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Extended stop codon context predicts
nonsense codon readthrough efficiency in
human cells

Kotchaphorn Mangkalaphiban1,2, Lianwu Fu3, Ming Du3, Kari Thrasher 3,
Kim M. Keeling 3, David M. Bedwell 3 & Allan Jacobson 1

Protein synthesis terminates when a stop codon enters the ribosome’s A-site.
Although termination is efficient, stop codon readthrough can occur when a
near-cognate tRNA outcompetes release factors during decoding. Seeking to
understand readthrough regulation we used a machine learning approach to
analyze readthrough efficiency data from published HEK293T ribosome pro-
filing experiments and compared it to comparable yeast experiments. We
obtained evidence for the conservation of identities of the stop codon, its
context, and 3’-UTR length (when termination is compromised), but not the
P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models
trainedondata fromcells treatedwith the readthrough-promotingdrug,G418,
accurately predicted readthrough of premature termination codons arising
from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability
has the potential to aid development of nonsense suppression therapies by
predicting a patient’s likelihood of improvement in response to drugs given
their nonsense mutation sequence context.

Termination of protein synthesis occurs when the ribosome encoun-
tersoneof the three stopcodons (UAA,UAG, andUGA) at the endof an
mRNA open reading frame (ORF). The release factor complex, com-
prised of eRF1, eRF3, and GTP, recognizes a stop codon in the ribo-
somal A-site and facilitates nascent peptide release, then the ribosome
is recycled by Rli1/ABCE1 for another round of translation1,2. The ter-
mination process is highly efficient and has a low error rate3, but an
error can still occurwhen the stop codon is decoded by a near-cognate
tRNA instead of eRF1, resulting in continued translation elongation
into the mRNA 3’-UTR, a process termed “stop codon readthrough”3,4.
An understanding of the details of this process is likely to be beneficial
for the development of therapeutics that target diseases caused by
nonsense mutations, where readthrough is desirable at premature
termination codons (PTCs) but not normal termination
codons (NTCs)5.

Cis-acting elements influencing the efficiency of termination and
readthrough have been identified in several organisms. These mod-
ulators of readthrough efficiency include the identity of the stop
codon and flanking nucleotides6–10, stem–loop structures in themRNA
3’-UTR6,11, and specific RNA binding protein motifs12,13. Among these,
the stop codon and the nucleotide following it (nt +4) are the most
studied across species and yield themost consistent results. Structural
insights into their mechanism have been demonstrated with cryo-
electron microscopy14,15 and their significance has been extended to a
transcriptome-wide level in human and yeast cells by ribosome pro-
filing experiments16,17. The conservation of other elements, however, is
more difficult to determine due to variations in experimental condi-
tions, analysis strategies, and (for endogenous mRNAs) existing
nucleotide usage biases in different species. The diversity in mRNA
sequences in transcriptomics data provides opportunities to
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determine whether cis-acting elements are conserved for endogenous
mRNAs between yeast and human cells, as well as to explore how they
can be utilized to predict readthrough efficiency given new sequences.

Therefore, to gain parallel insights into cis-acting elements
affecting readthrough efficiency at a human transcriptome-wide level,
we re-analyzed published readthrough efficiency data for HEK293T
cells17 in the same manner as we did for yeast cells16. Our analysis
revealed that, in addition to the previously established importance of
stop codon context, readthrough efficiency increased with 3’-UTR
length in HEK293T cells under readthrough-promoting conditions,
consistent with our yeast results. We also found that the patterns of
P-site codon triplets associated with high or low readthrough effi-
ciency in HEK293T cells are largely different from those observed in
yeast. Further, we demonstrated that a machine learning model
trained on these cis-acting elements can predictwith high accuracy the
readthrough efficiency of PTCs arising from nonsense mutations
found in cystic fibrosis patients. Collectively, we obtained evidence for
the conservation of cis-acting elements modulating readthrough effi-
ciency among human and yeast cells at a transcriptome-wide level,
derived insights into the mechanism of translation termination that
may involve tRNA properties, and presented potential applications of
ribosome profiling data coupled with machine learning approaches in
readthrough prediction and nonsense suppression therapies.

Results
Random forest models identify mRNA features predictive of
readthrough efficiency
To study cis-acting elements affecting transcriptome-wide read-
through efficiency in human cells, we applied the analysis approaches
we previously developed with yeast ribosome profiling data16 to
readthrough efficiency data generated from ribosome profiling
experiments of HEK293T cells treated with various readthrough-
promoting aminoglycosides17. For each sample, mRNAs with detect-
able readthrough were identified, and random forest models18,19 were
trained to predict the readthrough efficiency of these mRNAs using
mRNA or nascent peptide features (Fig. 1, Supplementary Fig. 1). The
feature importance score of each feature extracted from the model
indicates the predictive ability of that feature (Fig. 1). As a negative
control for baseline unimportant feature, we randomly assigned a
number (1–100) and a letter (A, C, G, U) to each mRNA, both of which
were expected to have no roles in readthrough efficiency prediction.
Indeed, the two negative control features have low feature importance
scores in all samples for both random forest approaches: the regres-
sion models trained to predict readthrough efficiency values directly
(Fig. 1a, negative control = “NC” columns) and the classificationmodels
trained to predict extremely “high” and “low” readthrough groups (top
andbottom 15%) (Fig. 1b, negative control = “NC” columns). Among the

aa 20-30
from stop

aa 13-19
from stop

aa 10-12
from stop

aa 3-9
from stop  nt from stop  nt from stop   NC

Nascent peptide in the exit tunnel

- c
ha

rg
ed

N
o 

ch
ar

ge
+ 

ch
ar

ge
d

Ar
om

at
ic

Po
la

r
N

on
po

la
r

H
yd

ro
ph

yl
ic

N
eu

tra
l

H
yd

ro
ph

ob
ic

Ve
ry

 h
yd

ro
ph

ob
ic

 - 
ch

ar
ge

d
 N

o 
ch

ar
ge

 +
 c

ha
rg

ed
 A

ro
m

at
ic

 P
ol

ar
 N

on
po

la
r

 H
yd

ro
ph

yl
ic

 N
eu

tra
l

 H
yd

ro
ph

ob
ic

 V
er

y 
hy

dr
op

ho
bi

c
  -

 c
ha

rg
ed

  N
o 

ch
ar

ge
  +

 c
ha

rg
ed

  A
ro

m
at

ic
  P

ol
ar

  N
on

po
la

r
  H

yd
ro

ph
yl

ic
  N

eu
tra

l
  H

yd
ro

ph
ob

ic
  V

er
y 

hy
dr

op
ho

bi
c

   
- c

ha
rg

ed
   

N
o 

ch
ar

ge
   

+ 
ch

ar
ge

d
   

Ar
om

at
ic

   
Po

la
r

   
N

on
po

la
r

   
H

yd
ro

ph
yl

ic
   

N
eu

tra
l

   
H

yd
ro

ph
ob

ic
   

Ve
ry

 h
yd

ro
ph

ob
ic

E-
si

te
 a

a
P-

si
te

 a
a

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1

St
op

 c
od

on +4 +5 +6 +7 +8 +9 +1
0

+1
1

+1
2

+1
3

+1
4

+1
5

+1
6

3'
-U

TR
 le

ng
th

R
an

do
m

 fa
ct

or
R

an
do

m
 n

um
be

r

Tobramycin
Paromomycin

Neomycin
Gentamicin

G418 (0.5, 10 min)
G418 (0.5)

