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SUMMARY

Senescent cells are a major contributor to age-dependent cardiovascular tissue dysfunction, but 

knowledge of their in vivo cell markers and tissue context is lacking. To reveal tissue-relevant 

senescence biology, we integrate the transcriptomes of 10 experimental senescence cell models 

with a 224 multi-tissue gene co-expression network based on RNA-seq data of seven tissues 

biopsies from ~600 coronary artery disease (CAD) patients. We identify 56 senescence-associated 

modules, many enriched in CAD GWAS genes and correlated with cardiometabolic traits—which 

supports universality of senescence gene programs across tissues and in CAD. Cross-tissue 

network analyses reveal 86 candidate senescence-associated secretory phenotype (SASP) factors, 

including COL6A3. Experimental knockdown of COL6A3 induces transcriptional changes that 

overlap the majority of the experimental senescence models, with cell-cycle arrest linked to 

modulation of DREAM complex-targeted genes. We provide a transcriptomic resource for cellular 

senescence and identify candidate biomarkers, SASP factors, and potential drivers of senescence 

in human tissues.

In brief

Savic et al. provide a resource of senescent cell-associated molecular processes relevant to 

human cardiometabolic pathology through integrating senescence transcriptomic signatures from 

10 experimental settings with human co-expression networks generated within seven tissue types 

biopsied from a cohort of ~600 coronary artery disease patients undergoing coronary artery bypass 

graft surgery.

Graphical Abstract
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INTRODUCTION

Cellular senescence manifests as stable growth arrest, chromatin remodeling, increased 

autophagy, and acquisition of a senescence-associated secretory phenotype (SASP).1,2 

DNA damage and cellular stress, as well as chronological aging, are some of the driving 

forces of cellular senescence. The SASP is in part responsible for deleterious local 

and systemic effects, mediated by inflammatory cytokines, chemokines, and extracellular 

matrix-degrading proteins.2 Acute and embryonic-associated senescence is an integral 

component of tissue homeostasis or tissue patterning and considered favorable. In contrast, 

chronic senescence, including damaging SASP factors, leads to cumulative damage and 

impaired cellular function.3 This dichotomy places senescence at important crossroads of 

human health, aging, and disease.

Senescent cells are a major contributor to age-dependent cardiovascular tissue 

dysfunction.4,5 Cells of the arterial wall undergo senescence upon aging via several 

mechanisms such as mitochondrial dysfunction, increased reactive oxygen species, DNA 

damage, and telomere dysfunction. The burden of senescent endothelial cells, vascular 

smooth muscle cells, T cells, monocytes, and lipid-laden foam cells and their associated 

SASP creates a proatherogenic environment leading to plaque development and instability 

and increased inflammation. Studies using senolytics or transgenic models in which 

p16Ink4a-expressing senescent cells are selectively eliminated support that a reduced 

cardiovascular senescence cell burden can delay and even reverse characteristics of 
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cardiovascular disease.6–10 Given the potential for senotherapy to improve age-associated 

cardiovascular pathologies, there is a critical need to understand and identify markers of 

senescent cells in human disease settings.

The assumed rarity of senescent cells in vivo has led to the majority of the understanding 

of senescent cells being supported by experimental culture systems.3,11 Given the varying 

senescence-inciting signals and resulting heterogeneous cellular phenotypes, multimarker 

approaches are likely necessary for assessing cellular senescence in vivo. Most commonly, 

senescence-associated markers include genes involved in cell-cycle arrest (p53-p21-RB and 

p16INK4a(p16)-RB tumor suppressors), increased senescence-associated beta galactosidase 

activity (SA-β-gal), increased DNA damage (e.g., γH2AX), formation of senescence-

associated heterochromatin foci, and acquisition of the SASP phenotype (e.g., TGFβ, 

IL-6).12 Despite these current markers, well-defined universal senescent cell markers from in 
vivo settings are still lacking.

In this study, we aimed to identify and molecularly characterize senescent cells within seven 

disease-relevant tissue types biopsied from a cohort of ~600 coronary artery disease (CAD) 

patients undergoing coronary artery bypass graft surgery (CABG) in the Stockholm-Tartu 

Atherosclerosis Reverse Network Engineering Task (STARNET) study.13 Weighted gene 

co-expression network analysis (WGCNA) was applied to transcriptome data across tissues 

including blood, metabolic organs such as liver, skeletal muscle, and adipose tissues, as 

well as atherosclerotic arterial wall, resulting in a total of 131 tissue-specific (TS) and 

93 cross-tissue (CT) gene co-expression modules.14 Our approach involves the mapping 

of molecular signatures from 10 different in vitro-derived senescent cell models onto 

modules of co-expressed genes from the STARNET cohort transcriptome data. We show 

that in vitro senescent cell molecular profiles may reveal modules of co-expressed genes 

associated with senescence cells in vivo. Using the topology of the STARNET network, 

we furthermore hypothesize that marker genes are identifiable as key driver genes (KDGs) 

of molecular programs mimicking those of senescent cells in vitro. Here, we identified 

and subsequently validated collagen type VI alpha 3 chain (COL6A3) as a driver of a 

liver-associated senescent-enriched module (SAM), with COL6A3 downregulation causing 

senescence. Our study highlights that analyses of senescence transcriptomic signatures 

from controlled experimental settings in combination with human co-expression networks 

can uncover cellular senescence processes relevant to human cardiometabolic pathology. 

This, in turn, can contribute to identification of disease-type and tissue-relevant senescence 

biomarkers.

RESULTS

Transcriptional changes induced by senescence stressors are largely cell type specific

We generated a variety of in vitro models of senescence, and following transcriptome 

analysis, we created 10 different differential gene expression signatures associated with 

senescence induction (Figure 1A). Cellular senescence was induced in IMR90 cells, a 

normal human fetal lung fibroblast cell line, using various stressors including X-ray 

irradiation, oncogenic RasV12 transformation, or treatment with bleomycin, rotenone, 

antimycin, or oligomycin. Irradiation was used to induce senescence in four other cell 
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lines including RPTECs (human renal proximal tubule epithelial cells), HUVECs (human 

umbilical vein endothelial cells), HMVECs (human lung microvascular endothelial cells), 

and ADSCs (human adipose tissue-derived stem cells) (Figures 1A and S1). Senescent 

cells were molecularly profiled using RNA-seq followed by analysis of differentially 

expressed genes (DEGs) (Data S1). We defined DEGs as the topmost significantly up- 

and downregulated protein coding genes ranked by adjusted p value (FDR < 0.05) with a 

maximum of 1,250 up- and 1,250 downregulated genes, compared to quiescent or DMSO-

treated control cells (Figure 1A and Data S2).

A cross-signature comparison of the 10 senescent cell DEGs revealed eight genes in 

common (Figure 1B), a significant overlap (SuperExact test p value 9.18E-40, Data S3, 

tab S3). The greatest number of shared DEGs (472) was among IMR90 cells induced to 

senescence using either oligomycin, antimycin, or rotenone treatment (Figure 1C, MITO, 

Data S3, tab S4). Comparing all modes of senescence induction within a single cell type 

(IMR90) revealed 147 genes in common (Figure 1C, MODES). The fewest number of 

common genes (38) was found across the five cell types with the same mode of senescence 

induction (X-ray irradiation, CELLS, Figure 1C). The Jaccard similarity measures (Figure 

S2) and the significance of the DEG overlap assessments (Figure 1D) revealed senescence 

molecular profiles, induced by different stressors within the same cell type (IMR90), are 

more similar than those profiles induced by the same stressor (X-ray irradiation) but in a 

different cell type. We confirmed our senescence transcriptomes by comparing to previous 

reports15 (Figure 1E). We noted consistency of several genes with congruous directional 

changes in expression across all conditions (increased ICAM1, PLAT, IL-1B, IGFBP4, and 

TNFRSF10C and decreased HMGB3).16,17

We further compared our senescence DEGs to transcriptome analyses by Hernandez-Segura 

et al.18 who reported fibroblast genes whose expression changed with senescence regardless 
of the three types of stimuli tested (irradiation, replicative, or Ras oncogene induced; 

labeled FibroblastS1E in Figure 2A and Data S3, tab S5). Genes upregulated in this 

set were significantly enriched in all of our upregulated IMR90 fibroblast senescent 

model DEGs with similar observations with the downregulated DEGs. Interestingly, our 

MODES gene set, which includes genes commonly changed in IMR90 fibroblasts across 

six different modes of senescence induction, was also enriched in the previously reported 

FibroblastS1E signature.18 This further supports that senescence programs within a cell type 

share many commonalities regardless of the mode of senescence induction (e.g., oncogenic 

vs. mitochondria stressor). The transcriptomes of our senescent HMVECs, HUVECs, 

ADSCs, and RPTECs had the fewest number of enrichments, including to the Hernandez-

Segura et al.18 gene set referred to as “universal signature” (labeled Universal S2F in 

Figure 2A) (three stressors across three cell lines). This suggests that fibroblast-specific 

senescence genes may be over-represented in their “universal signature.” One exception 

was the “replicative senescence signature” (labeled ReplSen S1C in Figure 2A),18 which 

was significantly enriched in senescence DEGs from ADSCs, RPTECs, and IMR90 cells, 

suggesting a commonality between molecular phenotypes induced by replicative senescence 

and irradiation. In contrast, the recently published gene set “SenMayo” (labeled SenMayo 

in Figure 2A),19 found to increase with aging across tissues and species with responsiveness 

to senescent cell clearance, was enriched in all but one of our up-regulated SNC-DEG 
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signature series, supporting a more universal signature than that reported by Hernandez-

Segura et al.18

We next evaluated the Reactome pathways enriched across the 10 senescence DEGs 

separated as up- and downregulated gene sets. (Figure 2B, complete results in Data 

S3, tab S6). Extracellular matrix organization and collagen formation pathways were 

commonly enriched across senescence DEGs signatures, regardless of direction of change. 

