matrix, 

which represents the pairwise distances between all data points. This matrix is then used 

to iteratively group the data points into clusters using a linkage method, such as single, 

average, complete, Ward’s method, and/or others [43]. The choice of linkage method is 

critical and can have a significant impact on the resulting clusters, as each method has 

different strengths and weaknesses. For example, single linkage can be sensitive to outliers 

and noise, while complete linkage tends to produce compact clusters [44].

After the linkage process is finished and all data points have been grouped into clusters, 

the final step is to visualize the results using a dendrogram. In a dendrogram, one axis 

represents the distance or dissimilarity measure used to create the clustering, and the other 

axis represents the samples or clusters. Each data point is represented as a leaf node in 

the diagram, and as the algorithm progresses, these nodes are progressively merged into 

larger clusters, forming branches in the tree. The dendrogram can be used to visualize the 

structure of the data, and to identify potential clusters or subgroups within the data. For 

example, Da Costa et al. performed hierarchical clustering to evaluate lipidomic signatures 

of Fucus vesiculosus, an edible brown macroalga, during different seasons (Fig. 2D) [39]. 

In their plot, samples are clustered on the x-axis (top) and individual lipids are clustered on 

the y-axis, while individual cells represent the relative abundance for a given sample/lipid 

combination. From the sample clustering, we see that samples cluster perfectly according 

to their season, suggesting differences in lipid profiles between these two phenotypes. From 

the lipid clustering, two main groups are present: those that are downregulated in spring and 

upregulated in winter (top), and those that are upregulated in spring and downregulated in 
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winter (bottom). In these examples, hierarchical clustering demonstrated clear differences at 

both the sample and lipid levels and allowed for concise visualization.

Supervised learning

Classification modeling: Supervised learning plays a vital role in lipidomics research 

when the goal is to directly establish associations between input lipid abundances and their 

corresponding group labels. One of the more popular supervised learning tasks is to create 

classification models, which aim to predict what group a given sample belongs to based on 

its lipid data [45]. These models can be created by defining variables of interest and sample 

outcomes using machine learning libraries or frameworks, such as Scikit-learn, PyTorch, 

or Caret [46]. Ideally, these models not only accurately capture the relationship between 

independent and dependent variables in the studied data, but also are general enough to work 

for unseen datasets, facilitating group identification of unknown samples [47]. Furthermore, 

by examining the lipids that significantly impact model performance, researchers can also 

gain valuable insights into the underlying biological mechanisms associated with different 

phenotypes and identify potential biomarkers.

Modeling workflow: To ensure that a classification model can generalize to new data, it 

is imperative to test the model on data that it was not trained on. As Mosteller and Tukey 

stated, “testing the procedure on the data that gave it birth is almost certain to overestimate 

performance” [48]. Thus, to evaluate a model, one may implement a train-test split. Train-

test splits involve dividing the labeled dataset into two distinct subsets: the training set 

and testing set. The training set is used to build the model, while the testing set is used 

to independently evaluate its performance. Alternatively, one may perform cross-validation 

(CV). The most common form of cross-validation is k-fold cross-validation, where the 

dataset is randomly divided into “k” equally sized groups or folds. The model is then trained 

on “k-1” folds and evaluated on the remaining fold. This process is repeated “k” times, 

with each fold acting as the validation set once. The performance metrics (e.g., accuracy) 

obtained from each iteration are then averaged to provide an overall assessment of the 

model’s performance. In addition to k-fold cross-validation, there are other variations such 

as stratified k-fold cross-validation, where the class distribution in each fold is preserved, 

and leave-one-out cross-validation (LOOCV), where each sample acts as the validation set 

once [49]. These choices may be useful when classes are imbalanced or when there is a 

small sample size, respectively.

Popular machine learning models: When developing classification models for lipidomic 

data, there are numerous machine learning algorithms available, each with their own 

intricacies. Due to the breadth of options, it is not feasible to provide an exhaustive 

description of all models. However, here, we offer a brief overview of several popular 

models commonly used in lipidomics and direct readers to Uddin et al. for more detailed 

information and additional references [50].

