Skip to main content
editorial
. 2024 Mar 6;12(7):1196–1199. doi: 10.12998/wjcc.v12.i7.1196

Table 1.

Use of technology for diagnosis of sleep disorders[23]

Type of sensor
Number of studies
Percentage
Sample size
AUC1
Evidence
Bed/mattress sensors 11 27% 10-366 AUC: 0.94-1.00 Strong
Wearables 10 24% 20-404 AUC: 0.80-1.00 Strong
Smartphones 7 17% 15-620 AUC: 0.61-0.95 Moderate to strong
Nasal airflow sensors 5 12% 5-288 AUC: 0.77-0.91 Moderate to strong
Other digital tools (could not be classified) 8 20% 10-359 AUC: 0.85-1.00 Strong
1

Area under curve measures discrimination power of the predictive classification model. AUC: Area under curve.