G418 (2)
Amikacin

Untreated

-15 -10 -5 0 5 10 15
%IncMSE  

a

aa 20-30
from stop

aa 13-19
from stop

aa 10-12
from stop

aa 3-9
from stop  nt from stop  nt from stop   NC

Nascent peptide in the exit tunnel

- c
ha

rg
ed

N
o 

ch
ar

ge
+ 

ch
ar

ge
d

Ar
om

at
ic

Po
la

r
N

on
po

la
r

H
yd

ro
ph

yl
ic

N
eu

tra
l

H
yd

ro
ph

ob
ic

Ve
ry

 h
yd

ro
ph

ob
ic

 - 
ch

ar
ge

d
 N

o 
ch

ar
ge

 +
 c

ha
rg

ed
 A

ro
m

at
ic

 P
ol

ar
 N

on
po

la
r

 H
yd

ro
ph

yl
ic

 N
eu

tra
l

 H
yd

ro
ph

ob
ic

 V
er

y 
hy

dr
op

ho
bi

c
  -

 c
ha

rg
ed

  N
o 

ch
ar

ge
  +

 c
ha

rg
ed

  A
ro

m
at

ic
  P

ol
ar

  N
on

po
la

r
  H

yd
ro

ph
yl

ic
  N

eu
tra

l
  H

yd
ro

ph
ob

ic
  V

er
y 

hy
dr

op
ho

bi
c

   
- c

ha
rg

ed
   

N
o 

ch
ar

ge
   

+ 
ch

ar
ge

d
   

Ar
om

at
ic

   
Po

la
r

   
N

on
po

la
r

   
H

yd
ro

ph
yl

ic
   

N
eu

tra
l

   
H

yd
ro

ph
ob

ic
   

Ve
ry

 h
yd

ro
ph

ob
ic

E-
si

te
 a

a
P-

si
te

 a
a

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1

St
op

 c
od

on +4 +5 +6 +7 +8 +9 +1
0

+1
1

+1
2

+1
3

+1
4

+1
5

+1
6

3'
-U

TR
 le

ng
th

R
an

do
m

 fa
ct

or
R

an
do

m
 n

um
be

r

Tobramycin
Paromomycin

Neomycin
Gentamicin

G418 (0.5, 10 min)
G418 (0.5)

G418 (2)
Amikacin

Untreated

-15 -10 -5 0 5 10 15
MDA  

b

Fig. 1 | mRNA features predictive of readthrough efficiency. Feature impor-
tance scores, % increase in mean square error (%IncMSE) for regression (a),
and mean decrease accuracy (MDA) for classification (b) were extracted from
random forest models. The higher the feature importance score (red), the
more important a feature is in predicting readthrough efficiency or

distinguishing between “high” and “low” readthrough mRNAs. Numbers or
categorical values randomly assigned to the mRNAs are used as negative
controls (“NC”) and to set the baseline feature importance scores as unim-
portant features. aa amino acid, nt nucleotide. Source data are provided as a
Source Data file.
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features with high scores that are predictive of readthrough efficiency
are the identities of the stop codon and the nucleotide immediately
after it (nt +4) (Fig. 1), each of which has previously been shown to
affect termination and readthrough efficiency3,4,20. Other features with
high scores include 3’-UTR length and the identity of P-site amino acid
(Fig. 1), both of which were previously recognized in yeast16,21. For the
stop codon and nt +4, the feature importance scores for both are
especially prominent in G418-treated samples, where readthrough
levels weremuch higher than those seen in HEK293T cells treated with
other aminoglycosides and 3’-UTR ribosome footprints showed 3-nt
periodicity indicative of continued translation into the 3’-UTR from the
coding (CDS) region17.

Known stop codon context influences readthrough efficiency
To understand how mRNA features affect readthrough efficiency
prediction, we groupedmRNAs based on the usage of stop codons, nt
+4, or other nucleotides flanking the stop codons and compared the
median readthrough efficiency of that group to the sample median
(Fig. 2a). When mRNAs were grouped by the identity of the negative
control random letters, no significant differences between sample
median and each group’s median were observed in any samples
(Fig. 2a, “Random”). However, whenmRNAs were grouped by the stop
codon identity, we found thatmRNAs that usedUGA as the stop codon
had higher readthrough efficiency, while those using UAG and UAA
had lower readthrough efficiency than the overall sample median in

Fig. 2 | Effects of the stop codon and flanking nucleotide identities on read-
through efficiency. a, b, d Differences between median readthrough efficiency of
all mRNAs in the sample and median readthrough efficiency of a group of mRNAs
containing particular stop codon or nucleotide (a), stop codon with nt +4 as
quadruplet (b), or triplet codon in the ribosomal P-site (d). Positive (red) and
negative (blue) values indicate that the group of mRNAs had higher and lower
median readthrough efficiency compared to the samplemedian, respectively. Two-
tailedWilcoxon’s rank sum test with the Benjamini–Hochbergmethod formultiple

testing correction was used to determine whether the difference was significant.
c Standardized residuals of two-tailed χ2 test of independence determining asso-
ciation between stop codon and nt +4 identities. Positive residuals (pink) indicate
that the pair occurs togethermore often than expected (attraction), while negative
residuals (green) are less often than expected (repulsion). For all panels, a sig-
nificant result (p <0.05) is represented as a larger tile. Source data, the exact p-
values, and the number of data points (n) in each group are provided as a Source
Data file.
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most samples (Fig. 2a, “Stop”). This observation is consistent with
results from Wangen and Green despite the difference in statistical
analysis approaches, as well as with results from previous studies
showing that UGA is the most readthrough-permissive stop codon,
while UAA is the least3,4,7,22. Using our approach, we can extrapolate
from the general trends across samples that the readthrough-
promoting motif is UGACANNNA while the readthrough-inhibitory
motif is UAAG(G/C)NNNC in these HEK293T cells.

Currently, there are 30 mRNAs with experimentally validated
programmed stop codon readthrough (SCR)13,23, many of which have a
readthrough motif of UGACUAG. We determined whether these
known SCR mRNAs have higher readthrough efficiency in the ribo-
some profiling data set analyzed here. While not all SCR mRNAs are
expressed or have sufficient expression for their readthrough to be
detected, those that can be detected (9 out of 30 across samples) tend
to have higher readthrough efficiency than average (Supplementary
Fig. 2a, red and green). Since 29 out of the 30 readthroughmRNAs (all
9 detected here) use UGA stop codons, we compared the readthrough
of these mRNAs against the distribution of readthrough efficiency of
all UGA-containing mRNAs and reached a similar conclusion (Supple-
mentary Fig. 2b, red and green). The observations for UGACUAG
(Supplementary Fig. 2b, red) are also consistent with the associationof
the UGAC quadruplet with high readthrough. However, there are a few
SCR mRNAs that exhibited lower readthrough than average, suggest-
ing thatothermRNA features alsoplay a role in regulating readthrough
efficiency.