1. Partial least squares-discriminant analysis (PLS-DA): PLS-DA combines PLS 

regression and linear discriminant analysis (LDA). It uses latent variables 

to capture the most important relationships between predictor and response 

variables, making it effective for distinguishing different groups or categories 
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[51]. Examples of lipidomic studies leveraging PLS-DA models include those 

from Malý et al. to categorize acute coronary syndrome and acute stroke patients 

[52] and Mi et al. to classify five pork cuts based on their unique lipid profiles 

[53].

2. Regularization: Regularization is a method used in classification models to avoid 

overfitting. It adds a penalty term to the model to control its complexity and 

prevent excessive reliance on less important features. This promotes simplicity 

and helps the model generalize well to new data. Two common types of 

regularization are L1 (Lasso) and L2 (Ridge) regularization [54]. For example, 

Santoro et al. employed the Lasso method to classify breast cancer subtypes and 

identify their distinct lipid signatures using mass spectrometry imaging data [55].

3. Support Vector Machines (SVM): SVMs are powerful classifiers that can 

efficiently handle both linearly and non-linearly separable datasets. They find 

an optimal hyperplane to separate different classes in the feature space. The main 

goal of SVMs is to maximize the margin between the support vectors, which are 

the data points closest to the decision boundary. This allows SVMs to achieve 

effective classification even in complex data scenarios [56]. Huang et al. utilized 

an SVM algorithm to identify potential plasma lipidomic biomarker candidates 

for classification of aortic dissection patients, which included one primary and 

two secondary lysophosphatidylcholine markers [57].

4. Random Forest (RF): RF is an ensemble learning method that combines the 

predictions of multiple decision trees. It works by training each decision tree 

on a random subset of the training data, resulting in a diverse set of trees. The 

final prediction is therefore made by aggregating the predictions of all trees [58]. 

Using a random forest approach, Phan et al. found that lipidomics could be used 

to classify wines by origin with 97.5% accuracy, while Chappel et al. used RF to 

aid in development of a scoring system to identify cancerous tissue phenotypes 

[59, 60].

Other potential machine learning models that could be considered in lipidomics include 

logistic regression [61], k-nearest neighbors [62], and other ensemble methods like gradient 

boosting [63].

Popular deep learning models: Deep learning is a subfield of machine learning that 

encompasses algorithms that are based on the structure and function of the brain, also known 

as neural networks [64]. Neural networks consist of layers of interconnected nodes, called 

artificial neurons or perceptrons. These nodes are organized into three layers: (1) the input 

layer, which takes in the raw data; (2) hidden layers, where computation is performed on the 

input data; and (3) the output layer, which yields the network’s prediction. Each connection 

between nodes is associated with a weight, which determines the strength of the connection. 

The weighted inputs from one layer are combined and passed through an activation function, 

which helps the network learn relationships in the data. Thus, deep learning models may 

be favored over previously mentioned models when dealing with intricate patterns and 

large unstructured datasets. However, deep learning models may not be suitable when the 
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number of samples is limited or when there is a need to carefully understand the model’s 

decision-making process [64]. Some commonly used deep learning models are described 

below.

1. Convolutional Neural Networks (CNNs): CNNs are designed for image and grid-

like data. They employ convolutional layers to automatically extract hierarchical 

features from images, enabling them to perform tasks such as classification 

and image generation. This approach was employed by Lekadir et al., who 

trained a CNN on ultrasound image data to identify lipid core and other plaque 

constituents present in carotid arteries [65].

2. Recurrent Neural Networks (RNNs): RNNs are effective for handling sequential 

data, such as time series data. By using feedback loops, they retain 

process information from previous steps, allowing them to capture temporal 

dependencies within the data. RNNs were used by Cui et al. to predict the risk of 

dyslipidemia in steel workers using blood samples [66].

