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Abstract

Objectives Detecting ablation site recurrence (ASR) after thermal ablation remains a challenge for radiologists due to the
similarity between tumor recurrence and post-ablative changes. Radiomic analysis and machine learning methods may
show additional value in addressing this challenge. The present study primarily sought to determine the efficacy of radiomic
analysis in detecting ASR on follow-up computed tomography (CT) scans. The second aim was to develop a visualization
tool capable of emphasizing regions of ASR between follow-up scans in individual patients.

Materials and methods Lasso regression and Extreme Gradient Boosting (XGBoost) classifiers were employed for modeling
radiomic features extracted from regions of interest delineated by two radiologists. A leave-one-out test (LOOT) was utilized
for performance evaluation. A visualization method, creating difference heatmaps (diff-maps) between two follow-up scans,
was developed to emphasize regions of growth and thereby highlighting potential ASR.

Results A total of 55 patients, including 20 with and 35 without ASR, were included in the radiomic analysis. The best per-
forming model was achieved by Lasso regression tested with the LOOT approach, reaching an area under the curve (AUC)
of 0.97 and an accuracy of 92.73%. The XGBoost classifier demonstrated better performance when trained with all extracted
radiomic features than without feature selection, achieving an AUC of 0.93 and an accuracy of 89.09%. The diff-maps cor-
rectly highlighted post-ablative liver tumor recurrence in all patients.

Conclusions Machine learning-based radiomic analysis and growth visualization proved effective in detecting ablation site
recurrence on follow-up CT scans.
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Introduction

Hepatocellular carcinoma (HCC) represents one of the most

54 Derya Yakar frequently occurring malignancies worldwide, exhibiting a
d.yakar@umcg.nl 5-year survival rate of approximately 18%. In 2020, nearly
906,000 individuals were diagnosed with liver cancer, with
HCC being the most prevalent form [1, 2]. Colorectal can-
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liver metastases, which are not always amenable for surgical
resection. As a result, thermal ablation (TA) has emerged
as a widely employed minimally invasive treatment modal-
ity with promising local tumor control rates and long-term
outcomes [6-8].

The main drawback of TA is the relatively frequent occur-
rence of viable tumor at the edge of the ablation zone which
is called ablation site recurrence (ASR). Risk factors for
ASR include insufficient ablative margins, tumor location,
and tumor morphology [9-12]. Accurate and timely diag-
nosis of ASR is crucial to ensure the option of (minimally
invasive) re-treatments with curative intent leading to the
best long-term outcomes [13]. However, diagnosing ASR
on follow-up computed tomography (CT) scans remains dif-
ficult, even for experienced radiologists due to the similar-
ity between post-ablative necrosis/perilesional inflammation
and true ASR [14-16].

Radiomics, an emerging methodology in quantitative
medical image analysis, encompasses the extraction of an
extensive array of hand-crafted radiomic features from medi-
cal images. These features translate visual information and
phenotypic traits into numerical and quantitative data ame-
nable to machine learning algorithm modeling and analysis
[17-19]. Because of these capabilities, radiomic analyses
have demonstrated potential in enhancing clinical outcomes
[20, 21].

The present study primarily sought to determine the effi-
cacy of radiomic analysis in detecting ablation site recur-
rence on follow-up CT scans after thermal ablation of
malignant liver tumors. The secondary aim was to develop
a visualization tool capable of emphasizing regions of recur-
rence between follow-up scans in individual patients.

Fig. 1 Patient exclusion dia-
gram

Patients with Randomly
ASR during selected patients
follow-up without ASR
(n=30) during follow-up
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Material and methods
Study design and patient selection

A retrospective cohort of adult patients who underwent
TA for liver tumors including HCC and metastases from
colorectal and breast cancer between 2008 and 2020 was
established from the electronic patient records at the XXX.
At our center, the follow-up protocol after TA consists of a
first CT scan one week after TA, followed by CT scans every
4 months during the first two years, and thereafter every six
months up to five years after the treatment.

