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Abstract

“Image-based” computational fluid dynamics (CFD) simulations provide insights into each 

patient’s hemodynamic environment. However, current standard procedures for creating CFD 

models start with manual segmentation and are time-consuming, hindering the clinical translation 

of image-based CFD simulations. This feasibility study adopts deep-learning-based image 

segmentation (hereafter referred to as Artificial Intelligence (AI) segmentation) to replace manual 

segmentation to accelerate CFD model creation. Two published convolutional neural network-

based AI methods (MIScnn and DeepMedic) were selected to perform CFD model extraction from 

three-dimensional (3D) rotational angiography data containing intracranial aneurysms.

In this study, aneurysm morphological and hemodynamic results using models generated by AI 

segmentation methods were compared with those obtained by two human users for the same 

data. Interclass coefficients (ICC), Bland-Altman plots, and Pearson’s correlation coefficients 

(PCC) were combined to assess how well AI-generated CFD models were performed. We found 
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that almost perfect agreement was obtained between the human and AI results for all eleven 

morphological and five out of eight hemodynamic parameters, while a moderate agreement was 

obtained from the remaining three hemodynamic parameters. Given this level of agreement, using 

AI segmentation to create CFD models is feasible, given more developments.
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1. Introduction

Intracranial aneurysms (IA) are pathologic, bulbous expansions of the arterial wall in 

the brain with a prevalence of 3–5%1,2. Although the risk of IA rupture is low (0.1% 

per year), mortality in patients with a ruptured IA is 45–50%, with survivors enduring 

significant neurological damage and physical or cognitive impairment3. Hemodynamic 

forces in the vasculature are known to alter vascular cell functionality and play an 

important role in destructive vascular remodeling such as IA formation, growth, and 

rupture4, motivating continued research in aneurismal hemodynamics. Recently, much 

research effort has been devoted to “image-based” computational hemodynamics5,6, which 

utilizes medical imaging data (computed tomography, digital subtraction angiography, 

magnetic resonance (MR) imaging, etc.) from individual patients to create “patient-specific” 

geometrical models and then compute hemodynamic parameters. As of now, “image-based” 

computational hemodynamics is gaining clinicians’ trust because it can produce more 

realistic gross hemodynamics compared with MR flow imaging7,8. In the last few years, 

computational hemodynamics has been utilized to predict the IA’s rupture risk. In a few 

recent studies9,10,11, when hemodynamic and morphological features were combined using 

machine learning, the prediction performance of IA’s rupture status was generally good 

(i.e.,the area under the curve [AUC] of receiving operating curve [ROC] ≈ 80%).

Recent progress has continued to motivate the translation of “image-based” computational 

hemodynamics into the clinical workflow. Recall that, in the framework of “image-based” 

computational hemodynamics5,6, “patient-specific” computational fluid dynamics (CFD) 

models are created through image segmentation, which is largely done manually and is 

a labor-intensive process (typically, > 1 hour). As clinicians do not have time in their 

schedules to manually build CFD models, manual model creation has been a roadblock 

preventing such a translation. As a result, developing an efficient software infrastructure to 

input patient-specific data and output clinically relevant (morphological and hemodynamic) 

parameters becomes a priority.

There have been some documented efforts in accelerated CFD model creation. Xiang et 
al. developed a clinical software platform12 for cerebral aneurysm flow simulation and 
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visualization known as AViewa. In the AView software, CFD models are created in a 

branch-by-branch fashion. Each vascular branch grows from seed balloons supplied by 

a user, who first selects seed balloons using a published method13. Although the above-

mentioned branch-by-branch method yielded accurate morphological parameters of IAs, 

CFD simulation results using AView were not compared with results through manual model 

creation. In another study, Seo et al. proposed a more automated method by constructing 

a level-set-based vessel “mask” for CFD model creation14. In their system, the lattice 

Boltzmann and boundary data immersion methods were combined to solve pressure and 

velocity fields. However, only calculated wall shear stresses (WSS) were qualitatively 

compared with prior studies.