Other potential deep learning approaches that may be useful in lipidomics include 

Generative Adversarial Networks and variational autoencoders [67]. To choose a model, it 

is necessary to evaluate and compare different models using appropriate evaluation metrics, 

described below [50].

Model evaluation: The evaluation of classification models is a crucial step in assessing 

their effectiveness and reliability. One widely used evaluation tool is the confusion matrix, 

which presents a table as a structured overview of the model’s predictions in relation to 

the actual labels (e.g., phenotype) [68]. This matrix displays four values: true positives, true 

negatives, false positives, and false negatives. Examining this table gives a quick overview of 

the types of errors made by the model and can also be used to calculate specific performance 

metrics. Most commonly, accuracy, which measures the overall correctness of the model’s 

predictions, is reported for a given model. However, this metric alone may not tell the 

full story, as it does not consider group imbalances or give insights into the specific types 

of errors being made. To alleviate these gaps, it is important to include other metrics 

that provide a more comprehensive evaluation of the model’s performance. Some of these 

metrics include precision, recall (or sensitivity), specificity, and F1-score. Precision, which 

is the ratio of true positive predictions to the total predicted positive instances, indicates how 

well the model avoids false positives. Recall (sensitivity), on the other hand, measures the 

ratio of true positive predictions to the total actual positive instances and indicates how well 

the model avoids false negatives. Specificity is also another critical metric that measures the 

ratio of true negative predictions to the total actual negative instances, providing insights 

into the model’s ability to correctly identify true negatives. Finally, the F1-score is a useful 

combination of precision and recall, considering both false positives and false negatives to 

make it particularly valuable when class imbalances are present [69].

Model performance for binary classification is often visualized graphically using either a 

receiver operating characteristic (ROC) curve or a precision-recall curve. These curves are 

constructed by iteratively adjusting the model’s classification threshold (the value used to 

make decisions about how to classify samples), calculating performance metrics, and then 
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plotting how these metrics vary across the different thresholds. Specifically, ROC curve plots 

the True Positive Rate (sensitivity) against the False Positive Rate (1 minus specificity), 

while precision-recall curves plot precision versus recall. In general, precision-recall curves 

are useful when dealing with imbalanced datasets, as they provide insights into the model’s 

performance on the minority class, while ROCs summarize model’s overall ability to 

distinguish between the two classes, regardless of the class distribution [70]. For both types 

of curves, it is common to calculate the area under the curve (AUC) to quantify the model’s 

performance, with areas close to 1 indicating strong performance. An example of how this 

metric is used in shown in Fig. 3, where analysis via AUC-ROC curves was performed in 

a study by Ye et al. evaluating metabolomic and lipidomic signatures of cerebral infarction 

[71]. Using their top 10 candidate biomarkers for this condition, they built classification 

models using SVM, RF, and logistic regression. From the AUC-ROC curves, they concluded 

that SVM had the best performance due to its high AUC (96.3%), accompanied by high 

accuracy (95.2%) and sensitivity (91.7%).

Implementation

To implement the described methods, a number of statical programming languages, such 

as R, Python, or SAS, may be used. While these options may be preferred due to their 

flexibility and ability to perform custom analyses, they do require coding experience to use 

efficiently. To begin working in these languages, several books and online resources are 

available to jumpstart the process, such as “R for Data Science” [72] or “Python for Data 

Analysis” [73]. Alternatively, several online applications exist that have built-in statistical 

functions and allow for direct upload of lipidomic with the click of a button. Among these 

tools is MetaboAnalyst [74], LipidSuite [75], and LipidSig [76], which include options 

such as data normalization, t-tests, PCA, hierarchical clustering, classification modeling, and 

more.

Biological interpretation

Following statistical analysis, it is important to assess the biological implications of these 

findings. To overcome the limited knowledge regarding the roles many lipids play, several 

tools have been developed to assess if significance patterns match expectations and to 

connect results to previous literature. Below, we discuss a few of these tools and cover 

analysis types such as ontology enrichment analysis and pathway and network solutions. 