In contrast, pathways commonly enriched in only upregulated genes related to inflammation 

such as interferon signaling. Pathways commonly enriched in downregulated senescence 

DEGs included mainly cell-cycle control. Some pathways were specific to the flavor of 

senescence induction, such as cholesterol biosynthesis in the IMR90 senescence DEGs (X-

ray irradiation) and “rRNA processing” in the senescent HMVECs and HUVECs. Overall, 

these data represent, to our knowledge, the most comprehensive molecular survey of in vitro 
senescence, providing evidence that there are both cell-type shared and specific molecular 

consequences of senescence.

Aging-related disease genes are over-represented in senescence DEGs

To assess relevance of experimental SNC models to human aging genes, we intersected 

the senescence DEGs with curated lists of genes whose perturbation in experimental model 

systems (see STAR Methods) was found to drive cellular senescence. Interestingly the most 

consistently enriched senescence model DEG set in aging-related gene sets was observed in 

irradiated cells, suggesting that this mode of senescence induction is most reflective of these 

aging-related genes (CellAge and GeneAge databases, and Ingenuity Pathways; Figure S3A, 

Data S3, tab S7).

In contrast, genes associated with aging-related disease gene sets were significantly 

enriched in all senescence DEGs except the MITO and MODES subsets (Figure S3). 

The “Inflammatome” gene set was generated from combining 11 different rodent chronic 

inflammatory disease models encompassing pulmonary fibrosis, asthma, atherosclerosis, 

obesity, and diabetes, and the macrophage-enriched molecular network (MEMN) set consists 

of genes predicted to be causal in many aging-related complex disease traits.20,21 As 

aging-associated diseases are generally complications arising from senescence, the near 

signature-wide enrichment of the senescence DEGs in these two chronic inflammatory 

disease signatures suggests the senescence DEGs may reveal key molecular processes 

underpinning these complications.

Mapping senescence-associated programs to human CAD multi-tissue gene co-expression 
networks

Building upon the fact that senescence DEGs capture aging-related disease genes, we next 

aimed to identify in vivo-relevant senescence programs by testing for enrichment of each 

senescence DEG in modules of genes identified from the STARNET human multi-tissue 

co-expression networks. These networks were inferred from the genetics-of-gene expression 

STARNET study of living patients undergoing CABG. Seven tissue specimens representing 

the blood, metabolic, and arterial wall were collected during surgery for genomic analysis 

(Figure 1A).13 To identify multi-tissue gene co-expression, the WGCNA algorithm was 
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applied to transcriptome data across all seven tissues jointly, resulting in a total of 131 TS 

and 93 CT gene co-expression network modules14 (see STAR Methods and Data S3, tab S8).

Each senescence model DEG set was projected as a combined gene set of up- and 

downregulated genes given that the networks were unsigned (see STAR Methods for 

details). In total, 56 STARNET co-expression modules were significantly enriched (at 

adjusted p value <0.01 and fold enrichment >3) in the senescence model DEGs, and they 

are hereafter co-annotated as senescence-associated modules (SAMs) (Figure 3A, Data S3, 

tab S9). Twenty-four SAMs were CT, and 32 were TS. Some SAMs were enriched in 10 

or 9 out of 10 senescence model DEG signatures (e.g., CT modules 28_LIV and 15_VAF, 

Figure 3A), while other SAMs were enriched in only a few signatures (e.g., TS liver module 

98 in IMR90 and HUVEC senescence DEGs). Thus, components of the molecular program 

underlying the experimental senescence cell systems are both commonly co-expressed in 

various human tissue types and reflect mode-and cell-specific senescence.

Senescence-associated modules enriched in CAD phenotypes support their disease 
association

We next examined if CAD clinical traits measured in STARNET associate with modules 

enriched in senescence DEGs. Several SAMs significantly correlated or nominally 

correlated with at least one CAD phenotype, supporting co-association of senescence 

with aging-related disease phenotypes (Data S3, tab S10). We highlight that several 

cardiometabolic traits were significantly correlated (at adj p < 0.05) with expression of 

SAM_CT.28. At a nominal p value significance, SAM_CT.28 was also correlated with 

the SYNTAX score,22 which measures CAD severity and reflects clinical outcomes of 

CAD patients within the diseased artery tissue.14 The whole CT_28 module was also 

associated with the greatest number of senescence model DEGs and enriched in epithelial 

mesenchymal transition as well as hypoxia biological terms. Furthermore, CT.28 was 

significantly enriched in CAD GWAS genes23 (adj p < 0.1, fold enrichment = 5.89, Data S3, 

tab S11), and CT_28 explained 4.77% of CAD heritability.14 Together, these results causally 

associate expression of the SAM_CT.28_LIV genes to CAD phenotypes.

Identifying SAM key driver genes and candidate SAM-SASP factors

We next identified key regulatory genes within modules associated with senescence and 

disease phenotypes. By inferring Bayesian networks for each SAM co-expression module, 

KDGs were identified as hub nodes, thus inferred to regulate many downstream genes (see 

STAR Methods) (Data S3, tab S12). Given that senescence DEGs contribute to age-related 

pathology in part from their SASP, we next turned to identification of secreted factors in the 

context of SAMs. Here, we used STARNET CT co-expression to decipher endocrine factors 

underlying inter-tissue communication.14,24 As previously described, candidate mediators 

of communication across organs were identified as secretory proteins in CT co-expression 

modules whose expression levels were significantly associated with a trans TS “target” 

module (see STAR Methods). Such CT SAM endocrine mediator candidates included 86 

genes (Data S3, tab S13, column B), hereafter referred to as SAM-SASP factors. For 

instance, we identified interleukin-6 (IL-6), which recapitulates the well-known importance 

of this gene in senescence.25 We also identified chondroitin sulfate synthase 1 (CHSY126), a 
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gene reported in mediating paracrine senescence in models of oncogene-induced senescence 

and recently identified as the mutated gene underlying inflammation, neuro-degeneration, 

and reduced lifespan in the skt mice.27 These observations serve in part as confirmation of 

our data-driven approach. Importantly, we present SAM-SASP factors and SAM-KDGs not 

previously reported associated with senescence and thus are a valuable resource.

Liver COL6A3 is a key driver gene and candidate SAM-SASP factor

To reveal novel senescence-associated biology, we focused on prioritizing a gene that 

was both a predicted key driver and an endocrine factor (i.e., SAM-SASP factor) in the 

SAM_CT.28_LIV module. This was the most prominent SAM, enriched in all senescence 

model DEGs, suggesting it captures core aspects of senescence programs independent of 

stressor or cell type and causally associated with CAD through GWAS enrichment. Starting 

from the list of endocrine mediators associated with SAM_CT.28 (i.e., 16 SAM-SASP 

genes), we prioritized those that were key drivers (Data S3, tab S12, n = 9). Among these, 

we prioritized collagen 6A3 (COL6A3) as it was repeatedly statistically downregulated in 7 

of 10 senescence DEGs (Figure 3B) and had the greatest number of predicted target modules 

(n = 3, Figure 3C) as an endocrine mediator. The modules/tissues predicted to be targeted 

by COL6A3 included 219.Blood, 37.SF, and 61.Blood, modules also found enriched in 

senescence model DEGs when the minimum fold enrichment threshold of 3 was removed 

and only an adjusted p value < 0.05 was considered (Figure 3D). COL6A3 is a plausible 

SAM-SASP factor given our results and the knowledge that COL6A3 is one of three major 

collagen VI polypeptides of the extracellular matrix (ECM) and has a reported soluble 

cleavage product called endotrophin.28

The biological processes associated with SAM_CT.28_LIV genes included extracellular 

matrix organization, regulation of IGF binding proteins, and glycosaminoglycan metabolism 