It is also significant to note that the current protocol for “image-based” computational 

hemodynamics is computationally intensive and requires hours to solve. Hence, researchers 

are actively working on innovative ideas to reduce solution time. Recent studies, including 

CFDNet15 and DeepCFD16, have attempted to replace traditional CFD solvers with 

convolution neural network (CNN)-based solver models to accelerate the computing 

process. Although encouraging results have been obtained, there are many challenges 

remaining. As reported by Arzani et al.17, the current CNN-based solver models 

cannot readily handle complex boundary conditions and are only validated using simple 

benchmarks under the steady flow. Furthermore, machine-learning (ML)-based prediction 

of hemodynamic parameters is an active research field18,19,20. Yevtushenko et al. developed 

an ML-based centerline model to estimate pressure changes before and after coarctation 

of the aorta18. Fossan et al.19 trained fully-connected feed-forward neural networks (NN) 

to predict pressure losses in coronary arteries. They augmented the prediction accuracy 

with a reduced-order model. However, the performance of their ML-based model requires 

improvements since initial results are not entirely robust. Li et al. used a high-density 

point cloud structure to map CFD results onto the high-density 3D point cloud. Thus, 

after training, the predictions resolved complex fluid patterns with high resolution20. 

Interestingly, three applications all focused on pressure drop and/or fractional flow reserve 

(FFR). With the well-defined output metric, their preliminary results were promising. 

However, additional work must be carried out to investigate whether ML-based CFD 

predictors can accurately estimate time-resolved WSS and velocity in 3D when the 

vasculature is complex. In other words, the generalization of those ML-based CFD 

predictors needs to be further investigated.

In this study, our focus is to investigate whether CNN-based image segmentation can be 

used to accelerate the creation of CFD models. Results from the 2021 Cranial Aneurysm 

Detection and Analysis Challenge [CADA] indicate “recent deep learning methods delineate 

cerebral aneurysms with a DICE score around 0.9 and above”21. Given the excellent DICE 

scores, the deep-learning image segmentation model can probably be used for CFD model 

creation. However, can excellent DICE scores be directly translated into the notation that 

CNN-based image segmentation algorithms are ready to accelerate CFD model creation? 

Will we obtain similar hemodynamics results between the human- and CNN-created CFD 

a https://www.eng.buffalo.edu/Research/Hemo/AView.html 
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models? To our knowledge, those questions have not been answered, and our study is the 

first of this kind. Moreover, CNN-based CFD model creation will be useful for ML-based 

CFD prediction in complex vasculature investigated by others18,19,20 as well.

To this end, leveraging the readily available CNN-based image segmentation methods, 

our preliminary goal is to investigate whether automated CFD model creation can be 

achieved simply by the adoption of a deep-learning-based image segmentation method 

(hereafter referred to as AI segmentation methods). Our secondary objective is to 

quantitatively compare hemodynamic parameters generated through manual segmentation 

and AI segmentation. Furthermore, to improve our study’s transparency and open science 

nature, we intentionally selected imaging data from a publicly available online database 

known as AneuriskWEBb. At the publication of this study, all data and relevant compute 

codes will be made available for public disseminationc, and thus, our study is reproducible 

elsewhere.

2. Materials and Methods

From the AneuriskWEB database, all 23 cases with imaging data (in Digital Imaging and 

Communications in Medicine [DICOM] data format) were collected for this study. The 

overall workflow of our study design is shown in Fig. 1. All aneurysms were saccular 

aneurysms: 15 located at the intracranial internal carotid artery (ICA), 6 located at the 

middle cerebral artery (MCA), and 2 located at the anterior cerebral artery (ACA). In the 

next few subsections, detailed procedures pertaining to manual segmentation, CNN-based 

segmentation (hereafter referred to as AI segmentation), CFD simulations, and data analytics 

are briefly presented.