We further asked whether the strongest features, the stop codon
and nt +4, together have additive effects on readthrough efficiency, as
shown inprevious studies. As expected,whenmRNAswere groupedby
the combination of these two features, the most readthrough-
permissive combination, UGAC, had the highest increase in read-
through efficiency relative to the sample median, while the most
readthrough-inhibiting combination, UAAG, had the highest decrease
in readthrough efficiency acrossmost samples (Fig. 2b). The trends for
each feature when another feature is held constant (Fig. 2b) are also
mostly in line with analyses performed for each feature independently
(Fig. 2a). When nt +4 is held constant, the order of most to least
readthrough-promoting stop codon is UGA>UAG>UAA (Fig. 2b,
compare “A” columns from different stop codon panels to each other,
and so on). When the stop codon is held constant, the order most to
least readthrough-promoting nt +4 is C >U >A/G (Fig. 2b, compare
different nt +4 columns to each other within a specific stop
codon panel).

A readthrough-promoting stop codon and nt +4 combination
appears to be selected against throughout evolution
Unlike studies of readthrough using reporters, studying readthrough
of endogenous mRNAs can be affected by the biased frequency of
codon or nucleotide usage that results from various evolutionary
pressures. On the one hand, the existence of programmed read-
through genes with readthrough permissive contexts suggests that
readthrough is allowed tohappen to facilitate protein evolution13,24. On
the other hand, the fact that the stop codon with the highest fidelity,
UAA, is concentrated amongmRNAs of highly expressed and essential
genes suggests that readthrough is selected against to limitdeleterious
consequences of a C-terminally extended polypeptide7,25–28. Studying
readthrough of endogenous mRNAs using ribosome profiling further
biases the pool of data due to a detection threshold for 3’-UTR reads,
which depends on: (i) sufficiently high expression and translation of
the mRNA CDS region, (ii) the existence of readthrough-promoting
features that allow readthrough of certain mRNAs to be seen more
often, and iii) aminoglycoside treatment (Supplementary Fig. 3a).
Indeed, we observed that, on average, ~54% of mRNAs in each sample
had UGA stop codons; these frequencies are only slightly higher than
the 49% determined from the Reference group, which encompasses

mRNAs fromall samples combined regardless of whether readthrough
is detected or not (Supplementary Fig. 3b). For nt +4, A and G are the
most common with comparable frequencies, followed closely by C,
while U is depleted (Supplementary Fig. 3b). The high abundance of
readthrough-promotingUGAbut depletion in readthrough-promoting
nt +4 suggests that a combination of readthrough-promoting features
may have been under negative selection.

To statistically determine if certain pairs of stop codon and nt +4
are over- or under-represented given existing biases in the data, we
performed a χ2 test of independence (Fig. 2c), comparing the observed
(Supplementary Fig. 3c, d) to the expected equal frequencies of nt +4
among stop codons (Supplementary Fig. 3e, f). We found that UGAG is
over-represented in all samples except Untreated, Amikacin-treated,
and Tobramycin-treated samples, where UGAC is over-represented
instead (Fig. 2c, pink in UGA panel). Coincidentally, these three sam-
ples have the fewest mRNAs with detectable readthrough (Supple-
mentary Fig. 3a).While UGAG is still a very common quadruplet, UGAC
becomes almost as common in the three samples (Supplementary
Fig. 3c). These results indicate thatwhenoverall readthrough levels are
very low, detectable readthrough in Untreated, Amikacin-treated, and
Tobramycin-treated samples are in part biased towards mRNAs with
readthrough-promoting features. Among the aminoglycoside-treated
samples, G418-treated samples show the closest results to the Refer-
ence (Fig. 2c), indicating that readthrough induced by G418 led to a
high enough number of mRNAs with detectable readthrough (Sup-
plementary Fig. 3a) such that the diversity of stop codon and nt +4
combinations is sufficiently representative of the pool of mRNAs
expressed in HEK293T cells. We focused on the Reference and G418-
treated samples in further discussion of χ2 test results.

As described above, we determined that UGAG being noticeably
the most common quadruplet in the data (Supplementary Fig. 3c) is
not solely due to the naturally high abundance of UGA and G in the
data, but their occurrence together is also more frequent than what
would be expected by random chance of two highly abundant features
(Fig. 2c). The same is true for UAAA being the most common among
theUAA andnt +4 combinations (Supplementary Fig. 3c, d and Fig. 2c).
These observations suggest that a combination of readthrough-
promoting features tend to be selected against.

It is important to note that a combination being over-represented
does not equate to their abundance becoming the highest. Although
UAAU also occurs more often than expected (Fig. 2c), the low pre-
valence of U in general results in UAAU being relatively infrequent
overall, not that much more frequent than UAAC or UAAG (Supple-
mentary Fig. 3c). Similarly, although UAGC occurs more often than
expected (Fig. 2c), its frequency is no more than UAGA or UAGG
(Supplementary Fig. 3c). Because χ2 analysis compares proportions, it
is expected that when G is over-represented in one group, other
nucleotides like U or C would be under-represented in that group and
would appear over-represented in another group. This is likely the
reason for the positive associations seen for UAGC and UAAU rather
than them being evolutionarily selected because their actual fre-
quencies in the data are quite low (Supplementary Fig. 3c).

Taken together, we found that UGAG andUAAA occurmore often
than expected. This diminished association between readthrough-
promoting features is likely the consequence of evolutionary pressure
to limit high readthrough among mRNAs expressed in HEK293T cells.

P-site codons have mild effects on readthrough efficiency
Some nucleotide positions upstream of the stop codon seem to be
associated with different readthrough efficiency levels. For example,
mRNAs with guanine at position −1 and thosewith uracil at position −3
had lower and higher readthrough efficiencies than the sample med-
ian, respectively (Fig. 2a). These nucleotide positions encode the
amino acid immediately prior to the stop codon, so when the stop
codon enters the ribosomal A-site, these nucleotides are in the P-site.
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Concurrently, the P-site amino acid has feature importance scores
higher than the baseline in the random forest models (Fig. 1).

To determine whether readthrough efficiency is modulated
by the P-site codon nucleotides, encoded amino acids, or
decoding tRNAs, we grouped mRNAs by the identity of their P-site
codon triplets and compared each group’s median readthrough
efficiency to the sample median (Fig. 2d). If readthrough effi-
ciency is strongly influenced by the nucleotides, we expect the
codons with the same nucleotide composition at certain positions
to have the same results regardless of the amino acid they
encode. On the other hand, if readthrough efficiency is influenced
by the amino acid, we expect the codons that encode the same
amino acid to have the same results despite their differences in
nucleotide composition. Results that do not follow these expec-
tations suggest that tRNA properties may be involved or indicate
a more complex interplay of at least two of the three P-site
features.

Although no codons show significant results consistently across
samples, the direction of association remains uniform across samples
for many codons, as opposed to non-uniform patterns of negative
control random letters (Fig. 2a, “Random”). For example, mRNAs that
have AAG in the P-site generally have lower readthrough efficiency
than the sample median, while those that have UGG have higher
readthrough efficiency than the samplemedian (Fig. 2d). Because UGG
is the only codon encoding tryptophan (W), it is not discernable
whether this specific codon nucleotide combination, the decoding
tryptophan tRNA, or the encoded tryptophan is responsible for higher
readthrough efficiency. It is notable, however, that the first nucleotide
of UGG corresponds to U at position −3, which is associated with high
readthrough efficiency (Fig. 2a), and most other codons that begin
with U also show the general trend of higher readthrough efficiency
(regardless of significance level) (Fig. 2d). Therefore, U at position −3
may be mechanistically responsible for high readthrough efficiency in
these mRNAs.

Readthrough efficiency increases with 3’-UTR length
Random forestmodels identified3’-UTR length asoneof the important
predictors of readthrough efficiency. To understand the relationship
between 3’-UTR length and readthrough efficiency, we calculated
Spearman’s correlation coefficient (ρ) between these two values.