Additionally, we highlight some new tools and discuss future directions.

Ontology enrichment analysis

Ontology enrichment analysis involves grouping lipids based on shared biological or 

physical properties such as function, subcellular compartment, class, or degrees of 

unsaturation. Statistical approaches are then applied to determine if certain ontology 

terms are enriched, meaning the term is overrepresented compared to a target list or 

higher ranked by a statistic (e.g., p-value) than expected by chance [77]. These results 

indicate significant associations and relationships within the lipidomic data, providing 

insights into the underlying biological mechanisms. For example, ontology enrichment 

is commonly used to unveil significant associations between specific lipid classes and 
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cellular signaling pathways [13]. Furthermore, because construction of ontologies provides 

a standard framework for analyzing lipidomic data, their use facilitates data integration and 

knowledge sharing within the lipidomics community.

Broadly, lipidomic ontology enrichment tools can be broken into two categories: those that 

utilize a database and those that do not. Notable examples of tools that do not require a 

database include Lipid Mini-On, LipidSig, and LipidSuite [75, 76, 78]. To obtain ontology 

terms, Lipid Mini-On and LipidSuite utilize text mining to parse individual lipid species 

names into structural characteristics such as lipid class, degree of saturation, and carbon 

chain length. Conveniently, these tools can analyze lipids that do not currently exist in 

databases, as long as their naming follows the lipid nomenclature established by LIPID 

MAPS [79]. To obtain the ontology terms for LipidSig, an optional lipid characteristic 

file may be uploaded by the user. When using Lipid Mini-On, users have two options 

for analysis. They can either upload a ranked table where each lipid is associated with 

a statistical measure such as a p-value or fold change, or they can upload a query 

list containing significant lipids and a universe file comprising all lipids detected in 

the experiment. After files are uploaded, various statistical tests can be performed and 

results visualized through bar/pie charts or interactive networks [78]. In contrast with 

Lipid Mini-On, LipidSig and LipidSuite require differential expression analysis within 

the software prior to enrichment analysis, rather than directly supplying lipids of interest. 

Following differential expression analysis, LipidSuite utilizes ranked output and calculates 

significance using an efficient permutation algorithm that was previously developed for gene 

set enrichment analysis [75]. For LipidSig, overrepresentation analysis can be conducted on 

the results of differential expression analysis using Fisher’s exact test, with the outcomes 

visualized using bar charts [76].

While database-independent ontology enrichment methods primarily focus on structural 

characteristics, approaches that utilize databases can uncover more biologically 

contextualized findings. One popular tool for this purpose is LION, which is associated 

with an ontology database containing over 50,000 lipid species [80]. The LION database 

is organized into four main branches: lipid classification, chemical and physical properties, 

function, and subcellular component. For inclusion, a lipid must exist in this database, which 

represents commonly found lipid species in mammalian systems. For enrichment analysis, 

LION offers a 1-tailed Fisher’s exact test for comparing query lists to background lists, 

and a 1-tailed Kolmogorov-Smirnov test for assessing ranked lipid lists. In addition to 

providing results in enrichment tables/graphs and networks, LION offers a PCA module for 

comparing datasets with multiple groups. Another potential database-dependent enrichment 

tool is LipiDisease, which aims to perform disease enrichment analysis based on a set of 

lipids [81]. To perform these analyses, LipiDisease utilizes the PubMed database, which 

contains over 26 million biomedical records and their associations with chemicals and 

diseases. LipiDisease offers two main types of analyses: (1) lipid-set enrichment, which 

considers sets of lipids collectively for disease enrichment and can be performed with or 

without ranking statistics, and (2) lipid and disease connections, which examines individual 

lipids and diseases and identifies associations. Overrepresentation in gene sets compared to 

PubMed articles is determined using 1-tailed Fisher’s exact tests, and output is ranked based 
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on FDR adjusted p-values. All of the above enrichment tools are freely available online and 

do not require coding experience to use. An overview of all tools can be found in Table 1.