2.1. Manual Segmentation

As represented in Figure 1, initially, three-dimensional rotational angiography (3DRA) files 

in DICOM format were loaded into Mimics Innovation Suite (version 22, Materialise Inc., 

Leuven, Belgium). In Mimics software, an intensity window was first used to identify 

the vasculature, followed by manual editing to isolate the region of interest (ROI). 

The ROI was transformed into a stereolithography (STL) geometric model for further 

processing by 3-Matic software (version 14, Materialise Inc., Leuven, Belgium). In 3-Matic 

software, a first-order Laplacian smoothing filter was locally applied on the surface. Surface 

smoothing reduced local irregularities on the reconstructed vessel surfaces due to noise 

while conserving the integrity of overall vessel structures. To minimize the influence of an 

inlet plug flow boundary condition, upstream vessel structures were retained22. Cylindrical 

flow extensions with a minimum size of 6 times the vessel diameter were added to all inlets 

and outlets using the open-source Vascular Modeling Toolkit (VMTK) package (version 

1.4)23. Moreover, to manage simulation time, downstream vessels were removed. Two users 

(graduate students with 9 month’s experience in performing image-based CFD simulations) 

independently performed image segmentation and subsequent CFD simulations.

b http://ecm2.mathcs.emory.edu/aneuriskweb/index 
c https://github.com/jjiang-mtu/ 
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2.2. AI Segmentation

Two published AI segmentation packages (MIScnn24 and DeepMedic25) were selected to 

test automated image segmentation. Python implementations are available for both packages 

through Github. Brief descriptions of those two AI segmentation methods are provided 

below for the sake of completeness.

Among 23 sets of 3DRA data available to this study, 15 cases were selected for training, 

while the remaining 8 cases were used to test CFD model generation by the above-said two 

CNN models after training and by two users. Vessel labels used for training and evaluations 

of testing were generated by corroborating one human user’s manual segmentation results 

with the clinician-generated vessel geometries supplied by the AneuriskWEB project. Both 

training and testing datasets included a range of complexities: aneurysms with small 

secondary vessels, tortuous vasculature, narrow gap/spacing between an IA and its adjacent 

parent artery, and non-uniformly mixed contrast.

2.2.1. MIScnn—As shown in Fig. 2, MIScnn, a re-implementation of the well-known 

UNet model26, takes 3DRA images as input and outputs a binary mask defining the 

vasculature of interest. More specifically, MIScnn’s encoder consists of convolution and 

pooling operations to condense the input image to a set of best features. Then, the decoder 

in MIScnn (convolution, up-convolution, and softmax operations) transforms the above-

mentioned features into the vasculature of interest. Of note, skip connections (i.e., dashed 

arrows) between the encoder and decoder allow spatial information lost during the encoding 

process to be recovered. More details can be found in the original publication24.

2.2.2. DeepMedic—As illustrated in Fig. 3, also using 3DRA images as the input, the 

DeepMedic algorithm uses a different strategy to combine information at two spatial scales. 

Algorithmically, it has two parallel convolutional pathways: Converting 3DRA images 

at normal and lower resolutions into two sets of features, mainly through convolution 

operations. Those extracted features through the above-mentioned two parallel pathways 

are concentrated and input to a fully connected 3D Conditional Random Field (CRF) for 

regularization. Finally, a final 3D classification map is produced. More details can be found 

in the original publication25.

2.3. Mesh Generation

Once segmented vessel geometries became available through either manual or automated 

image segmentation (Fig. 1), a mesh-generator, TetGend(Version 1.4.2), was utilized to 

generate unstructured 3D tetrahedral meshes including five boundary layers. The mesh 

generation process was completed by a Python script originating from the VMTK (version 

1.4). Approximately 1.5 million cells were generated per case in this process, with an 

average size of around 0.0022 mm2 and an average edge length of 0.12 mm. Furthermore, a 

mesh sensitivity test was applied to verify that the outcomes of our CFD simulations were 

not sensitive to the selected mesh size.