All reports of follow-up CT scans after TA, generated
by abdominal radiologist as part of routine patient care,
were retrospectively scrutinized for the evidence of recur-
rent disease. ASR was characterized by the emergence of a
contrast-enhancing lesion either within or in the immedi-
ate vicinity of the ablation zone. Concurrently, the largest
diameter of these lesions maintains direct contact with the
ablation zone [22]. In case of radiological evidence of ASR
with histopathological confirmation, patients were classified
as the positive patient group. In this ‘ASR-positive’ patient
group, the follow-up CT scans on which the ASR was identi-
fied were used for the radiomic analysis (average 12 months
[interquartile range: 5—17 months] after the date of TA).

A control group was established by randomly selecting
patients until 2020 from the cohort with follow-up CT scans
without evidence of ASR. In these patients, the most recent
follow-up CT scan was used (average 18 months [interquar-
tile range: 12-23 months] after the TA date) for radiomic
analysis.

Exclusion criteria (Fig. 1) for radiomic analysis were (1)
unavailability of contrast-enhanced portal venous phase CT
scans, such as cases where ASR was confirmed through
follow-up magnetic resonance (MR) or positron emission
tomography (PET) scans, or when only the arterial phase
was accessible in the picture archiving system; (2) distant
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intrahepatic liver lesions, identified by a radiologist as a
novel lesion rather than ASR; (3) inability to delineate the
ablation zone on the latest follow-up scan in patients in the
control group. This inability arises when the ablation zone
is overgrown by normal liver tissue, rendering it invisible
in the patient's most recent follow-up scan. This indicates
normalization and, consequently, the absence of recurrence.

Multivendor CT systems were employed, with scan
parameters harmonized between our hospital and referring
institutions as follows: automatic tube current modulation
and tube voltage selection, 1 mm slice thickness, 75-s delay
following the intravenous injection of 90—100 mL contrast
medium at a 3.6-4.0 mL/s flow rate, succeeded by a 32 mL
saline solution. The Institutional Review Board granted
approval, and the requirement for written informed consent
was waived.

Region of interest and image processing

The entire workflow of the study is demonstrated in Fig. 2.
The ablation zone and a 2 cm diameter surrounding rim of
liver parenchyma constituted the region of interest (ROI).
Ablation zones were delineated by two experienced abdomi-
nal radiologists separately on different parts of the dataset,

with the mask of the surrounding liver parenchyma rim
being automatically generated through morphological dila-
tion of the delineated ablation zone. Figure 3 shows exam-
ples of binary masks for the ablation zone and adjacent liver
parenchyma rim.

To modulate contrast and brightness of the CT scan,
thereby augmenting soft tissue visibility, a soft tissue win-
dow centered at 50 HU with a width of 400 HU was imple-
mented. For normalization, all images employed in the radi-
omic analysis were resampled to identical spacing [1.0 mm,
1.0 mm, 2.0 mm] using a B-spline interpolator. Gray-level
discretization employed a fixed bin size method and tested
the size set of {5, 15, 25}.

Radiomic features

Radiomic features represent a collection of quantitative
measurements derived from medical images, translating
radiological visual information into numerical data. A
predefined set of radiomic features according to the Image
Biomarker Standardization Initiative (IBSI) was extracted
from the original pre-processed CT scans [23], encompass-
ing morphological features, first-order statistical features,
gray level co-occurrence matrix features, gray level size

Predicted
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Fig.2 Workflow of radiomic analysis
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zone matrix features, gray level run length matrix features,
neighboring gray tone difference matrix features, and gray
level dependence matrix features. Additionally, first-order
statistical features and texture features were also extracted
from Laplacian of Gaussian (LoG) filter-transformed CT
scans, since the LoG filter enhances the visibility of sub-
tle image structures, such as edges. The amalgamation of
radiomic features from the original and LoG-transformed
scans provides more comprehensive insight into underly-
ing tissue characteristics. Feature extraction was executed
using Python 3.7.9 in the open-source library Pyradiomics
3.0 [24].