Pathway and network solutions

Pathway analysis is a computational approach that connects altered lipids to specific 

biological pathways or processes, thereby providing insights into functional implications 

and potential involvement in disease or physiological states. In contrast with enrichment 

analysis, pathway analysis takes into account the interactions and relationships among 

different molecules within a pathway, allowing for a more comprehensive understanding 

of the underlying mechanisms and regulatory networks associated with lipid alterations [82]. 

In pathway analysis, altered lipids are first compared to pathway databases to determine 

if certain pathways are overrepresented. Following statistical analysis, results are often 

visualized using pathway maps or networks to highlight the interconnections between 

altered lipids and biological pathways. To perform lipid pathway analysis, several tools 

exist, each of which has slightly different implementations. One popular tool is BioPAN, 

which is hosted by LIPID MAPS [83]. BioPAN utilizes lipidomic data resulting from 

experiments with two conditions (e.g., control vs. treated) and identifies pathways that are 

activated or suppressed between these conditions. These analyses can be performed using 

lipid classes, subclasses, or individual species. Input lipids are mapped as reactants and 

products in BioPAN’s manually collated database, which contains biosynthetic pathways 

from mammalian systems. z-scores are then calculated to assess whether specific reactions 

show significant changes between the two conditions based on the input lipids. These results 

can then be visualized in an interactive network. BioPAN also provides a table listing 

genes that may be involved in the activation or suppression of enzymes catalyzing lipid 

metabolism in mammalian tissues, providing additional biological insight and generating 

hypotheses that can be experimentally tested using genomic or proteomic approaches. 

Pathway analysis with BioPAN was performed by Kipp et al. investigating alterations to 

the lipidome in obese mice treated with bilirubin nanoparticles [84]. Figure 4A shows their 

resulting network when analysis was performed at the lipid class level, treatment with 

bilirubin primarily altered sphingomyelins (SM) and ceramides (Cer). When performed at 

the individual lipid species level (Fig. 4B), this network is considerably more complex, 

making it difficult to detect broad trends. However, it identified significant species from 

classes that were not deemed to be significant when aggregated at the subclass level, such 

as species from phosphatidylethanolamines (PE) and phosphatidylserines (PS). Additionally, 

these plots showcase z-score, which indicate the association with bilirubin treatment.

While BioPAN relies on a built-in database, other tools such as PathVisio and Cytoscape 

allow users to input custom databases [85, 86]. This capability allows researchers to focus 

on pathways and gene sets that are directly relevant to their research. Additionally, this 

can be useful when pathways of interest are not adequately covered in standard databases. 

For instance, many tools’ databases predominantly represent humans and mice, leaving 

other organisms with limited representation. Thus, curating custom pathway sets can be 

accomplished by pulling data from existing databases such as WikiPathways, Reactome, 

KEGG, and Pathway Commons [19, 87-89]. Additionally, researchers can leverage data 

from in-house lipidomic experiments or publicly available datasets not yet included in 
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databases. Regrettably, lipidomic databases tend to be less developed than databases for 

other omics, such as transcriptomics and proteomics. This is partially due to the newness of 

the field of lipidomics, but is also related to the difficulties associated with identifying 

and characterizing lipid structures, which has resulted in missing or biased biological 

knowledge in pathway databases. These shortcomings particularly affect complex lipids, 

such as glycerolipids, glycerophospholipids, and sphingolipids. In order to alleviate these 

knowledge gaps, it is imperative that researchers make an effort to integrate lipidomic data 

into publicly available sources. Specifically, we recommend directing new data to LIPID 

MAPS, which has resources not only for new structures, but also other experimentally and 

biologically relevant data.