(Figure 4A, Data S3, tab S14). Interestingly, a significant number of pathways were found 

associated with cardiac health and function such as dilated cardiomyopathy, elastic fiber 

formation, and muscle contraction. We surmised these terms could reflect fibrotic processes 

in the liver given COL6A3’s differential gene expression in CAD patients vs. healthy 

controls (downregulated 18%, adj p = 3.33E–6, Koplev et al.14). Indeed, SAM_CT.28_LIV 

was significantly enriched (Figure S3B and Data S3, tabs S15 and S16) in markers of cell 

types associated with liver cirrhosis, namely fibroblasts and scar-associated mesenchymal 

and endothelial cells.29

We next examined the CT molecular consequences of COL6A3 as a potential SASP factor 

and noted the expression of liver COL6A3 was negatively correlated with expression of 

the subcutaneous fat module, 37.TS_SF, while positively correlated with the two blood 

modules, 61.TS_BLOOD and 219.TS_BLOOD. Despite the direction of correlation, a 

consistent theme was interleukin-4 (IL4) and IL13 signaling, found significantly enriched 

in all three target modules (Figure 4A). Since these Th2 cytokines have been implicated 

as key mediators in the pathogenesis of fibroproliferative disorders,31 this suggested liver 

COL6A3 may also be involved in CT modulation of wound healing and fibrotic processes 

in adipose and blood. Indeed, cell type analysis of 37.TS_SF genes supported enrichment 

in scar-associated macrophages (Figure S3B, Data S3, tab S15, columns P–AB), and given 
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the negative correlation between liver COL6A3 and 37.TS_SF, we therefore would expect 

elevated activity of these cells types/pathways with reduced COL6A3-paracrine signaling 

activity in the setting of senescence. The blood 219 module in contrast was enriched in 

neutrophils and given the positive correlation between liver COL6A3 and 219.TS_Blood 

genes, we therefore would predict decreased activity of these cells types/pathways with 

reduced COL6A3-mediated paracrine signaling in the setting of senescence (Figure S3B and 

Data S3, tabs S13, S15, and S16).

Validation that COL6A3 knockdown in fibroblasts induces senescence-like phenotypes

To validate a role for COL6A3 in senescence, we created stably transduced IMR90 

fibroblast cells with reduced expression of COL6A3 (COL6A3down) (Figure 4B) and 

tested if transcriptional profiles of COL6A3down cells mimicked those of the various 

experimental senescence models. Indeed, the COL6A3down DEGs (1,102 up, 930 down, 

FDR < 0.05, Figure 4C, Data S2 and Data S3, tab S17) were significantly enriched in 

the majority (8 of 10) of senescence DEGs. Generally, the genes up- or down-regulated 

with loss of COL6A3 expression mimicked the genes up- and downregulated in senescence 

DEGs, supporting the notion that reduced COL6A3 is associated with a pro-senescence 

cell phenotype. Gene set variation scores of the senescence DEGs generated using the 

transcriptomes of the COL6A3down versus control shRNA demonstrated a similar trend, 

with the score of upregulated genes from the senescence models generally higher in the 

COL6A3down versus control shRNA (Figure S4). Furthermore, COL6A3down cells also 

showed an increase in senescence-associated beta galactosidase staining and reduction 

in Ki-67 staining, suggesting reduced COL6A3 expression induced a general senescence-

like molecular and biochemical phenotype (Figure S5). As an additional validation, we 

curated from Williams et al.30 a set of genes found differentially expressed following 

siRNA-mediated COL6A1/2/3 depletion in cultured myofibroblasts at day 4 and day 6 

time points. Genes differentially expressed at either time point following Col6A1/2/3 

knockdown were found to significantly overlap with our COL6A3 knockdown DEGs in 

IMR90 (Data S3, tab S17a), as well as in the various senescence model DEGs (Figure S6A), 

further confirming that COL6A3 perturbation induces molecular programs similar to those 

induced with senescence. As Williams et al.30 also demonstrated through siRNA-mediated 

COL6A1/2/3 depletion, decreased myofibroblast contraction, migration, and wound healing, 

we surmise these phenotypes may also manifest with senescence-associated reduced 

COL6A3 expression.

COL6A3 knockdown in fibroblasts induces senescence through modulation of DREAM 
complex genes

We next tested for enrichment of our IMR90 or the myofibroblast COL6A3down DEGs in 

all STARNET modules and focused on the subset of STARNET modules in which COL6A3 

was either a predicted KDG (CT.28_LIV) or predicted to target as an endocrine mediator 

(61_Blood, 219_Blood and 37_SF). We hypothesized altered expression of COL6A3 

would affect expression of genes similar to those within CT.28_LIV, and indeed, we 

observed significant overlap of mostly the downregulated DEGs from either IMR90 or 

myofibroblast COL6A3 knockdown models. We also observed overlap of the upregulated 

DEGs associated with COL6A3 knockdown in the 219_Blood module genes as well as 
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the downregulated DEGs in the 61_Blood and 37_SF modules, supporting the potential for 

COL6A3 perturbation to impact the expression of these genes (Figure 4D, Data S3, tab 

S17). In general, genes down- as well as upregulated by irradiation in IMR90 cells were also 

enriched in SAM_28.CT_LIV, supporting COL6A3 knockdown as “mimicking” senescence 

induced by irradiation (Figure S6B, Data S3, tab S17).

Following on these observations, pathway enrichment terms were found overlapping 

between SAM_CT.28_LIV (Figure 4A) and COL6A3down DEGs (Figure S7, Data S3, tab 

17b). Collagen biosynthesis and modifying enzymes pathways were enriched in genes 

downregulated with COL6A3 knockdown. A “Senescence and autophagy in cancer” term 

was enriched in both up- and downregulated COL6A3down DEGs, which led us to observe 

that the SASP factors IGFBP5 and IGFBP7 were downregulated in COL6A3down, but 

IGFBP3 was upregulated (Figure 5A, Data S2). Given this, we evaluated how COL6A3 

suppression in our IMR90 experiment generally affected expression of known SASP factor 

genes. Using a curated SASP gene list, we found that SASP factor genes were significantly 

enriched for down- and upregulated COL6A3down DEGs, which contrasts the general 

upregulation of SASP factors observed in the senescence DEGs (Data S3, tab S18). Thus, 

the downregulation of COL6A3 partially contributes to the typical SASP factor induction in 

senescence, with additional molecular triggers important for SASP factor induction (Figure 

1A).

One surprising pathway term not associated with SAM_CT. 28_LIV genes was cell-cycle 

processes, despite the significant enrichment in COL6A3down DEGs (Figure 5A). Cell-cycle 

control is a prominent phenotype of senescence cells leading us to hypothesize that COL6A3 

may associate with additional senescence phenotypes beyond the SASP. We surmised 

that COL6A3 could potentially mediate cell-cycle control via autocrine effects within the 

liver, which our cross-tissue molecular analysis would miss. We therefore surveyed other 

liver modules for enrichment in COL6A3down DEGs and identified SAM_224. TS_LIV as 

enriched in genes downregulated by COL6A3 knockdown (Figure S7B). The 224.TS_LIV is 

also an SAM (SAM_224. TS_LIV), with significant enrichment in genes downregulated in 

the majority of senescence model DEGs (Figure S7C, Data S3, tabs S19 and S20). Hallmark 

enrichment analysis of SAM_224. TS_LIV genes and senescence DEGs confirmed cell-

cycle regulatory processes such as E2F and myc targets and G2M check-point control (Data 

S3, tab S20). Interestingly, two regulators of cell-cycle progression, namely MYBL2 and 

FOXM1 (G2/M), were downregulated with COL6A3 knockdown in IMR90 cells (Figure 

5A). These factors work in complex with MuvB, a core complex, which can also exist 

in a third transcriptional complex consisting of the Rb-like protein p130, E2F4, and DP1 

(DP, RB, E2F, and MuvB), called the DREAM complex, which functions to restrict cell-

cycle re-entry.32,33 Consistent with our hypothesis, we observed DREAM target genes 

enriched in SAM_224. TS_LIV (Data S3, tab S21) as well as genes downregulated with 

COL6A3 knockdown in IMR90 cells as well as in the myofibroblasts (Figure 5B, Data 

S3, tabs S17a and S21). We also observed a significant enrichment of “cycling cell type” 

signatures, in particular in immune cells such as scar-associated macrophages and dendritic 

cells, in SAM_224.TS_LIV genes and COL6A3down DEGs in IMR90 cells (Figure S3B). 

Together, these data demonstrate that targeted COL6A3 knockdown results in reduced cell-
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cycle progression, a pro-senescence phenotype, potentially through modulation of DREAM 

complex.