Extracted radiomic features may exhibit strong linear
relationships with one another. To address collinearity,
Pearson correlation coefficients between radiomic features
were computed. Radiomic feature groups exhibiting Pearson
correlation coefficients > 0.8 were deemed highly correlated
and therefore removed to decrease dataset dimensionality
and mitigate collinearity issues.

Machine learning classifiers

Owing to the limited dataset size, logistic regression with L1
penalty (Lasso regression) was employed for feature mod-
eling, as it is apt for small-scale data analysis tasks [25].
The L1 penalty served as the regularization for the logistic
regression classifier, penalizing high-valued regression coef-
ficients to eliminate redundant features and reduce multicol-
linearity in feature sets. The classifier automatically selected
radiomic features related to training targets during training.
Feature importance for Lasso regression was gauged by the
corresponding feature weights in trained classifiers. Fur-
thermore, extreme gradient boosting (XGBoost) methods
were also utilized for radiomic feature modeling. XGBoost
classifiers, constructed by decision trees, facilitate powerful
feature selection to distinguish ASR at each split node [26].
Feature importance for the XGBoost classifier was measured
by Gini importance (mean decrease in impurity) [27].

To furnish an unbiased performance estimate of trained
classifiers, a leave-one-out test (LOOT) approach was
employed. In LOOT, the dataset was divided into n subsets,
where n represents the number of patients in the entire data-
set. For each subset, a model was trained using n-1 samples
based on five-fold cross-validation. The trained model was
subsequently tested on the held-out sample to evaluate per-
formance. This process was repeated n times, with results
computed based on predictions of held-out samples in each
subset. Additionally, the imbalanced dataset, with more
patients lacking ASR than those with ASR could influence
machine learning model performance [28, 29]. Therefore,
a class weight of 1.5 was applied to the minority class. By
increasing the weight of patients with ASR, the classifier
was compelled to consider the asymmetry of cost error

between the positive and control groups. The model would
incur a greater penalty for misclassifying ASR patients
during training. The model was developed using the open-
source library scikit-learn 0.23.2 with Python 3.7.9 [30].

Visualization method for post-ablative grown
region

Diagnosing ASR can be challenging for radiologists due
to subtle tumor size and the similarity between ASR and
post-ablative necrosis and perilesional inflammation. It
was hypothesized that malignant recurrent tumors exhibit
growth between two follow-up scans; thus, emphasizing
the differences between follow-up scans could potentially
assist radiologists in focusing on the grown region of dis-
ease recurrence, making it more accessible to visualize and
identify ASR.

To generate a heatmap (diff-map) highlighting differences
between two follow-up scans, the images were aligned using
elastix software [31]. Liver segmentation on the CT ensured
accurate registration across scans. Subsequently, the diff-
map was generated by subtracting the two registered follow-
up scans. To further refine the diff-map, it was smoothed
using a Gaussian kernel with a standard deviation of 2.5,
and then normalized to a range of 0 to 1. Regions exhibiting
growth during the time interval between the two follow-up
scans were characterized by larger differences in gray val-
ues on the scans, thus emphasizing the disease recurrence
regions on the diff-map.

Results
Study population characteristics

In our center, 278 patients underwent thermal ablation for
malignant liver tumors. Of these, 30 (10.8%) were identi-
fied with ASR. During patient selection, 2 patients were
excluded due to the absence of follow-up CT scans on the
date of ASR diagnosis, 8 patients were excluded because
their liver tumors on follow-up CT were considered as new
lesions.

For the control group, 41 patients without ASR were ran-
domly selected. Six of these were excluded as their ablation
zones could not be delineated on the CT scan.. Finally, 20
patients with ASR and 35 without ASR were eligible for
radiomic analysis (Fig. 1).