Readthrough efficiency is positively correlatedwith 3’-UTR length in all
samples (Fig. 3). To rule out the possibility that the observed correla-
tion is skewed by extremely short or long 3’-UTRs, we repeated the
analysis with only those mRNAs whose 3’-UTRs are longer than 100 nt
and shorter than 5000 nt. The positive correlations are maintained in
all samples (Supplementary Fig. 4a). The positive correlation between
readthrough efficiency and 3’-UTR length is probably linked to the role
of poly(A)-binding protein (PABP) in enhancing translation termina-
tion, which has been demonstrated both in vivo and in vitro in other
eukaryotes21,29. Further, in a reporter gene assay, the distance of PABP
to the stop codon also correlated with readthrough efficiency in
yeast21.

It is possible that the 3’-UTR effect reflects an involvement of
mRNA secondary structure in the 3’-UTR, which has been shown to
induce readthrough in some genes. To test whether the observed 3’-
UTR effect is related to mRNA secondary structure, we used an
established prediction tool, RNALfold of the ViennaRNA package30, to
identify potential structures in the 3’-UTRs and calculated pairwise
Spearman’s correlation coefficient (ρ) between the minimum free
energy (MFE) of themost stable predicted structure for a given 3’-UTR
sequence (lowest MFE), readthrough efficiency, and 3’-UTR length
(Supplementary Fig. 5a). The majority of 3’-UTRs (except for 7 across
all samples) have at least one predicted structure. We observed that in
all samples, the relationship between readthrough efficiency and MFE
is much weaker than that between readthrough efficiency and 3’-UTR
length; in some cases, there is no correlation at all. However, the
strongest correlation is the 3’-UTR length vs. MFE; the negative cor-
relation indicates that the longer the 3’-UTR is, the lower the MFE is
(i.e., the stronger the structure is). These results indicate that stronger
secondary structures tend to occur in longer 3’-UTRs because longer
sequences generally have a higher chance of forming stable structures
and that these structures, if they really did occur in the samples, did
not account for the 3’-UTR effect observed in the data.

Next, we asked whether the effect of 3’-UTR length depends on
the stop codon and nt +4 identities. We calculated Spearman’s corre-
lation coefficient (ρ) of readthrough efficiency vs. 3’-UTR length for
each mRNA group based on their stop codon and nt +4 identities
(Supplementary Fig. 5b). We found that the correlation is as high as
0.39 for mRNAs with specific stop codon context, such as UAAG in
gentamicin-treated cells and UAGU in tobramycin-treated cells, while
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the correlation is close to zero in some other cases. These results
demonstrate that the 3’-UTR length effect (and potentially PABP’s
involvement) may only matter or be observable in some cases,
depending on stop codon, nt +4, and aminoglycoside treatment.
Although these results are not direct evidence of PABP’s involvement
in termination, they may still help explain why PABP’s role in termi-
nation has been elusive, as PABP’s role or the extent of its role may be
specific to a system or to an mRNA’s context.

Random forest model can accurately predict outcomes of PTC
readthrough measured by Dual-Luciferase assay in G418-
treated cells
Nonsense mutations introduce PTCs in the middle of mRNA coding
regions, resulting in the production of nonfunctional, truncated pro-
teins and severe diseases31. Determining the readthrough efficiency of
PTCs is crucial in understanding disease phenotypes and designing
therapeutic approaches to these diseases. We tested whether the
random forest models trained on endogenous mRNA features and
transcriptome-wide readthrough efficiency measured by ribosome
profiling can accurately predict the readthrough efficiency of 15 PTCs
derived from CFTR nonsense alleles that are found in cystic fibrosis
patients.

To experimentally measure PTC readthrough, we created a dual-
luciferase (Dual-Luc) reporter construct for each PTC allele by fusing a
DNA fragment containing the PTC and 9 nucleotides (3 codons)
flanking the 5’ and 3’ sides of the PTC in-between the Renilla and firefly
luciferase genes, where the upstream gene (Renilla) lacks a stop codon
and the downstream gene (firefly) lacks a start codon (Supplementary
Fig. 6a). The construct was then transfected into HEK293 cells, treated
or not treated with 0.1mg/mL G418, and expression of the two
reporter geneswasquantified after 24 h. Readthrough efficiency in 4–7
replicate experiments per allele was determined as the percentage of
firefly luciferase normalized to the signal for Renilla luciferase (see
Supplementary Data 1 for the raw data and calculations for all trans-
formants). To ensure that these enzymatic assays were attributable to
stop codon readthrough and not to spurious translation events, e.g.,
internal translation initiation, thatwould result infirefly signal,HEK293
cells transformed with the same constructs and treated in the same
manner with G418 were subjected to western blotting analyses using
anti-Renilla and anti-firefly antibodies (Supplementary Fig. 6b, c). All
but two alleles, S434X UGA and UAA, of the 15 alleles tested have no
other products that would contribute to the luciferase signals (see
Materials and Methods for details), so we proceeded with 13 alleles in
further analyses.

To predict readthrough, we recorded mRNA features exactly as
they appeared in the construct for eachPTCallele and used the trained
random forest models (one trained on data from untreated cells and
another on data from cells treated with 0.5mg/mL G418) to determine
readthrough efficiency values based on the features. The predicted
readthrough efficiency is positively correlated with average read-
through efficiency measured in both treatment conditions, with
Spearman’s rank correlation coefficient (ρ) of0.27 inuntreated and0.7
in the G418-treated condition (Fig. 4a). Excluding the apparent out-
liers, W882X andW216X, improves the correlation to 0.88 in the G418-
treated condition. Predictions from the untreated model performed
worse because the model trained on untreated data had poorer per-
formance, or higher NMRSE, than the model trained on G418-treated
data (Supplementary Fig. 1a). Since the samemRNA featureswere used
to train bothmodels, the poorer performance is likely due to the lower
number of mRNAs with detectable readthrough for model training
(Supplementary Fig. 3a) as well as poorer accuracy of readthrough
efficiency values derived from ribosome profiling data of untreated
cells. Unlike the G418 treatment where readthrough was induced,
evidenced by ribosome footprints in the 3’-UTR predominantly in the
same reading frame as in the CDS region, ribosome footprints in the

3’-UTR from untreated cells showed no preference in reading frame17.
Thus, the noise from non-readthrough ribosome footprints was pro-
portionally higher in untreated cells than in G418-treated cells,
resulting in poorer predictive ability. Thus, it is unsurprising thatwhen
we compared changes in readthrough efficiency upon G418 treatment
(G418-treated/Untreated) between predicted and measured values,
the correlation was weak (Fig. 4b).