d https://wias-berlin.de/software/tetgen/ 
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2.4. CFD Simulations

Once computer meshes became available, a commercial CFD solver (Version 21, Fluent, 

Ansys Inc., PA, USA) was used to solve Navier-stocks equations. Blood was assumed to 

be an incompressible, Newtonian fluid with a dynamic viscosity of 0.004 Pa · s and a mass 

density of 1050 kg/m327. Vessel walls were assumed to be rigid, with a no-slip boundary 

condition. A pulsatile flow (rate) waveform derived from averaged magnetic resonance flow 

measurements among healthy subjects’ internal carotid arteries (ICA)28 was first scaled to 

correspond to an average flow rate of 280 mL/min and then used as the inlet boundary 

condition. At the outlets, zero-pressure boundary conditions were prescribed during the 

CFD simulations. Four cardiac cycles were simulated at 2000 steps per period (0.0005 sec/

timestep). By selecting 2000 time steps, Courant numbers were below 1 for the above-said 

waveform. Time-resolved hemodynamic data (20-time points) were saved for the last cardiac 

cycle for further processing. The systolic or peak Reynolds numbers were approximately 

between 350 to 550 for the ICAs, similar to those reported by others.

2.5. Data Analysis

Morphological indices and hemodynamics parameters are frequently used in predicting the 

IA rupture status9,10,11. Our ultimate goal is to develop an automated (software) platform 

that can be used to assess the risk of IA rupture, and thus, it is important to assess the degree 

of agreement between calculated morphological indices and hemodynamic parameters based 

on geometries extracted either using AI or manually. So, after the completion of either 

manual or AI segmentation, customized Python scripts derived from the open-source 

VMTK package were used to process data to obtain 11 geometric parameters: Aneurysm 

Volume in mm3, aneurysm height in mm, maximum aneurysm sac width in mm (Sac Max 

Width), size ratio between aneurysm height and parent vessel diameter (Size ratio height), 

size ratio between aneurysm width and parent vessel diameter (Size ratio width), ratio 

between multiplication of the aneurysm’s height and ostium’s circumference to four times 

of aneurysm ostium area (Aspect ratio*), (parent) Vessel diameter, minimal dimension of 

aneurysm ostium (Ostium_min), maximal dimension of aneurysm ostium (Ostium_max), 

Aneurysm surface area (Aneurysm Area) and Ostium Area.

Geometries extracted using AI and by human users were used to create CFD models, 

and CFD simulations were completed following the protocols described in Section 

2.4. Eight hemodynamic parameters were calculated for each CFD model: spatially-

temporally averaged wall shear stress during systole (Systole_STAWSS), minimal wall 

shear stress during systole (Systole_WSSMin), maximal wall shear stress during systole 

(Systole_WSSMax), spatial mean oscillatory shear index (mean OSI), one standard 

deviation of the oscillatory shear index (Std_OSI), time-averaged low shear area (TA_LSA), 

one standard deviation of time-averaged low shear area (TA_LSA_Std) and temporally-

averaged degree of overlap among vortex cores during systole (Systole_TADVO).

Both geometric and hemodynamic parameters were used in a prior study, and more 

details can be found elsewhere4. In this study, the segmentation processes and subsequent 

model creation were done by four independent agents, i.e., two human users, and two AI 

methods post-training. Consequently, quantitative analyses showing degrees of agreement 
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between two different agents in terms of the above-mentioned geometric and hemodynamic 

parameters were conducted. Hereafter, such results regarding the degree of the agreement 

are referred to as user and AI results, respectively. A combination of Pearson’s correlation 

coefficient (PCC), interclass correlation coefficient (ICC)29, and Bland-Altman plot30 was 

used to assess the agreement in three categories: User1 versus User2, MIScnn versus 

DeepMedic, and an average of two users versus an average of two AI methods. As described 

above, there were two raters in each category, and we considered the rater effect, so a 

two-way mixed method seemed most appropriate. Thus, the ICC(3,2) formulation following 

the notations by Shrout and Fleiss was used31, where “3” refers to model 3 (two-way mixed 

method) and “2” refers to the fact that the mean of 2 raters was used in the calculation of 

ICC. Such a selection is consistent with suggestions in the literature32. Calculations of ICC 

(3,2) were completed using scriptse, that were implemented in MATLAB (Mathworks Inc., 

MA, USA).