The median age of the cohort was 67 years (interquartile
range: 62-72 years), including 22 women (40%) and 33 men
(60%). Among the liver lesions included in the analysis, 18
(32.73%) were HCC, 36 (65.45%) were colorectal metas-
tases, and 1 (1.82%) concerned breast metastasis. Further
patient characteristics can be found in Table 1.
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Table 1 Patient demographics

Characteristic Positive ASR Negative ASR P value Total number

Median age, IQR 68 (62-73) 67 (62-72) 69 (61-74) P<0.05 55 (100%)

Gender Female 7 (12.73%) 15(27.27%) P<0.05 22 (40%)
Male 13 (23.64%) 20 (36.36%) 33 (60%)

Tumor type HCC 7 (12.73%) 11 (20.00%) N/A 18 (32.73%)
Colon metastasis 8 (14.55%) 12 (21.82%) 20(36.36%)
Rectal metastasis 1(1.82%) 8 (14.55%) 9(16.36%)
Breast metastasis 1(1.82%) 0 (0.00%) 1(1.82%)
Unknown metastasis 3 (5.45%) 4 (7.27%) 7(12.73%)

Cirrhosis Absence 14 (25.45%) 27 (49.09%) P<0.05 41 (74.55%)
Presence 6(10.91) 8 (14.55%) 14 (25.45%)

Etiological cause =~ HBV 1(1.82%) 2 (3.64%) N/A 3(5.45%)
HCV 3(5.45%) 0 (0.00%) 3(5.45%)
Alcohol 4(7.27%) 5(9.09%) 9 (16.36%)
Auto-immune 0 (0.00%) 0 (0.00%) 0 (0.00%)
Wilson 0 (0.00%) 0 (0.00%) 0 (0.00%)
Biliaire atresie 1(1.82%) 0 (0.00%) 1(1.82%)
Steatohepatitis 3(5.45%) 1(1.82%) 4(7.27%)
Primair scleroser- 1(1.82%) 1(1.82%) 2 (3.64%)

ende cholangitis

Unknown 7 (12.73%) 26 (47.27%) 33 (60.00%)

ASR ablation site recurrence, /QR Interquartile Range, HCC hepatocellular carcinoma, HBV hepatitis B

virus, HCV hepatitis c virus

Radiomic model development

In this study, a total of 292 radiomic features were extracted
from the ROI within the images. These features included
14 morphological features of the ROI, 93 features extracted
from the ROI on the original processed CT scans, and 93
features extracted from the ROI on images transformed by
LoG filters with standard deviations of 1 and 3, respectively.
A selection of 95 radiomic features was made based on Pear-
son correlation coefficients for model training.

Table 2 lists the sensitivity, specificity, accuracy, and
AUC of different classifiers, with corresponding ROC curves
being illustrated in Fig. 4. The best-performing model was
achieved using Lasso regression with a fixed bin size of 15,
tested by the LOOT approach, yielding an AUC of 0.97
and an accuracy of 92.73%. Additionally, the XG Boost-
ing classifier demonstrated improved performance when
trained with all extracted radiomic features without feature

selection, achieving an AUC of 0.93 and an accuracy of
89.09%. The performance of XG Boosting classifier with-
out feature selection also slightly outperforms the classifier
trained with feature selection on the training set with an
accuracy of 98.18% and 96.36%, respectively. Table 3 lists
the top five radiomic features selected based on weight rank-
ing for each machine learning classifier. The complete radi-
omic feature list and corresponding weight rankings for each
classifier can be found in Supplementary Tables I and II.

Visualization of Diff-Map

Diff-maps were generated to accentuate the differences
between two follow-up CT scans. The scans utilized for
radiomic analysis and the prior scans were chosen to cre-
ate diff-maps and further examine whether ASR were high-
lighted on the diff-maps. Figure 5 presents several examples
of the generated diff-maps. In the diff-map of patients with

Table 2 Results of the radiomic

s Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC
analysis (95% CI) (95% CI) (95% CI) (95% CI)
Lasso regression 92.73 95.00 91.43 0.97
(90.90, 95.45) (92.31, 1.0) (88.46, 96.43) (0.96,1.0)
XG Boost classifier 89.09 90.00 88.57 0.93
(81.82,90.91) (73.33,92.31) (84.62,93.33) (0.90,0.98)