Three codons flanking each side of a PTC comprise a sufficient
context to experimentally measure readthrough efficiency
The random forest models were trained on 75 mRNA features that
encompass identities of nucleotides inside and outside the terminat-
ing ribosome, properties of amino acids in the ribosome’s exit tunnel,
and3’-UTR length (Fig. 1 andSupplementaryFig. 7a, Full).However, the
PTC contexts used in the Dual-Luc assays are more limited, only cov-
ering 21 mRNA features from the original CFTR mRNA sequence
(Supplementary Fig. 7a, dark green boxes) and partially affecting 10
nascent peptide tunnel features (Supplementary Fig. 7a, light green
boxes), meaning that 44 of the 75 mRNA features used in the predic-
tion were those of the reporter mRNAs that are constant across dif-
ferent alleles. For broader application of the model, predicting
readthrough with native sequence features is desirable. Comparing
predictions derived from native CFTR sequences to alleles with
reporter sequences revealed very strong correlations, 0.98 for
the G418-treated model (Fig. 4c), suggesting that the 44 mRNA fea-
tures of the original CFTRmRNA that were not copied to the assay had
minimal contributions in the prediction. This is expected since the
context used in the assays encompasses all the important features
except one, the 3’-UTR length (Supplementary Fig. 7a). Additionally,
predicted readthrough derived from native CFTR sequences still
reflected the Dual-Luc assay measurements quite well in the G418-
treated condition (Fig. 4d), but not in the untreated condition or in
response to G418 treatment (Fig. 4e). The reduction in correlation
compared to the analysis derived from reporter sequences was mini-
mal in the G418-treated condition (Fig. 4d vs. 4a), possibly due to the
3’-UTR length feature that varied between PTC alleles in the native
sequence but was kept constant in the assay. These results indicate
that the PTC context used in the assays may be sufficient to measure
readthrough efficiency.

To further ensure thatmRNA features outside of the context used
in Dual-Luc PTC alleles indeed did not contribute to readthrough
efficiency determination, we created additional random forest models
lacking those mRNA features and compared the prediction errors to
those from the full models for the G418-treated condition (Supple-
mentary Fig. 7). The “Reduced” model contains the combination of
features used in the assay and the important features, minus the exit
tunnel features (Supplementary Fig. 7a Reduced). Encouragingly, the
Reducedmodel performed as well as the Full model in both regression
and classification approaches, as evidenced by unchangedNRMSE and
AUROC values (Supplementary Fig. 7b, c, Full vs. Reduced). As con-
trols, we created three “Mock” models that had the same number of
features as the Reduced model but only included features with low
importance scores (Supplementary Fig. 7a, Mock1–3). In contrast to
the Reduced model, Mock models performed significantly worse than
the Full model in both approaches, as evidenced by increases in
NRMSE and decreases in AUROC values (Supplementary Fig. 7b, c, Full
vs. Mock). Because the Dual-Luc assay did not take into account the 3’-
UTR length, which is identified as an important predictor of read-
through efficiency in random forest models (Fig. 1), we next asked
whether excluding 3’-UTR length from the Reduced model sig-
nificantly changedmodel performance (Supplementary Fig. 7a, Assay).
This model performed slightly worse than the Full model, but not
significantly (Supplementary Fig. 7b, c, Full vs. Assay). These results
show that stop codon context alone is sufficient to predict read-
through efficiency.
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Together, our findings not only demonstrated a broader
application of the model in predicting readthrough efficiency but
also indicated that three codons flanking each side of a PTC is
a sufficient context to experimentally measure readthrough
efficiency.

Stop codon context in CFTR PTC alleles
Next, we asked what contexts existed in PTC alleles from highest to
lowest readthrough measured in the G418-treated condition and
whether they were consistent with the results derived from
transcriptome-wide ribosome profiling data of G418-treated cells
(Supplementary Fig. 8). Notably, the allele with the highest read-
through, G550X, has a UGA stop codon and readthrough-promoting

context for nt −1 and +9 (Supplementary Fig. 8a). The highest read-
through among UAG and UAA alleles, Y1092X-UAG and -UAA, have
readthrough-promoting C at the nt +4 and A at the nt +9 positions
(Supplementary Fig. 8b). Comparing to its UAA counterparts with
identical context, Y1092X-UAG has higher readthrough than Y1092X-
UAA, as expected (Supplementary Fig. 8a). These relative comparisons
are also reflected in predicted readthrough of these alleles by theDual-
Luc assay (Fig. 4a).

Among the three UAA alleles, E585X unsurprisingly has the
lowest readthrough because it has the most readthrough-inhibiting
context UAAA (Supplementary Fig. 8b). However, two of the UAA
alleles actually have very similar immediate context, UAACU, but
their measured read through varied, suggesting the roles of

E60X

Y122X

W216X

Q493X

G542X
G550X

R553X

E585X

W882X

Y1092X
Y1092X

R1162X

W1282X

� = 0.27, p = 0.37

E60X

Y122X

W216X

Q493X G542X

G550XR553X

E585X

W882X

Y1092X

Y1092X

R1162X

W1282X

� = 0.7, p = 0.01
-3.0

-2.5

-2.0

-1.5

Untreated G418-treated

0.00 0.25 0.50 0.75 1.00 1.25 0.5 1.0 1.5 2.0 2.5

-4.5

-4.0

-3.5

-3.0

Average measured readthrough

Pr
ed

ic
te

d 
re

ad
th

ro
ug

h
(re

po
rte

r s
eq

ue
nc

e)

a

Q493X

G542X

G550X

R553X

E585X

E60X

W882X

Y1092X

Y1092X

R1162X

Y122X

W1282X

W216X

� = 0.2, p = 0.51

G418-treated / Untreated

1 2 3 4 5

2

3

4

5

Measured readthrough

Pr
ed

ic
te

d 
re

ad
th

ro
ug

h
(re

po
rte

r s
eq

ue
nc

e)

b

E60X

Y122X

W216X

Q493X

G542X
G550X

R553X

E585X

W882X

Y1092X
Y1092X

R1162X

W1282X

� � 0.76 , p � 0.0036

E60X

Y122X

W216X

Q493X
G542X

G550X

R553X

E585X

W882X

Y1092X

Y1092X
R1162X

W1282X

� � 0.98 , p � 0
-3.0

-2.5

-2.0

-1.5

Untreated G418-treated

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5

-4.5

-4.0

-3.5

-3.0

Predicted readthrough (native sequence)

Pr
ed

ic
te

d 
re

ad
th

ro
ug

h
(re

po
rte

r s
eq

ue
nc

e) Stop codon

UAA

UAG

UGA

c

E60X

Y122X

W216X

Q493X
G542X

G550X

R553X

E585X

W882X

Y1092X

Y1092X

R1162X

W1282X

� = 0.099, p = 0.75

E60X
Y122X

W216X

Q493X

G542X

G550X
R553X

E585X

W882X

Y1092X

Y1092X
R1162X

W1282X

� = 0.6, p = 0.032

-2.5

-2.0

-1.5

Untreated G418-treated

0.00 0.25 0.50 0.75 1.00 1.25 0.5 1.0 1.5 2.0 2.5

-4.0

-3.5

-3.0

Average measured readthrough

Pr
ed

ic
te

d 
re

ad
th

ro
ug

h
(n

at
iv

e 
se

qu
en

ce
)

d

Q493X

G542X G550X

R553X

E585X

E60X
W882X

Y1092X

Y1092X R1162X

Y122X

W1282X

W216X

� = 0.37, p = 0.21

G418-treated / Untreated

1 2 3 4 5

1.5

2.0

2.5

3.0

3.5

Measured readthrough

Pr
ed

ic
te

d 
re

ad
th

ro
ug

h
(n

at
iv

e 
se

qu
en

ce
)
e

Fig. 4 | Random forest model can accurately predict the readthrough of CFTR
PTC alleles in G418-treated cells. a Readthrough measured by Dual-Luc assay
(average of 4–7 replicates) vs. readthrough predicted by random forest model
using CFTR PTC alleles in Dual-Luc reporter’s sequence. b Response to G418
treatment is defined as fold-change of readthrough in G418-treated to untreated
condition from (a), measured vs. predicted. c Comparison of two readthrough

prediction schemes: predicted using CFTR PTC allele in reporter’s sequence or
predicted using CFTR PTC allele’s native sequence. dAs in (a), but readthroughwas
predicted using CFTR PTC allele’s native sequence. eAs in (b), but readthroughwas
predicted using CFTR PTC allele’s native sequence. For all panels, the two-tailed
Spearman’s correlation coefficient (ρ) and the associated p-value is reported.
Source data are provided as a Source Data file and Supplementary Data 1.
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other nucleotide positions such as −1, and +9 in mediating read-
through efficiency (Supplementary Fig. 8b). For UAG alleles, the trend
is more difficult to discern, but if the two outliers (W882X and
W216X) where the predicted and measured readthrough do not qui-
te agree (Fig. 4a) are excluded from consideration, the rank order
of Y1092X, E60X, and Q493X suggests the role of nt +4 and +9
(Supplementary Fig. 8b).