Replication of STARNET SAMs in other human disease networks

Other aging or chronic inflammatory-related diseases include Alzheimer’s disease (AD),34 

inflammatory bowel disease (IBD),35 and the slow-growing pancreatic neuroendocrine 

insulinoma tumors (PNETs).36 Using co-expression networks generated in either the brain, 

intestine, or tumor (respectively) tissues from these three human cohort datasets, we 

evaluated if SAMs identified in the STARNET cohort were enriched in these human 

datasets. In Figure S8 (and Data S3, tab S22), we demonstrate that many of the SAMs 

from STARNET were enriched in the three other non-CAD cohort datasets. Specifically, 

we observed 42 PNET, 46 AD, and 47 IBD modules enriched in various SAMs, of 

which 36 SAMs were in common, including 224.TS_LIV, 15.CT VAF, and CT.28_LIV. 

We further demonstrate that the SAM_CT.28_LIV module (identified in livers of STARNET 

patients) was not only conserved in the brain, intestine, or insulinoma tissues but was also 

co-enriched in COL6A3down DEGs (Figure S8, Data S3, tab S23), suggesting COL6A3 may 

be important in modulating co-expression of these genes in tissues beyond the liver.

DISCUSSION

In this study, we show that integration of gene co-expression network modules from CAD 

patients with gene expression signatures of molecular senescence from experimental cell 

models can reveal key drivers of senescence processes and further our understanding of the 

pathobiology of complex aging-related diseases. By using a CT network framework, we 

could identify potential KDGs of senescence-enriched modules as well as predict which 

KDGs were potential candidate secreted factors (i.e., SASP molecules) and their suspected 

targeted tissue and modules of genes. We experimentally validated our approach by showing 

that reduced COL6A3 expression, one of the KDGs identified for a liver SAM and predicted 

to be a CT endocrine mediator, induces a senescence molecular phenotype in IMR90 cells. 

We provide a resource of SAMs and predicted senescence endocrine mediators in multiple 

human tissue types (liver, skeletal muscle, atherosclerotic and non-atherosclerotic arterial 

wall, subcutaneous and visceral abdominal fat tissues, blood) for similar exploration by the 

research community. Many of these SAMs we also replicate as co-expressed in other human 

aging-related diseased tissue samples, such as brain, intestine, and pancreas from AD, IBD, 

and PNET patients (respectively), supporting the importance of our identified SAMs beyond 

their suggested roles in cardio-atherosclerotic and metabolic disease.

We provide 10 experimental senescence cell model transcriptomes and 56 modules of genes 

co-expressed across several human tissues (SAMs), which we predict are associated with 

senescence processes in vivo. We provide systematic molecular characterization of the 

SAM genes according to the (1) annotation of biological processes, (2) association with 

metabolic disease endpoints, (3) key driver gene status (KDGs-SAMs), and (4) candidacy 

as secreted factors mediating CT communication (SAM-SASPs). Because we mapped 

senescence-associated molecular programs using senescence DEGs from five distinct cell 

types and six modes of senescence induction, our data can be used to explore in vivo 
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senescence signals according to either mode of induction, cell type specificity, or shared 

elements (Figure 1). For example, we noted that SAM_98.LIV was enriched in senescence 

DEGs specific to irradiation-induced senescence in IMR90 cells and HUVECs (cholesterol 

homeostasis processes).37 Interestingly, this module is negatively correlated with lipid levels 

but positively correlated with HbA1c levels in STARNET patients, and it was recently 

found important in defining the inverse relationship between lipid and glucose metabolism. 

This may explain why cholesterol-lowering statins put some individuals at an increased 

risk of developing type 2 diabetes.37 As deregulation of lipid metabolism can be sufficient 

to shift cultured cells to senescence,38 finding a link between lipid processes, senescence 

DEGs, and CAD endpoints in the context of human CAD tissue is a disease-relevant insight. 

Overall, we propose the use of our data as an additional resource for investigating markers 

of senescence to detect or modify the formation and persistence of senescent cells in human 

disease.

Identifying common transcriptional senescence changes, which are independent of the mode 

of senescence induction, is of considerable value to research efforts aimed at identifying 

or modifying pan-senescence processes. Our study enables this approach by exploring the 

modules of co-expressed genes that consistently associate with transcriptomes of senescence 

DEGs. For example, the CT module 28.CT_LIV was found enriched in all 10 of 10 

senescence DEGs, suggesting a “conserved” molecular program underlying senescence. 

We therefore propose that the biology and KDGs associated with SAMs, like 28.CT, are 

a source of candidates for mechanisms underlying senescence programs. In support of this 

hypothesis, we experimentally evaluated in vitro the role of COL6A3 in senescence. Our 

rationale was supported by the predicted KDG role of COL6A3 in CT.28_LIV and its 

potential as a SASP factor given its association with several target modules in our cross-

tissue co-expression network analysis. In addition, COL6A3 expression was statistically 

downregulated in 7 of 10 senescence DEGs compared to the generally reported upregulation 

of SASP factor expression in senescence cells. Importantly, as 28.CT_LIV was also found 

enriched in genetic loci underlying CAD and correlated with expression of cardiometabolic 

traits, our data support cellular senescence, and potentially COL6A3, as mechanisms 

through which CAD genetic susceptibilities may translate into disease phenotypes.

COL6A3 encodes one of the three major polypeptide chains that make up collagen VI, 

which is found in many tissues as a bridging, anchoring, and signaling molecule. Collagen 

VI can bind cell surface receptors, such as integrins, and the soluble fragment released from 

the C-terminal part of the COL6A3 chain, endotrophin, is also bioactive.39 Collagen VI, 

including its specific COL6A3 isoform, is considered a major marker of tissue fibrosis in 

part due to its reproducible co-localization with α-SMA (myofibroblast marker encoded by 

ACTA2) in various human fibrotic tissues, including adipose, liver, and lung.30,39 Expanding 

on the fibrosis concept, myofibroblasts are the major cell type underlying pathology of 

all fibrotic conditions. This is in part due to their excessive production of extracellular 

matrix proteins such as collagens, glycoproteins, and proteoglycans. Importantly, COL6A3 

depletion in myofibroblasts has recently been shown to reduce the pro-fibrotic functions 

of myofibroblasts, including reduced chemoattraction, migration, and contractility.19 Our 

data-driven association of COL6A3 with SAM_CT.28_LIV is thus aligned with existing 

knowledge of COL6A3’s pro-fibrotic role.
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Association of COL6A3 with fibrotic genes in the CT.28_LIV module combined with the 

enrichment in senescence DEGs highlights a link between fibrotic processes and senescence. 

Whether senescent cells display pro- or anti-fibrotic phenotype is another question however. 

Investigating the contractility, chemoattraction, and migration of SNC cells was beyond the 

scope of this study; however, we examined the expression of pro-fibrotic genes as a proxy 

of the fibrotic state of our in vitro senescence models. A general observation was that the 

expression of ACTA2, COL1A1, or COL1A2 was reduced in senescent cells compared to 

non-senescent counterparts. While this is consistent with observed decreased expression 

of COL6A3 (profibrotic SASP factor) in our cell models, we noted that, conversely, the 

levels of other pro-fibrotic SASP factors (e.g., MMP10, MMP12, and SERPINE1 [encodes 

PAI-1]) and pro-inflammatory SASP factors (e.g., CCL2 [encodes MCP1]) were generally 

upregulated. While others have shown that reduction of COL6A3 in myofibroblasts is 

sufficient to reduce myofibroblasts’ pro-fibrotic functions, whether the secretome of our 

experimental model senescent cells is anti- or pro-fibrotic likely depends on more than 

any one factor, especially given the complexity of fibrosis homeostasis, which relies on 

a balance of proteins mediating collagen synthesis and degradation. Over-all, our analysis 

connects fibrotic processes regulated by COL6A3 to cellular senescence, since COL6A3 

knockdown in IMR90 cells (as well as in myofibroblasts from Williams et al.30) was 

sufficient to produce transcriptional changes that phenocopied (by DEG and direction 

of change) nearly all 10 experimental senescence models tested. These observations are 

consistent with aberrant ECM being linked to senescence phenotype and cellular senescence 

mediating chronic fibrotic diseases40 such as pulmonary fibrosis.41 While COL6A3 has been 

previously found as differentially expressed (high-throughput omics assays) in senescent 

cells,42 to the best of our knowledge, this paper presents extensive characterization of 

COL6A3 as a driver of senescence-associated molecular programs. Furthermore, since 

SAM_CT.28_LIV expression negatively correlated with markers of glycemic control 

(HbA1c), obesity (BMI), dyslipidemia (TG, HDL), and CAD (Syntax score), we posit that 

the suppression of SAM_CT.28_LIV gene expression, including COL6A3, is pro-disease. 

Potentially, the beneficial wound healing and tissue repair processes that are pre-fibrotic are 

prematurely dampened by induction of senescence (Figure 6).

While several transcriptional changes observed upon COL6A3 knockdown were concordant 

with those observed in X-ray irradiation-induced senescence, we noted several SASP 

factors discordantly affected by COL6A3 knockdown compared to senescent cells. In 

some instances, such as with the literature-supported SASP genes (and members of 

SAM_CT.28_LIV), PLAT, PLAU, IGFBP7, and IGFBP5,25,43 the expression was generally 

upregulated in the senescence DEGs and downregulated with COL6A3 knockdown. 