AUC area under the receiver operating characteristic curve, CI confidence interval

@ Springer



Abdominal Radiology (2024) 49:1122-1131

1127

1.0 A

J_l

0.8
0.6

0.4 -

True Positive Rate

0.2 A

0.0 mmmm ROC curve (AUC = 0.97)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

a) ROC curve of Lasso regression

Fig.4 ROC curves for two different classifiers: a Lasso regression,
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tumour recurrence; b XG Boost, which also discriminates patients

Table 3 The top 5 important features for radiomic analysis
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with and without post-ablative liver tumour recurrence. AUC receiver
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Lasso regression XG Boost classifier
Positive Negative
Ist original_glcm_Idmn original_firstorder_Entropy log-sigma-1-mm-3D_glcm_SumEn-
tropy
2nd original_glrlm_GrayLevelNonUniform- original_glcm_Imcl original_glszm_LargeAreaEmphasis
ity
3rd original_firstorder_10Percentile log-sigma-3-mm-3D_glcm_Correlation log-sigma-1-mm-3D_firstorder_
Uniformity
4th original_shape_Maximum2DDiameter- log-sigma-3-mm-3D_glcm_Autocor-  log-sigma-1-mm-3D_glem_Cluster-
Column relation Tendency
Sth original_firstorder_Uniformity log-sigma-3-mm-3D_glszm_SizeZo- original_firstorder_Entropy
neNonUniformityNormalized
Total num- 26 10 40
ber of weighted fea-
tures

The full list of features and corresponding weights in each classifier can be found in the supplementary materials

ASR, the recurrence was correctly emphasized in each case.
Conversely, in patients without ASR, the diff-map did not
highlight any regions.

Discussion

The current study aimed to assess the capability of radi-
omic analysis in discerning ASR on follow-up CT scans.
Additionally, we developed a visualization technique that
emphasizes regions of lesion growth between follow-up
scans across distinct time periods for individual patients and
examined whether ASR could be accurately highlighted. A

total of 55 patients were included in the radiomic analy-
sis, of whom 20 had ASR and 35 did not. Using the LOOT
approach, Lasso regression achieved the highest AUC of
0.97 and the best accuracy of 92.73%. The diff-maps gen-
erated by the visualization method accurately highlighted
ASR.

As accurately identifying ASR at the edge of the abla-
tion zone remains a challenge for radiological visual
interpretation [14-16], radiomic-based machine learning
methods offer a quantitative approach for evaluating ASR
independently of radiologists' subjectivity. Our study dem-
onstrates promising results and suggests that these meth-
ods may serve as supportive tools to reduce subjectivity

@ Springer
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Fig.5 An example of diff-maps
overlaid on a CT scan for two
different scenarios: a The diff-
maps for a patient with a post-
ablative liver tumor recurrence,
where the recurrent local tumor
is highlighted with red color on
the diff-maps. b The diff-maps
for a patient without any post-
ablative liver tumor recurrence,
where no region is emphasized
in red color on the diff-map

a)

by providing differential diagnosis suggestions or guid-
ance on suspicious lesions. Furthermore, the diff-maps
could assist radiologists in focusing on regions of growth
in follow-up scans, thus facilitating the early diagnosis of
liver tumor recurrence. The early and accurate diagnosis
of disease recurrence plays a critical role in optimizing
patient outcomes, as it enables timely use of minimally
invasive treatments, such as re-ablation, thereby increasing
long-term patient survival [6, 32, 33]. Timely intervention
in the early stages of disease recurrence can help mitigate
the spread of disease to other organs, further emphasizing
the importance of prompt and accurate diagnosis [34-36].