Although W1282X being the lowest UGA readthrough allele is not
surprising considering its readthrough-inhibiting context, it is sur-
prising that it actually has even lower readthrough than the lowestUAA
readthrough allele, E585X, as evidenced by the discrepancy between
the measured and predicted readthrough ranking of the two alleles
(Fig. 4a). This discrepancy, among other outliers, suggested that there
exist other features that influence readthrough efficiency thatwere not
included in the model (see Discussion). Nevertheless, the overall high
correlation of predictions using the current model and assay mea-
surements (Fig. 4), as well as the generally expected preference for
readthrough-promoting or -inhibiting contexts in highest and lowest
readthrough alleles (Supplementary Fig. 8), demonstrate value in the
application of machine learning in readthrough efficiency prediction
and validate the use of limited context in measuring readthrough
experimentally.

Mutations that result in UAA PTCs do not respond well to G418
treatment
One of the major questions in nonsense suppression therapeutics is
how responsive a PTC is to drug treatment. Because themodel did not
give accurate predictions in the untreated condition (Fig. 4b, e) to use
as baseline readthrough efficiency, we investigated response to G418
treatment using Dual-Luc results (Fig. 5). It appears that UAA alleles
generally did not respond well to G418 treatment (Fig. 5a). G550X
showed the best response to G418 treatment, showing the highest
increase in readthrough, although it was impossible to determine the
reason without further experiments or more data (Fig. 5a). However,
we observed a trend that UGA alleles as a group had the highest, fol-
lowed by UAG, and UAA alleles the lowest increase in readthrough
upon G418 treatment (Fig. 5a, b). Thus, in addition to being
readthrough-inhibiting in general, UAA also seems to inhibit G418-
mediated induction of readthrough.

Discussion
Major cis-acting elements modulating transcriptome-wide
translation termination and readthrough efficiency are
conserved
Here, we analyzed published readthrough efficiency data derived from
ribosome profiling of HEK293T cells17 using analysis approaches we
had previously developed with yeast data16. The unbiased random
forest approaches identified the same elements modulating read-
through efficiency in both human and yeast cells, which include the
stopcodon, nt +4, 3’-UTR length, andP-site amino acids (Fig. 1). Among
these elements, the stop codon and nt +4 (as well as readthrough
promoting nucleotides at +5 and +9), which all have high (or relatively
high) feature importance scores, influence readthrough efficiency in
the same manner between the two organisms (Figs. 2a and 6)16. These
results are in line with previous knowledge of cis-acting elements that
modulate termination, extending that knowledge to a transcriptome-
wide level and reinforcing the notion that the mechanism of termina-
tion is conserved in eukaryotes.

The exact mechanism of nt +4 and +5 in influencing termination
has been demonstrated in cryo-electron microscopy (cryo-EM) stu-
dies, showing thatmRNAcompactionduring termination allows the +4
base to enter the ribosomal A-site, making a +4 base stack with G626 of
18 S rRNA14,15,32 and +5 base stack with C1698 of 18 S rRNA that protrudes
into the mRNA channel15. These stacking interactions are more stable
with purines (A and G), which explains why stop codons followed by a
purine, especially G, at nt +4 result in lower readthrough efficiency.
However, A at nt +5 is associated with higher readthrough efficiency in
our analysis and many previous studies4,6,9,22. Given that there are
studies that did find A at nt +5 to be readthrough-inhibiting10,25, the
discrepancy between what the cryo-EM implies and some results may
be related to differences in reporter sequences, indicating complex
roles of other nucleotides in the overall structure of the terminating
ribosome. Although the exact mechanism of further downstream
nucleotides, including nt +9, is still unclear, it is possible that nt +9 also
interacts with an rRNA base or an amino acid residue(s) of a ribosomal
protein because it appears to reside in the ribosome’s mRNA channel.
The latter conclusion follows from their protection from RNaseI
digestion in ribosome profiling experiments as well as inferences of
structural studies8,20,33–35. A recent study using a reconstituted
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Fig. 5 | UAA PTC alleles do not respond well to G418-treatment. Response to
G418 treatment is defined as log2 fold-change of readthrough for each replicate of
G418-treated over the untreated condition and then averaged (4–7 replicates).
a Average response to G418 treatment vs. average basal readthrough level in an
untreatedcondition.bAverage response toG418 treatment vs. stop codon identity.

Box-plot center line, median; lower and upper hinges, first and third quartiles (the
25th and 75th percentile); whiskers, 1.5× interquartile range; points, actual data.
Two-tailed Student’s t-test with the Benjamini–Hochberg method for multiple
testing correction was used to perform the pairwise comparison. Source data are
provided as a Source Data file and Supplementary Data 1.
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translation system further demonstrated that readthrough efficiency
varied in a context-dependent manner in the absence of eRF1, while
termination efficiency did not differ between standard and weak
context, leading to a proposition that downstream nucleotides affect
the rate of near-cognate tRNA incorporation (rather than eRF1’s stop
codon recognition or peptide release activity) through the involve-
ment of ribosomes and other factors usually engaged in translation
elongation36.

One difference between the data from HEK293T cells and yeast is
the relationship between readthrough efficiency and 3’-UTR length in
wild-type conditions. Under circumstances where termination is ren-
dered less efficient, either by release factor deactivation in yeast or by
aminoglycoside treatment in HEK293T cells, readthrough efficiency
increases with 3’-UTR length, implying that the closer proximity of PABP
to the stop codon enhances termination efficiency when the normal
termination process is compromised. Under normal circumstances
where termination is not hindered, readthrough still increases with 3’-
UTR length in untreated HEK293T cells (Figs 3 and 6), but decreases
with 3’-UTR length in wild-type yeast cells16. This discrepancy may be
related to the fact that yeast mRNA 3’-UTRs are naturally much shorter
than those of human cells (Supplementary Fig. 4b), limiting possible
additional 3’-UTR interactions and regulation. This reduced binding
opportunity for additional regulatory proteins to the 3’-UTR and
increased proximity of poly(A) tail (and poly(A) tail-associated proteins)
to the stop codon may suggest that these regulatory factors may have
either stronger or weaker influence on 3’-UTR function under normal
circumstances in yeast compared to human cells.

tRNA abundance and/or properties may influence the efficiency
of translation termination
Contrary to other mRNA contexts where the trends are similar
between human and yeast data, the identity of P-site codons that
are associated with high or low readthrough efficiency mostly
differ between human and yeast cells (Figs. 2d and 6). Except for
the GCU codon that is associated with low readthrough almost
uniformly across samples in both species, no other codons in
human cells showed patterns consistent with those found to be
significant in yeast cells. Because the nucleotide and amino acid
properties do not vary between species, the differences in results
could be attributable to structural variation between yeast and
human ribosomes or the difference in tRNA pools and properties.
For the latter scenario, even though the mechanism underlying
the influence of P-site position in readthrough efficiency may be
conserved, the variation in tRNA abundance and modifications
between species can result in differences in the identity of the
codon identified in our P-site codon analyses. Although P-site
tRNA was claimed to have no effect on readthrough levels, this
conclusion was derived from observed changes in readthrough
levels when the third wobble base of the codon was mutated
while keeping the same decoding tRNA for both the original and
the mutated codons unchanged37. Additional experiments that
can control for nucleotide and amino acid identities while varying
the tRNA properties will be needed to pinpoint the underlying
mechanism behind the P-site codon’s effect on readthrough
efficiency.