Additional analysis approaches

Beyond the types of analyses previously covered, additional lipidomic data analysis 

methods exist for various applications. For example, structural-based connectivity and omic 

phenotype evaluations (SCOPE), a cheminformatics toolbox developed by Odenkirk et al., 
can be used to cluster lipid species based on structural characteristics and then relate 

these clusters back to phenotypic observations to provide connections between structure 

and biological function [90]. Another tool is the LUX score created by Marella et al. 
which is powerful for determining homology between disparate lipidomes [91]. To aid in 

the identifications, the global natural products social (GNPS) molecular networking can be 

used to identify novel lipids following the identification of significant molecular features 

[92]. Alternatively, region of interest multivariate curve resolution (ROIMCR) methods can 

be used to determine statistically significant features prior to lipid identification, which 

may offer a considerable time advantage [93]. A more comprehensive list of potential 

lipidomic analysis tools and methods can be found at https://github.com/lifs-tools/awesome-

lipidomics. In addition to the development of lipid specific tools, improvements in large 

language models (LLMs), such as ChatGPT, have the potential to aid in lipidomic studies. 

As accuracy improves, these language models have great potential to assist researchers 

in deciphering complex lipidomic literature, identifying relevant relationships between 

lipid structures and biological functions, and even predicting potential interactions within 

lipidomes. Further, these tools may be useful at automating computational tasks, such as 

writing code or making plots [94].

Conclusion

Lipidomics has emerged as an exciting yet complex field. This area is challenged not 

only by difficulties associated with detecting, identifying, and quantifying individual lipid 

species, but also by the unique data that results from these experiments. In this review, we 

have covered an array of popular statistical approaches that can be used to make sense of 

this data, as well as a number of bioinformatic tools that enable biological interpretation 

following statistical analysis. Ultimately, we believe that the methods and examples outlined 

in this review will aid lipidomic researchers in their choice of suitable analyses for their 

given datasets. Furthermore, we anticipate that the capabilities of these computational 

lipidomic methods will only continue to improve as more well-annotated lipidomic datasets 
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become publicly available, filling current knowledge gaps that are hindering informatic 

tools.
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Fig. 1. 
Overview of the analyses covered by this review
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Fig. 2. 
Unsupervised analysis examples. A PCA score plot showing separation of L. japonicas, 
C. idellus, and C. auratus fish species using phospholipid data and B loadings for the 

variables in the first two PCs. C t-SNE scatter plot showing lipidomic single-cell data 

from C2C12 and HepG2 cell lines grown in both control (CON) and docosahexaenoic 

acid (DHA)-supplemented media. D A two-dimensional hierarchical clustering heat map 

of lipid data from Fucus vesiculosus collected in either the winter or spring. The color 

scale indicates the levels of relative abundance and numbers indicate the fold difference 

from the mean. The top dendrogram represents clustering of the sample groups into two 

main clusters: Winter and Spring. Likewise, the left dendrogram illustrates clustering of 

individual lipid species into two main clusters. A and B were adapted from Shen et al. [37] 

with permission from ACS, Agriculture and Food Chemistry; C from Hancock et al. [38] 

with permission from Journal of Lipid Research, American Society for Biochemistry and 

Molecular Biology; and D from da Costa et al. [39] with permission from MDPI, Marine 

Drugs
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Fig. 3. 
AUC-ROC curves for cerebral infarction classification for logistic regression, support vector 

machine, and random forest. Reprinted from da Ye et al. [71] with permission from ACS, 

Journal of Proteome Research
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Fig. 4. 
Network visualization of altered lipid classes and species in bilirubin nanoparticles and 

vehicle-treated obese mice. Both A network analysis of lipid classes and B network analysis 

of lipid species is shown. The nodes’ shapes indicate the lipid type, with circles representing 

glycerolipids and glycerophospholipids, and squares representing sphingolipids. Node color 

corresponds to whether the lipid class or species was affected by the bilirubin treatment 

(green) or remained unchanged (white). Additionally, purple lines represent a negative 

z-score, green lines indicate a positive z-score, and shaded lines indicate the z-score is 

associated with a lipid class or species altered by the bilirubin treatment. Reprinted from da 

Kipp et al. [84] with permission from MDPI, Metabolites
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