In addition to our approach focusing on radiomic
analysis for the detection of ASR, several studies have
explored the diagnosis of liver tumor recurrence follow-
ing curative treatments such as resection and transplanta-
tion based on radiomic analysis [41, 42]. Moreover, some
research has focused on predicting the chances of recur-
rence based on pre-ablation scans, which could provide
valuable insights for treatment planning and personalized
therapeutic strategies [43, 44]. It is important to note the
differences between our study and the aforementioned
research. While our study aims to detect and visualize the
ASR using follow-up CT scans, these other studies focus
on recurrence diagnosis after resection or predicting the
likelihood of recurrence before ablation. This highlights
the versatility of radiomic analysis and machine learning
techniques in addressing various aspects of liver tumor
management. Although a growing body of evidence exists
supporting the application of advanced analytical methods
in the diagnosis and prediction of liver tumor recurrence,
further research is warranted to compare the performance
of these different approaches and explore potential syner-
gies to enhance the overall effectiveness of liver tumor
management strategies.

@ Springer
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In the current study both HCC and liver metastasis cases
were included, reflecting a more diverse patient population
and a broader range of liver tumor types. This is in contrast
with many previous studies, which have primarily focused
on either HCC or liver metastasis alone [45, 46]. The prom-
ising results obtained in our study, with an AUC of 0.97
and an accuracy of 92.73%, demonstrate the effectiveness of
our machine learning-based radiomic analysis and growth
visualization approaches in detecting ASR, regardless of
the tumor origin. This suggests that our method may have
broader clinical applicability and could potentially contrib-
ute to improved patient outcomes in different liver tumor
types.

In the current study, the performance of the XG Boost
classifier was inferior to Lasso regression. One potential
reason could be the limited size of the patient cohort. XG
Boost classifiers are more complex than Lasso regression
and are better suited for handling larger and more intricate
datasets. However, the patient cohort in this study was rela-
tively small, which could increase the risk of overfitting for
XG Boost classifiers [47, 48].

Another limitation of our study was the discrepancy
in follow-up durations between the ASR-positive group
(average 12 months) and the ASR-negative group (average
18 months). This difference arose because the ASR-posi-
tive group required shorter follow-up intervals due to the
clinical urgency in confirming and managing recurrence.
Conversely, the ASR-negative group typically underwent
longer follow-up periods as a standard part of routine care.
To mitigate this limitation, future research could establish
a control group with follow-up times comparable to those
of the ASR-positive group or design a prospective study to
reduce the selection bias inherent in retrospective studies.

Although the radiomic analysis in our study achieved
an AUC of 0.97 and an accuracy of 92.73%, its desig as a
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single-center study with a limited patient cohort may have lim-
ited the generalizability of our results. To address this limita-
tion, future studies should be designed as multi-center inves-
tigations to create a larger and more diverse patient cohort for
radiomic analysis. Evaluating radiomic-based machine learn-
ing models with external data is also crucial for assessing the
generalization ability of these models.

The generated diff-maps accurately highlighted ASR,
which could help draw radiologists' attention. However, other
regions exhibiting differences on follow-up scans could also be
emphasized on the diff-maps, such as vessels. This study used
contrast-enhanced CT scans in the portal venous phase, and
the intensity of vessels could vary depending on the amount
of contrast agent and the time-delay after intravenous injec-
tion. Future studies could design a deep learning model to
automatically segment ASR on follow-up scans when a larger
patient cohort is available to circumvent this potential problem.
The accuracy of the diff-map is contingent upon the quality
of registration. To guarantee precise liver alignment, we pre-
segmented the liver before registration. However, imprecise
registration sometimes led to the highlighting of the liver's
edges on the diff-map. The robust of the registration method
could be further investigated and validated with larger patient
cohort.

In conclusion, this study presents a novel approach to
detecting ablation site recurrence through the application of
radiomic analysis on follow-up CT scans and the develop-
ment of a visualization method highlighting regions of lesion
growth between scans. Our results demonstrate the potential
of radiomic-based machine learning models serving as a valu-
able supportive tool for radiologists in their clinical practice.
Furthermore, the diff-map visualization method may assist
radiologists in identifying ablation site recurrence more easily
and timely by emphasizing areas of growth on follow-up scans.
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tary material available at https://doi.org/10.1007/s00261-023-04178-4.
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