In addition to the P-site, tRNA abundance and properties likely
also matter in stop codon decoding in the A-site. Termination vs.
readthrough is a competition between eRF1 and a near-cognate tRNA
in A-site binding. Several studies in yeast and human cells have shown
that specific near-cognate tRNAs are more readthrough-inducing than
others38–40, which are influenced by their relative concentration in the
cells39,41, modifications of their anticodon loop that interacts with the
stop codon40,42, and properties of their anticodon stem that interacts
with the ribosome43,44. These features are not included in the random
forest models, and the missing informationmay be one of the reasons
for the existence of outliers in the comparison of predicted and mea-
sured readthrough efficiency (Fig. 4). In particular, we noticed that the
predictions are the least accurate for UAG PTC alleles; Spearman’s
correlation coefficients for the data in Fig. 4a, G418-treated panel, for
each stop codon are 0.9 for UGA, 0.2 for UAG, and 1 for UAA. Although
the same amino acids are usually inserted at UAA and UAG stop
codons, the frequencies differ, and the near-cognate tRNAs that
decode them are not always the same38–40,45,46. Perhaps in
HEK293T cells, the concentration of some tRNAs that decode UAG is
much higher or lower than average, making it a rate-determining or
rate-limiting step in the eRF1 vs. tRNA competition and overpowering
noticeable influences of other mRNA features. To add to the com-
plexity of this process, stop codon context not only influences read-
through efficiency, but also dictates which tRNA and thus amino acid
to be inserted at a PTC46,47. An additional consideration is the stop
codon and near-cognate tRNA base-pairing kinetics. Previous studies
in both yeast and human cells demonstrated that the 2nd base (mid-
dle) is almost always cognate while mismatches occur at either the 1st
or 3rd base38,39,45,46. This means that UAA and UGA have the same
nucleotides for the 3rd base mismatch, A, while UAG has G. Again, the
different wobble base-pairing kinetics with G as well as properties of a
different tRNA decoding UAG, may be rate-determining or rate-
limiting for readthrough, resulting in the predictions based on other
mRNA features alone being less accurate.

Overall, our results suggest that tRNA abundance and/or prop-
erties may influence readthrough efficiency. Including precise infor-
mation regarding tRNAs in the model will likely improve its predictive
ability.

Fig. 6 | Cis-acting elements modulating readthrough efficiency are mostly
conserved between yeast and humans. Comparison of results analyzed in a
similar manner with data from yeast W30316 and human HEK293T cells17. mRNA
features are shaded based on relative importance in readthrough efficiency pre-
diction (red shading). The details of how each feature inhibits or promotes read-
through are ordered from left to right (green shading).
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Potential applications of machine learning models in read-
through prediction
Apart from a few outliers, we showed that random forest models
trained on readthrough data of endogenous mRNAs derived from
ribosome profiling experiments can accurately predict the read-
through of CFTR PTCs measured by a Dual-Luciferase assay, particu-
larly in G418-treated cells (Fig. 4). The significance of this result is
three-fold.

First, this result indicates that readthrough efficiency at NTCs and
PTCs share the same rules for cis-regulatory elements. Because non-
sense mutations happen randomly and are not subject to the same
evolutionary pressure as that of NTCs, there has been a concern that
information obtained from studying NTC readthroughs may not be
relevant to studying disease-related nonsensemutations. However, we
showed that despite biases in certaincontexts appearingmoreoftenor
occurring less frequently in the transcriptome (Fig. 2c), the endogen-
ous mRNA NTC contexts are diverse enough to allow accurate pre-
diction of the readthrough of PTCs (Fig. 4).

Second, this result validates the use of a small fragment of native
PTC context in studying readthrough. Studies of readthrough usually
involve only a fragment of native sequence near the stop codon, which
varies between studies. It was unclear whether this small fragment
would be sufficient to mimic the readthrough of PTCs with the whole-
gene native sequence that exists in patients. Our trained model
includes larger native sequence contexts than are used in the Dual-
Luciferase assay, but the prediction and measured readthrough effi-
ciency are still consistent with each other. Hence, we provided evi-
dence that minimal context that contains the most influential mRNA
features is sufficient to experimentally measure readthrough.

Lastly, our results demonstrate that a machine learning model
trained on big data can predict an assay outcome. Studying read-
throughofnonsensemutations in disease patients hasmostly required
difficult-to-estimate, indirect measurements of readthrough48–51. The
Dual-Luciferase assay, although commercialized and streamlined for
ease of use, can still be tedious if there are many mutations and con-
texts to test. Thus, the high predictive ability of a machine learning
model may help with future readthrough experimental design, saving
time, labor, and resources. Although basal readthrough prediction is
not as accurate, making studying fold-change in drug treatment more
difficult to predict, it might not matter because the most important
information for therapeutic purposes is readthrough level after drug
treatment, which we showed to be accurate. With additional con-
sideration for how the inserted amino acid affects the full-length
protein function, the application of readthrough prediction may also
extend to aiding clinical trial design for nonsense suppression thera-
pies, predicting whether a patient will respond well to a readthrough
drug given the nonsense mutation’s sequence context.

Methods
Data acquisition
Readthrough efficiency data for HEK293T cells treated with different
aminoglycosides were downloaded from Wangen and Green, eLife17,
Fig. 2—Source Data 117 and log2-transformed for all analyses.

mRNA sequence features
Sequences of spliced mRNAs were downloaded from Ensembl using
R package biomaRt52 according to Ensembl Transcript ID provided
in Wangen and Green, eLife17 Fig. 2—source data 1. The final HEK293T
mRNA isoforms selection was described in detail in the original
publication17, and mRNA region lengths provided in Fig. 2—source
data 1 were adjusted accordingly to reflect actual lengths as well as to
consider the stop codon as part of the 3’-UTR. For yeast, the longest
UTR entry was chosen for mRNAs with multiple annotations across
studies53–57 deposited in theYeastMinedatabase (as of July 3, 2017), and
mRNA region lengths were adjusted accordingly to consider the stop

codon as part of the 3’-UTR. Other HEK293T mRNA sequence features
were defined in the same manner we previously utilized for yeast16.

mRNA secondary structure in the 3’-UTR sequence was predicted
using RNALfold (default parameter, -L 150) of ViennaRNA package
version 2.6.330. In the case that no structure was predicted for a given
3’-UTR, the minimum free energy (MFE) of zero was assigned. In the
case that multiple structures were predicted for a given 3’-UTR, the
MFE of themost stable structure for that 3’-UTR (lowestMFE)was used
for analysis.