Senescent cell secretomes typically include matrix-remodeling proteases, growth factors, 

and a broad repertoire of cytokines and chemokines, which can contribute to paracrine 

stimulation of immune surveillance. We, however, did not observe changes in chemokines 

or cytokines such as IL-6 and IL-1 with COL6A3 knockdown, although they are generally 

elevated in senescence. Overall, our COL6A3 experimental model showed enrichment of 

both up- and down-regulated genes in a subset of SASP genes, which contrasts with the 

general increase in SASP factor genes observed in senescence DEGs. The consequences 

of this difference remain unexplored; however, it makes COL6A3 an interesting candidate 
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target since its reduced expression phenocopies senescence cell-cycle arrest (see below) and 

ECM downregulation independently from its effects on pro-inflammatory and pro-fibrotic 

SASP factor gene expression.

While COL6A3 knockdown in IMR90 fibroblasts may not have induced changes in gene 

expression of inflammatory SASP factors per se, STARNET liver COL6A3 gene expression 

correlated with CT modules associated with inflammatory processes. Pathway enrichment 

analysis of the three modules predicted as paracrine tissue targets of liver COL6A3 

implicates COL6A3 as modulating (anti- or pro-) inflammatory processes; a common 

pathway of all three target modules was IL-4/13 signaling. Other inflammatory pathways, 

including neutrophil degranulation and IL-10 signaling, were also shared by at least two 

of three target modules (Figure 6E). Moreover, cell type enrichments of the target modules 

included scar-associated macrophages and neutrophils, consistent with prior observations44 

that these immune cell types are found in proximity to senescent cells in fibrotic livers. 

Interestingly, IL-4 and IL-13 are known to polarize macrophages of a M2a-like phenotype, 

which is associated with wound healing and tissue repair.45 Together our data suggest that 

in the context of senescence, reduced COL6A3 signals from the liver may differentially 

influence immune cell phenotypes of the adipose and blood depots, which in turn could 

impact homeostatic functions in those target tissues. The impact on induction/reduction of 

inflammation in the target tissues remains to be explored.

In our study, knockdown of COL6A3 revealed it to be a potential driver of the cell-

cycle arrest-related senescent phenotype, as a significant decrease in expression of cell-

cycle genes was observed. Many of the downregulated senescence DEGs that mapped to 

SAM_224.TS_LIV were consistent with a hallmark senescence process of cell-cycle arrest. 

A likely connection, in line with conclusions by Krizhanovsky et al.,44 is that cell-cycle 

arrest of activated HSCs provides a brake on the fibrogenic response to damage, by limiting 

the expansion of the cell type responsible for producing the fibrotic scar. Although the 

livers from the STARNET cohort were not studied for fibrosis per se, they likely have a 

degree of damage and repair processes as part of aging and ongoing metabolic insults, which 

are captured molecularly in SAMs 224.TS_LIV and 28.CT_LIV. Furthermore, we show 

that COL6A3 may mediate regulation of cell-cycle progression through downregulation of 

G2/M checkpoint and G1/S phase transition genes, which are targeted by the DREAM 

repressor complex.32 Further exploration of how COL6A3 perturbation may intersect with 

DREAM repressor complex biology will afford insights into pathologies associated with 

altered DREAM complex function.46–48

Limitations of the study

Limitations of the study include our focus on transcriptional changes over protein levels. 

As such, we are unable to account for the many steps from gene to protein, especially 

important for function of SASP factors, including reliance in some cases on exosomes for 

cellular release. However, with this in mind, we have confirmed that unbiased proteomic 

surveys of senescence cell models that have been previously reported are consistent with our 

observations: COL6A3 protein abundance was found downregulated in exosomes secreted 

by irradiated and RAS-induced senescence fibroblasts (eSASP) compared to controls.49 
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Furthermore, whether, COL6A3 or other KDGs we identified are the direct cause of the 

activation of senescence or an indirect downstream effect is uncertain as we did not perform 

a time series. Finally, we acknowledge the known limitation of WGCNA in that within 

a tissue the same gene is assigned to a single module, which might obscure additional 

co-expression patterns. In our study, however, the same gene can be represented up to seven 

times (once in each of the seven tissues in which a given gene is found to be expressed).

Lastly, in terms of relevance to human disease outside of our discovery STARNET cohort, 

we explored and observed that SAM_CT.28_LIV gene co-expression was conserved in 

co-expression networks from three independent datasets and that those were similarly 

enriched in COL6A3down DEGs, suggesting COL6A3 may also drive the co-expression 

of these genes in other tissues. Of interest for AD, we observed an enrichment of COL6A3 

downregulated genes in human AD modules including Brodmann area 36 parahippocampal 

gyrus (BM36-PHG) and BM8 superior frontal gyrus (BM8-SFG). Both BM36-PHG and 

BM8-SFG were top-ranked by relevance to AD pathology using DEGs and trait-associated 

genes in a previous publication (Figure 5 in Wang et al.50). In addition, BM8-SFG was also 

a brain region significantly associated with altered expression of AD-associated risk genes 

(PSEN1, MEF2C, PICALM, and PLD3).50 Together, these findings suggest that biology of 

COL6A3 KD in 28.CT_LIV SAM-enriched AD modules captures relevant AD pathology 

and suggests further investigation of collagen VI’s role in AD.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Carmen Argmann 

(carmen.argmann@mssm.edu).

Materials availability—This study used commercially available materials listed in the 

paper.

Data and code availability

• The RNA-sequencing data generated for this study have been deposited at the 

Gene expression omnibus (GEO) with the accession number GEO: GSE230181 

and GSE230357.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

In vitro cell culture—Human lung fibroblasts IMR-90 cells (ATCC, CCL-186) were 

cultured in DMEM medium (VWR VWRL0101–0500) supplemented with 10% fetal 

bovine serum (VWR or Gibco (COL6A3 validation experiments)). Human Umbilical Vein 

Endothelial Cells (HUVEC, Lonza C2519A) were cultured in EGM-2 Bulletkit (Lonza, 
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CC-3162). Human Microvascular Endothelial Cells (HMVEC, Lonza CC-2527) were 

cultured in EGM-2 MV Bulletkit (Lonza, CC-3202). Renal Proximal Tubule Epithelial 

Cells (RPTEC, Lonza CC-2553) were cultured in REGM Bulletkit (Lonza, CC-3190). 

Adipose-derived Stem Cells (ADSC, Lonza PT-5006) were cultured in ADSC Bulletkit 

(Lonza, PT-4505). All cell culture media included 100 I.U./mL of penicillin streptomycin, 

and cells were maintained at 37°C in an atmosphere of 5% CO2 and 3% O2 (except were 

indicated as 20% O2).

METHOD DETAILS

Senescence induction—Senescence was induced by irradiation, chemicals, or 

transduction with an oncogene. Irradiation was used at 10 Gy (Precision X-ray, X-RAD 320) 

and chemicals were added at the following concentrations: bleomycin (15 μg/mL, 24 h), 

oligomycin (16 nM, 7 days), anti-mycin (80 nM, 7 days) and rotenone (100 nM, 14 days). 

All chemicals were obtained from SelleckChem, or Sigma, dissolved in DMSO, and added 

to the culture medium. DMSO vehicle control was used at 0.01% v/v. Oncogene induced 

senescence was done in hTERT immortalized IMR-90 (IMR90) cells with lentiviral particles 

generated from the pLVX-TetOnePuro (Takara, 634847) with either GFP or RasV12 cloned 

into the EcoRI/BamHI sites. Cells were grown as described above with addition of 1 μg/mL 

doxycycline hyclate (Sigma, D9891) and daily media changes over 7 days. Cells were then 

incubated in media for three days, followed by media change to DMEM supplemented with 

0.1% FBS and 10 μg/mL insulin (Thermo, 12585014). Control IMR90 hTERT cells were 

cultured in absence of puromycin. In all cases, replicates were cultured independently at 

senescence induction. One or more replicates were used for senescence induction assays. 

Three replicates were processed for RNA-seq, five replicates were processed for RNA-seq in 

the case of treatment with bleomycin, oligomycin and antimycin as well as two of the four 

irradiated IMR90 experiments.

Assays of cellular responses to senescence induction—Proliferating cells were 

labeled with 10 μM EdU and EdU positive cells were detected using the ClickiT EdU 

Alexa Fluor 488 imaging kit (Thermo, C10337) according to manufacturer’s instructions. 

Senescence-associated beta galactosidase was detected using BioVision K320 kit according 

to manufacturer’s instructions. EdU staining was inspected using Keyence microscope 

GFP filter, and senescence-associated beta galactosidase using brightfield microscopy. 

p16 staining was done as follows. Cultured cells were fixed with 4% p-formaldehyde, 

permeabilized with phosphate buffered saline (PBS) containing 0.2% Triton X-100 (PBST), 

and blocked with 4% bovine serum albumin in PBS supplemented with 0.1% Tween 20. 