Random forest models and statistical analyses
Analyses were performed in the R programming environment version
3.6 on the UMass high-performance computing cluster (HPCC) and
version 4.2 onmacOSMonterey 12.6.3. The following R packages were
used with R version 3.6: caret (v 6.0-86) and randomForest (v 4.6-14).
The following R packages were usedwith R version 4.2: readxl (v 1.4.0),
data.table (v 1.14.2), dplyr (v 1.0.8), reshape2 (v 1.4.4), biomaRt (v
2.52.0), randomForest (v 4.7-1), caret (v 6.0-92), Biostrings (v 2.64.0),
seqinr (v 4.2-8), rstatix (v 0.7.0), ggplot2 (v 3.4.0), ggpubr (v 0.4.0),
ggh4x (v0.2.3), ggrepel (v 0.9.1), scales (v 1.2.1), patchwork (v 1.1.1), and
Cairo (v 1.5-15).

For each sample, mRNAs with too little read coverage and unde-
tectable readthrough, where RPKM of CDS < 5 and RPKM of the
extension region (3’-UTR region between the canonical stop codon
and next in-frame downstream stop codon) <0.5, were discarded from
further analyses. The remaining data was used to create a random
forest regressionmodel and for comparative analyses. The top 15%and
bottom 15% of the remaining data ranked by readthrough efficiency
were assigned as “high” and “low” readthrough mRNAs, respectively,
and used to create a random forest classification model.

Random forest models were trained to predict readthrough effi-
ciency (regression) or readthrough groups (classification) with 100
trees and 5-fold cross-validation to optimize the number of features
allowed for splitting at each node (mtry hyperparameter). For addi-
tional models in Supplementary Fig. 7, the same parameters were
applied, except mtry was kept as default. Performance metrics
extracted from each model are root mean squared error (RMSE) nor-
malized to the range of Y variable (readthrough efficiency) for the
regression model and area under the receiver operating characteristic
(AUROC) for the classification model. Feature importance metrics,
which indicate the predictive ability of each mRNA feature, extracted
from the final model are % increase in mean squared error (%IncMSE)
for the regression model and Mean Decrease Accuracy (MDA) for the
classification model.

Comparative analyses between the median readthrough effi-
ciency of a group of mRNAs (defined by the identity of stop codon,
nucleotide, or codon triplet) and themedian readthrough efficiency of
all mRNAs in a sample (“sample median”) were performed by two-
tailed Wilcoxon’s rank sum test with Benjamini-Hochberg multiple
testing correction.

Generation of dual-luciferase hCFTR PTC reporters
Sense/antisense oligonucleotides containing hCFTR PTC contexts
(PTC plus 3 codons of upstreamanddownstreamhCFTR context) were
annealed and cloned into the AscI/Sbf1 sites of dual-luc AscI G542X 11
codon SbfI/pcDNA3.1 Zeo+ (pDB1497). The annealed oligonucleotides
were inserted between upstream Renilla and downstream firefly luci-
ferase genes. The firefly activity can only be detected when a read-
through of the PTC occurs. A total of 15 dual-luciferase reporters
containingdifferent hCFTRPTCcontexts (6UGAs, 5UAGs, and4UAAs)
were generated. The plasmids and oligonucleotide sequence infor-
mation are provided in Supplementary Data 2.

For readthrough prediction of hCFTR PTC reporters, the
sequences of luciferase genes were used to determine mRNA features
outside of the PTC contexts. The 3’-UTR length is defined as the
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number of nucleotides from PTC to the bGH poly(A) signal in the
reporter.

Dual-luciferase reporter assay to measure PTC readthrough in
HEK293 cells
The dual-luciferase reporter constructs were transiently transfected
into HEK293 cells (CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045)
to test readthrough efficiency. HEK293 cells were seeded into 96-well
plates at 2 × 104 cells/well. Twenty-four hours after seeding, the cells
were transfected with 0.1μg DNA/well using Lipofectamine LTX
reagents (ThermoFisher Cat# 15338500). Three hours after transfec-
tion, the cells were treated with 100μg/ml G418. After 24 h of treat-
ment, dual luciferase assays were performed using a Dual-Luciferase
Reporter Assay System (Promega Cat# E1960) with a Glomax Discover
Microplate Reader (Promega) to measure both Renilla and firefly
activities. The firefly activity normalized to the Renilla activity was
calculated as:

Readthrough level =
fireflyunits
Renillaunits

× 100 ð1Þ

Three parameters were reported from this assay: (1) the basal
readthrough in untreated cells; (2) the readthrough inducedby 100 µg/
ml G418; and (3) the fold-increase in readthrough when comparing
G418-treated and untreated samples. Each experiment included trea-
ted and untreated samples assayed in quadruplicate wells in a 96-well
plate. Outliers within each set of replicate wells were defined as repli-
cates that made standard deviation/average (SD/AVE) % >25%. They
were excluded from AVE and SD calculations and indicated in red font
in SupplementaryData 1. Four to seven independent experimentswere
performed for each hCFTR PTC dual-luc reporter.

Western blotting confirmation of dual-luciferase
enzymatic assays
To confirm that the dual-luciferase constructs were expressed as
expected, western blotting with antibodies targeting Renilla and firefly
luciferases was employed to identify the respective polypeptide pro-
ducts. HEK293 cells were transiently transfected with dual-luciferase
reporters and treated with G418 as above, then lysed with M-PER
Mammalian Protein Extraction Reagent (Thermo Scientific Cat.
#78501), includingprotease inhibitors. Aliquots (20 µgprotein) of each
sample were fractionated by SDS-PAGE and subjected to western
blotting using the following primary and secondary antibodies: mouse
anti-tubulin (DSHB E7; 1:1000 dilution), rabbit anti-Rluc (Invitrogen
PA5-32210; 1:500 dilution), rabbit anti-Fluc (Invitrogen PA5-32209;
1:2000 dilution), LI-COR IRDye® 680RD Goat anti-Rabbit IgG Second-
ary Antibody (LI-CORCat. # 926-68071, 1:20,000 dilution), and LI-COR
IRDye® 800CWGoat anti-Mouse IgG Secondary Antibody (LI-COR Cat.
# 926-32210, 1:20,000 dilution). Termination at the PTC of the dual-
luciferase construct should yield a 37 kDa Renilla luciferase polypep-
tide, whereas readthrough of the PTC should yield a 100 kDa fusion
protein consisting of a fusion of Renilla and firefly luciferases. Renilla
antibody generally detected a strong 37 kDa band and a much weaker
100 kDa band; the firefly antibody detected the full-length 100 kDa
band more efficiently than the Renilla antibody.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sourcedata areprovidedwith this paper. Raw luciferase signals and the
firefly/Renilla ratios are provided in Supplementary Data 1. All pro-
cessed data and each figure’s source data are available in the Source
Data File and without restriction at https://github.com/Jacobson-Lab/

AG_readthrough (https://doi.org/10.5281/zenodo.10698037)58. Data-
bases employed in this study include YeastMine (https://yeastmine.
yeastgenome.org/yeastmine/begin.do) and Ensembl (https://useast.
ensembl.org/index.html). Source data are provided in this paper.

Code availability
Scripts used to acquire, analyze, and visualize data are available with-
out restriction at https://github.com/Jacobson-Lab/AG_readthrough
(https://doi.org/10.5281/zenodo.10698037)58.
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