Cells were incubated with primary p16 anti-body (Roche, clone E6H4) for 2 h at room 

temperature, washed thrice with PBST, and incubated with secondary Alexa Fluor 647 

(Thermo, A32728) antibody for 1 h at room temperature. DAPI containing mounting 

medium (Vector Laboratories H-1500) was added to cells, and images acquired using 

Keyence microscope Cy5 filter.

RNA-seq differential gene expression—Cells were washed and directly lysed in 

Trizol (Thermo, 15596018). Total RNA was processed for library construction by Cofactor 

Genomics (St. Louis, MO) according to the following procedure. Briefly, total RNA was 
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incubated with mRNA capture beads in order to remove contaminating ribosomal RNA from 

the sample. The resulting poly(A)-captured mRNA was then fragmented. First-strand cDNA 

synthesis was performed using reverse transcriptase and random primers in the presence 

of Actinomycin D, followed by second-strand cDNA synthesis with DNA polymerase I 

and RNaseH. Double-stranded cDNA was end-repaired and A-tailed for subsequent adaptor 

ligation. Indexed adaptors were ligated to the A-tailed cDNA. Enrichment by PCR was 

performed to generate the final cDNA sequencing library. Libraries were sequenced as 

single-end 75 base pair reads on an Illumina NextSeq500 following the manufacturer’s 

protocols. Raw reads were aligned to the human reference genome hg38 using TopHat251 

and calculated rpkm gene expressions for each replicate using Cufflinks.52 HTSeq54 was 

used to count the gene features and DESeq253 to call differential genes between non-

senescent and senescent samples. A gene was called differentially expressed if its adj p value 

was <0.05.

Identification of senescence model DEGs—DESeq2 output from comparison of 

control and treated cells was i) filtered by adj p value to keep <0.05, ii) annotated by 

gene type and only protein coding genes carried forward, iii) rank ordered by ascending adj 

p and ENSG with the same gene name, and direction of change, but with lesser adj p kept 

to remove duplicates, iv) top 1250 upregulated genes (starting with the lowest adj p) and top 

1250 downregulated genes (starting with lowest adj p) were merged to create 2500 gene lists 

(Data S2; Note: HUVEC data resulted in 2499 genes (1249 downregulated)). For each of the 

IMR90 results (Data S1) following the step iii described in this section, the following steps 

were done: a) files were bound into a single file, b) matrix with log2FC and gene names 

created and only those genes with same log2FC direction in at least 3 out of 4 or in all 4 

out of 4 IMR90 experiments were kept, and median log2FC value calculated, c) similarly 

median padj value for resulting genes was calculated using the matrix file of genes that have 

the same log2FC direction in at least 3 out of 4 or in all 4 out of 4 IMR90 experiments, 

and median padj value calculated, d) single file with gene names and median log2FC and 

padj values was created, and steps described in (iv) completed to create a 2500 gene list. 

For COL6A3down DEGs, the linear modeling output of control shRNA and COL6A3 shRNA 

comparisons (Data S2, tab COL6A3_KD.2032) was processed as in i-iv to create a list of 

top 2032 genes (930 downregulated, 1102 upregulated).

SuperExact test60 was used to find the genes in common to 9/10 and 10/10 senescence 

DEGs. As well, three Venn intersects of the senescence DEGs with same direction of 

log2 fold change were created to define: 1) CELLS (genes common to irradiated HUVEC, 

HMVEC, IMR90, RPTEC, ADSC), 2) MODES (genes common to IMR90 cells exposed to 

X-ray irradiation, anti-mycin, oligomycin, bleomycin, rotenone, and oncogenic RasV12), 3) 

MITO (genes common to IMR90 cells induced to senescence by oligomycin, anti-mycin, 

and rotenone). Median log2FC of senescence DEGs was calculated for genes in CELLS, 

MODES and MITO gene sets (Figure 1C, Data S2).

Jaccard similarity indices were calculated between the individual senescence DEGs defined 

as top 2500 differentially expressed genes (independent of direction of change); 1 – distance 

was used to calculate the similarity (note: distance method = “binary”). All heatmaps in 
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the manuscript were plotted using heatmap.2 function of gplots package available in R 

environment (cran.r-project.org).

Gene set enrichment of senescence DEGs—Enrichment analyses were done using 

the Fisher’s exact test (FET, unless otherwise stated) with p values adjusted using a 

Benjamini Hochberg multiple test correction (significant if < 0.05). The SASP geneset used 

in Figure 1E were sourced from.15 Figure 2A used curated senescence model DEGs from 

Supplemental data from Hernandez-Segura et al.18 and Saul et al. (19 (also listed in Data 

S3, tab S5). Through an extensive review of the literature, SenMayo was presented as a 

‘senescence gene set’ and is a panel of 125 genes identify representing commonly regulated 

genes in various age-related datasets in a transcriptome-wide approach that included whole-

transcriptome as well as single cell RNA-sequencing. Pathway enrichments in Figure 2B 

were performed using REACTOME. Gene sets used in Figure S3A are listed in Data S3, 

tab S7 (rows 99–105). They included: i) Ingenuity Pathway Analysis (IPA) senescence 

upregulated (SenescUp) or senescence downregulated (SenescDown) gene sets were 

generated through the use of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/

products/ingenuity-pathway-analysis57); ii) gene sets from HAGR64 (HumanAgeing DB, 

CellAge DB), iii) macrophage enriched molecular network genes (MEMN),20,21 and 

iv) Inflammatome genes.20,21 Where indicated, pathway enrichment analysis was also 

performed using the ClueGO (v2.5.6) app55 within Cytoscape (v3.7.2)56 environment 

(KEGG, BioPlanet, Reactome, Wiki and GO biological pathways were sourced from 

ClueGO; Bonferroni adj p values; default parameters for functional grouping of pathway 

terms according to shared members).

Integration of senescence model DEGs and human co-expression networks—
Cross-tissue networks were generated as described in Koplev et al.14 Briefly, normalized 

STARNET gene expression data across 7 tissues per patient,13 for a total of 672 patients was 

used to infer co-expression modules with scale-free properties across tissues. To estimate 

co-expression network modules, block-wise weighted unsigned gene co-expression network 

analysis (WGCNA) was used and absolute Pearson’s correlation coefficients calculated 

within each transcript block. The resulting co-expression modules were considered to be 

‘cross-tissue’ (CT) if >5% of the module transcripts were from another tissue than the 

primary (most prevalent) tissue. If not, the co-expression module was classified as ‘tissue-

specific’ (TS). Note each gene per tissue type is only able to belong to a single module. A 

total of 224 modules including 135 inferred TS and 89 CT co-expression network modules 

were identified across the seven tissues (Data S3, tab S8).

Using Fisher’s exact test and the 10 senescence DEGs sets we then tested enrichment in 

the modules, using a Bonferroni adjusted p value <0.01 and fold enrichment > 3-fold, 

senescence associated modules (SAMs) were defined (Data S3, tab S9, column P). Of note, 

to test for enrichment of CT modules, we split genes by tissue; for example, CT module 28 

was tested as and denoted by 28.CT_LIV (646 genes), 28.CT_VAF (23 genes), 28.CT_SF 

(7 genes), 28.CT_MAM (3 genes), 28.CT_SKLM (2 genes), and 28.CT_MAM (1 gene). 

We annotate the identified SAMs using the term “SAM” and the STARNET cooexpression 

module number and the associated tissue, especially when annotating enriched cross-tissue 
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modules (e.g., SAM_28.CT_LIV instead of 28.CT). When the annotation for tissues is not 

considered, there are 52 SAMs. These 52 modules were used for key driver gene (KDG) 

analyses. Briefly, we used Fast Greedy Equivalence Search algorithm (‘sem-bic’ scoring, 

maxDegree = 100) implemented in the rcausal (Tetrad) R pack-age (developed by the Center 

for Causal Discovery), and mergeomics R package to perform the key driver analyses of 

the inferred Bayesian networks65 on each SAM if involving <3,000 transcripts. Mergeomics 

parameters were kept at default setting (Search depth: 1, Search direction: 0, Maximum 

overlap: 0.33, Minimum module size: 20, Minimum degree: automatic, Maximum degree: 

automatic, Edge factor: 0.5, Random seed: 1) with number of permutations set at 10,000. 

SAM-KDGs were defined with a cut-off of 0.0001 FDR.

The cross-tissue network framework enables deciphering potential secreted factors 

mediating communication between tissues, as described previously.24 The definition of 

potential secreted mediators of tissue-tissue communication was based on (i) the gene in CT 

modules being annotated as ‘secreted’ in UniProt and (ii) the expression of the secreted gene 

in the ‘origin’ CT module significantly (FDR<0.2, Benjamini-Hochberg) correlating with 

the ‘target’ TS module eigengene (~790 endocrine CT interactions identified representing 

~375 unique genes)). Predicted cross-tissue endocrine mediators that were identified as 

SAMs were considered potential senescence associated secreted proteins termed SAM-

SASP factors.

Clinical trait association of SAMs—Pearson correlations were calculated using 

the eigengene of the SAMs (as eigengenes) to various STARNET patient clinical 

phenotypes.13 The clinical traits tested were: BMI (body mass index), HDL (high-density 

lipoprotein), waist hip ratio, HbA1C (hemoglobin A1C), TG (triglycerides), LDL (low-

density lipoprotein), LDL to HDL ratio, plasma cholesterol, SBP (systolic blood pressure), 

ALAT (alanine aminotransferase), ASAT (aspartate aminotransferase), CRP (C-reactive 

protein), ndv (number of diseased vessels), Creat (creatinine), lesions (number of), GGT 

(gamma-glutamyl transferase), PLT (platelet count), Duke,66 SYNTAX score.22 Enrichment 

of SAMs in HALLMARK (Figure 4B) was done using h.all.v6.2.symbols.gmt. As in 

annotations of senescence DEGs pathway enrichment analysis, where indicated, was also 

performed using the ClueGO (v2.5.6) app55 within Cytoscape (v3.7.2)56 environment. 

Enrichment of SAMs in specific cell types (Figure 6C) was done using PanglaoDB63 (Data 

S3, tab S15, column AV) and the liver fibrosis cell type selective genes29 (Data S3, tab S16).

Replication of SAMs in independent gene co-expression networks—The gene 

co-expression modules generated by WGCNA were curated from three publicly available 

datasets. An Alzheimer’s disease (AD) cohort with expression data from 1053 postmortem 

brain samples from 19 cortical regions of 125 individuals (Sourced from50 (additional file 

1-Table 3). A cohort of 322 treatment-naïve pediatric individuals with inflammatory bowel 

disease (IBD) where gene expression data was generated from intestinal tissues and used 

for network generation.35 A cohort of 25 individuals with pancreatic neuroendocrine tumors 

(PNET) of insulinoma type that had tumor RNA-sequencing performed and a co-expression 

network generated.36 SAMs identified in the STARNET discovery cohort were tested 

for enrichment against modules from each of the 3 co-expression networks. SAMs were 
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considered ‘conserved’ in the independent network if it was significantly enriched by FET 

with a Bonferroni adjusted p value of <0.05, enrichment fold change >3 and if the module in 

which SAM was enriched had <2000 genes.

Experimental validation of COL6A3—COL6A3 gene expression was depleted by 

transducing IMR90 cells (incubated at 37°C, 5% CO2, and 20% O2) with COL6A3 shRNA 

lentiviral particles (Santa Cruz sc-94560-V), and control IMR90 cells with control shRNA 

lentiviral particles (Santa Cruz sc-108080) according to manufacturer’s instructions with 

following adaptations: only lentiviral particles (without polybrene) were used, multiplicity of 

infection was 1, and concentration of puromycin (ThermoFisher A1113803) was 2 mg/mL. 

Validation of knockdown was confirmed by qPCR. RNA was extracted using the RNeasy 

Mini Kit (74104, Qiagen) and manufacturer’s instructions and included a genomic DNA 

digestion step (RNase-free DNase Set 79254, Qiagen). Four hundred ng of RNA was reverse 

transcribed using the Super script IV Kit (Invitrogen, 180901050). cDNA was diluted 

up to 1:4 prior to running the qPCR. Primers used for SYBR green I detection (Power 

SYBR Green PCR Master Mix Applied Biosystems, 4368706) were COL6A3 (Forward: 

GAAGCAGAACCTCA CGGTCA, Reverse: GTAGCAGACCACAGCCACAT), RPLP0 

(Forward: GTGATGCCCAGGGAAGACAA Reverse: CCACATTGTCTGCTCCCACA). 

qPCR was run using the 7900HT Applied Biosystems Real-Time PCR System (Stage 1: 

95°C 2:00 (1 cycle); Stage 2: 95°C 0:20, 55°C 0:15, 72°C 0:10 (40 cycles); Stage 3: 

dissociation stage). Data were analyzed using SDS 2.2.1 software.

Senescence-associated beta galactosidase was detected using BioVision K320 kit according 

to manufacturer’s instructions. Cells were visualized under the EVOS XL Core (Objective 

AMEP4634) microscope and images were captured. Effect of COL6A3 knockdown on cell 

cycle was assessed by Ki67 staining. Cells were seeded on D-Lysine/Lamimine coated 

coverslips in DMEM media supplemented with 5% FBS (Gibco 10438–026) and 1X Pen/

Strep (Corning 30–002-Cl), each coverslip placed in a single well of a standard cell culture 

24 well plate, and cells incubated at 37°C, 5% CO2, and 20% O2. Cells were fixed in 10% 

formalin, washed thrice with 500 μL PBS, and blocked with NGS blocking buffer (5% 

Normal Goat Serum, 1% BSA, 0.5% Triton X-100 in PBS) for 1 h. Ki67 primary antibody 

(Thermo RM 9106–50) was diluted 1:300 with NGS blocking buffer and cells incubated 

with 200 μL of primary Anti-body for 2 h at room temperature, washed thrice with 200 

mL PBS and then incubated for 1 h with secondary antibody (Life Technology A11037 

Goat anti rabbit Alexa Fluofor 594) diluted 1:300 by NGS blocking buffer. After washing 

thrice with 200 μL PBS cells were stained with Hoechst 33342 (Fisher H3570) and washed 

thrice with 300 λL PBS. Cells were washed with dH2O and each coverslip mounted on 

a top of a standard microscopy glass slide using 5 μL of Vestashield Mounting Medium 

for fluorescence (Vector Laboratory Inc H-1000) and images captured. The number of cells 

expressing Ki67 was quantified using ImageJ software (Analzye Particles function), with 

~600 cells counted per condition.

RNA-seq differential gene expression analysis of COL6A3 knock down in 
IMR90 cells—Total RNA was extracted as above. Illumina TruSeq Stranded mRNA 

library prep kit was selected to specifically investigate mRNAs. Polyadenylated RNA 
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molecules are enriched by using oligo-dT beads. Strand information is preserved. Standard 

QC metrics were gathered before and after library prep using ThermoFisher Scientific 

Qubit Fluorometric Quantification and Agilent 4200 TapeStation system. Sequencing was 

performed using an Illumina NextSeq instrument to achieve 30 million reads per sample 

(triplicates) with 100nt paired end reads.

The quality-filtered raw data was then converted into FASTQ files. RNA-seq reads were 

aligned to the GRCh38 primary assembly with Gencode release annotation by STAR 

(v2.7.3a). RNA-seq QC metrics were calculated by fastqc (v0.11.8). Quantification was 

done with featureCounts. Raw count data was pre-filtered to keep genes with CPM>1.0 for 

at least 30% of the samples. After filtering, count data was normalized via the weighted 

trimmed mean of M-values,61 where the weights originate from the delta method on 

the binomial data. Normalized counts were further transformed into normally distributed 

expression values via the voom-transformation and was the final input for statistical 

modeling. Statistical analysis was carried out using Limma framework62 in R language 

version 3.0.3 and its available packages. For pathway enrichment analysis COL6A3down 

DEGs were defined as logFC > |0.5| and Adj p < 0.05 resulting in 352 up- and 327 

down-regulated genes.

Gene set enrichment analyses—Gene set enrichment analyses (GSEA) was performed 

using GSEA v4.1.0 [build:27]58,59 and the pre-ranked function using as the ranking metric 

the signed fold change * -log10 p value. The gene sets used included a) Hallmark Pathways 

(h.all.v7.1.symbols.gmt, available within GSEA); b) the COL6A3down DEGs (queried either 

as up-regulated only gene sets (1102 genes); down-regulated only gene sets (930 genes) 

or combined), c) the irradiated IMR90 senescence DEGs (queried as either up-regulated 

only gene sets (1250 genes), down-regulated only gene sets (1250 genes) or combined) or 

d) DREAM target genes curated from32 and provided in Data S3, tab S19. The number 

of permutations used was 1000, and NES values with FWER.p.val <0.05 were considered 

significant (unless otherwise stated).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of the experiments can be found in each of the applicable Methods details, 

figure legends or results, including the number of samples, statistical tests used, correction 

for multiple comparisons, and p values used to indicate statistical significance. Results 

outputs are provided in Supplementary tables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Senescent cell transcriptomic signatures from 10 controlled experimental 

settings

• A resource of 56 human senescence-associated gene modules and 86 

candidate SASP factors

• Identification and validation of COL6A3 as associated with senescence 

phenotype
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Figure 1. Generation of in vitro molecular signatures of senescence
(A) Schema outlining the experimental setup including generation of 10 differential 

expression gene signatures (DEGs) representing senescent cells (SNCs). Senescence was 

induced in five different cell types by X-ray irradiation, pharmacological agents, or 

transduction of cells with an oncogene RasV12. Signatures of senescent cells were 

defined by the top and bottom 1,250 significantly differentially expressed protein coding 

genes (senescence DEGs, all genes at least adj p < 0.05). A network consisting of 

tissue-specific (TS) and cross-tissue (CT) modules of co-expressed genes within seven 
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tissues—VAT (visceral adipose tissue); MAM (mammary artery); SF (subcutaneous fat); 

BLOOD (blood); AOR (aorta); LIV (liver); and SKLM (skeletal muscle)—sampled from 

the STARNET CAD cohort was integrated with the senescence DEGs. Potential endocrine 

mediators and their target tissues were predicted from the cross-tissue network. Output is 

senescence-associated modules (SAMs), key driver genes (KDGs) of SAMs (SAM-KDGs), 

and predicted senescence-associated secreted proteins (SAM-SASPs) and their target tissue 

modules.

(B) UpSet plot of genes found in at least 9/10 or in 10/10 senescence DEGs (independent of 

the direction of change). Enrichment p values are indicated by the color of the bars. Eight 

genes were common across all SNC-DEGs with CCND2 consistently upregulated (log2FC 

between 1.68 and 4.49, see Data S2).

(C) Venn diagrams summarizing the number of SNC-DEG genes common to X-ray 

irradiated cells (“CELLS”), mitochondrial stress-associated senescence (“MITO”), and 

senescent IMR90 cells across multiple modes of senescence induction (“MODES”) (Data 

S3, tab S4).

(D) Heatmap summarizing the significance (–log10 Bonferroni adj p value) of the overlap of 

the genes found differentially expressed following different modes of senescence induction 

with the text in each cell representing the fold enrichment (Fisher’s exact test, full data in 

Data S2).

(E) Heatmap summarizing the log2 fold changes across the 10 senescence DEGs of genes 

curated from the literature as associated with senescence (see STAR Methods).

Savić et al. Page 29

Cell Rep. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Comparative analysis of senescence molecular signatures and pathway enrichment 
analysis
(A) Heatmap of the significant enrichments of the 10 senescence DEGs in publicly available 

senescence-associated differential expressed genes sets. The definitions of the signature 

series tested from Hernandez-Segura et al.2 are as follows: Universal S2F: genes common 

to senescent fibroblasts/keratinocytes/melanocytes induced by three stimuli (RS, IR, OIS); 

Fibroblast S1E: DEGs in senescent fibroblasts (across six types) regardless of inducer; 

Fibroblast S2E/Melanocytes S2C/Astrocytes S2D: fibroblast-/melanocyte- or astrocyte-

specific senescence genes; FibroMelaKera: temporal gene changes with senescence (4, 
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10, and 20 days); OncSenesS1B: Ras-oncogene-induced senescence in fibroblasts; and 

ReplSenS1C: replicative stress-induced senescence in fibroblasts. SenMayo is from Saul et 

al.19 and represents another universal senescence gene set (–log10 Bonferroni adj p value).

(B) Heatmap of a selection of significant enrichments of the 10 DEGs in Reactome 

pathways (–log10 Benjamini Hochberg adj p value, see Data S3, tab S6).
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Figure 3. Enrichment of senescence model DEGs in co-expression networks from the STARNET 
CAD cohort identify in vivo senescence-associated genes
(A) Heatmap summarizing the cross-tissue (CT) and tissue-specific (TS) modules 

significantly enriched in the senescence DEG. Fifty-six senescence-associated modules 

(SAMs, at Bonferroni adjusted p value <0.05 and fold enrichment >3) were identified. 

28.CT_LIV SAM was enriched across all DEG-SNCs including MITO and MODES gene 

sets.

(B) Effect of senescence induction on expression of a predicted key driver gene for 

28.CT_LIV SAM and COL6A3.
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(C) Chord diagram displaying predicted endocrine mediators of the SAM, 28.CT_LIV, and 

their target modules. Genes with an asterisk were also predicted key driver genes of the liver 

module.

(D) Heatmap summarizing the significance of enrichment (–log10 Benjamini Hochberg adj 

p value) for the 10 senescence DEGs in the three STARNET modules (37_SF, 219_Blood, 

and 61_Blood) that were predicted cross-tissue targets of liver COL6A3.
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Figure 4. COL6A3 is a predicted key driver gene of 28.CT_LIV SAM and a senescence-
associated gene
(A) Pathway enrichment analysis by ClueGO of 28.CT_LIV module genes and genes 

from three liver COL6A3 target modules 37.TS_SF, 219.TS_BLOOD, and 61.TS_Blood. 

Nodes (pathways) are colored according to functional groups revealed by the network 

edges connecting terms with shared genes between the terms (default setting, Kappa score 

Cytoscape, Bonferroni adj p < 0.01, KEGG, Reactome, WikiPathways, Data S3, tab S14.2). 

Node size reflects pathway term adj p value (largest p < 0.0005, middle p = 0.0005–.005, 

smallest p = 0.005–.05).
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(B) Expression by qRT-PCR of COL6A3 expression as normalized to RPLP0 showing 

~5-fold reduction in COL6A3 expression following short hairpin RNA (shRNA)-targeted 

COL6A3 knockdown in IMR90 cells. Experimental protocol is shown as inset.

(C and D) Heatmaps summarizing the significance of enrichment (–log adj p value) of DEGs 

after COL6A3 knockdown in IMR90 cells with respect to (C) senescence DEGs or (D) 

select SAMs from (A). Genes either up-, down-, or up- + downregulated were tested. A 

curated signature from Williams et al.30 included COL6A3 knockdown in myofibroblasts 

following either 4 or 6 days of perturbation was also tested in (D). Text in the heatmap in (C) 

are the fold enrichment values.
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Figure 5. Gene expression alterations following COL6A3 knockdown in IMR90 fibroblasts reveal 
role of DREAM complex in regulating senescence cell-cycle
(A) The pathways “Senescence and Authophagy and Cancer” and “Cell-Cycle” selected 

from Figure S7, which shows the full output of the pathway enrichment analysis of 

COL6A3down DEGs (logFC > |0.5|, adj p < 0.05) according to KEGG, BioPlanet, and 

WikiPathway databases by ClueGO. The gene members of pathways are colored by 

direction of change in the COL6A3 DEG gene set, where blue = downregulated and red 

= upregulated. Node size reflects pathway term adj p value (largest p < 0.0005, middle 
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p = 0.0005–.005, smallest p = 0.005–.05). Network edges connect pathway terms sharing 

common gene members.

(B) DREAM complex targets G1/S and G2/M cell-cycle genes that comprise distinct 

subgroups regulated by RB-E2F and MMB-FOXM1 as well as TP53.32 Lists of high-

confidence-ranked target gene maps for TP53, DREAM, MMB-FOXM1, and RB-E2F 

underlying cell-cycle regulation were tested for enrichment against COL6A3down DEGs (adj 

p < 0.05) with the level of significance (Bonferroni adj p value) indicated in the heatmap. 

Fold enrichment values of the Fisher’s exact test analysis are reported in the cells of the 

heatmap. A network showing the subset of the COL6A3down DEGs that are also targets 

of either DREAM, MMB-FOXM1, RB-E2F, or TP53. Edges connect the genes to their 

transcription factor, and the gene nodes are colored according to whether they were found 

up- or down-regulated with COL6A3 knockdown in IMR90 fibroblasts compared to control.
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Figure 6. Model of COL6A3 para/autocrine signaling in human liver fibroblast senescence
We identify COL6A3 as a gene with reduced expression in many of our experimental 

models of senescence. COL6A3 was predicted to be a key driver gene of 28.CT_LIV, a 

module enriched in 10/10 senescence DEGs as well as CAD GWAS genes and correlated 

with metabolic traits. Network analyses predicted liver COL6A3 as an endocrine mediator 

(SASP factor) targeting co-expression modules in subcutaneous fat and blood. We validated 

that knockdown of COL6A3 induced transcriptional changes that mimicked a majority of 

our experimental senescence models. One working hypothesis is that reduced levels of 

COL6A3 could result in autocrine effects in the liver leading to (1) reduced expression 

of cell-cycle genes that are targeted by the DREAM complex and (2) altered expression 

of SASP factors influencing fibrogenesis/fibrinolysis. Paracrine activity of COL6A3 was 

predicted to differentially modulate immune cell activity, such as IL4 and oncostatin M 

signaling in the fat and blood depots, which suggests liver COL6A3 (e.g., endotrophin) 

propagates an immune modulating signal to other tissues. Cell-cycle control, SASP genes, 

fibrosis, and inflammation are key molecular components that link COL6A3 to a potential 

role in senescence processes.
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