3. Results

3.1. CFD Model Creation by AI Methods

The image segmentation results obtained from eight testing cases were quantitatively 

assessed, as summarized in Table 1. The averaged DICE scores showing the overlap between 

the segmented volumes and ground truth volumes were 0.88 and 0.89 for MIScnn and 

DeepMedic, respectively. Moreover, the average sensitivity values were above 0.90, while 

the average specificity values were nearly perfect. All quantitative assessments indicate that 

both AI segmentation methods performed reasonably well.

In two cases (out of eight testing cases) segmented by MIScnn, we observed unwanted 

connections between adjacent vessel segments, and manual editing was subsequently used 

to remove those unneeded connections using the 3-Matics software (version 14, Materialise 

Inc., Leuven, Belgium). Then, mesh generation was performed to generate CFD models. 

When the DeepMedic package was used, four out of eight testing cases required the above-

mentioned manual editing. Hence, the success rates for MIScnn and DeepMedic were 75% 

and 50%, respectively.

3.2. Consistency Assessments

A Pearson correlation coefficient was computed to assess the linear relationship between 

the outcomes of two independent agents. As summarized in Table 2, nearly perfect positive 

correlations among all three categories: User 1 versus User 2, MIScnn versus DeepMedic, 

and averaged user versus averaged AI, were obtained except for three hemodynamic 

parameters: Mean_OSI Std_OSI (moderate correlation) and Systole_TADVO (low positive 

correlation). The PCCs between the averaged user and averaged AI were the best among the 

above-said three categories.

Table 3 represents the degree of agreement between two different observers over 19 

parameters in three different categories. Although the degree of agreement was moderate 

e https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc 
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in three out of nineteen parameters, namely, Mean-OSI, Std-OSI and Systole-TADVO, the 

means of ICC values in all three columns were excellent.

Moreover, the Bland-Altman plot was used as an additional visual inspection to measure the 

level of agreement between outcomes of two different agents. In Fig. 4, four representative 

Bland-Altman plots for Aneurysm Volume, Ostium area, Systole-WSSmin, and Systole-

TADVO show the degree of agreement between the outcomes of two raters using a 95% 

limit of agreement. In each of the four metrics, one out of eight cases was outside the 95% 

limit when human User 1 was compared with human User 2. In contrast, only the Ostium 

area metric in one case fell outside the 95% limit when MIScnn results were compared with 

those of DeepMedic. In general, AI-based estimations resulted in narrower 95% limits in 

Aneurysm Volume and Systole-WSSMin (see Fig. 4).

It is worth noting that there were negative biases (roughly −20mm3 and −5mm2, 

respectively; see the top two right plots in Fig. 4) for both Aneurysm Volume and Ostium 

area between the averaged user and averaged AI segmentation, indicating AI segmentation 

underestimated the aneurysm size and ostium area.

4. Discussion

Our investigation started with image segmentation tasks by two human users and two 

AI segmentation methods. Based on quantitative results shown in Table 1, both MIScnn 

and DeepMedic essentially completed the segmentation process, as indicated by estimated 

average DICE scores (between 0.88 and 0.89). Furthermore, morphological parameters 

measured from IA geometries segmented by two AI methods had nearly perfect correlation 

coefficients and ICC values compared with two human users (see Tables 2 and 3). Our visual 

inspection confirmed that segmented vessel structures by two AI methods were almost the 

same as the ground truth, as shown in Supplemental Figure 1 in Supplemental Materials.

However, some minor (segmentation) errors that have not received sufficient attention in 

image segmentation literature caused significant problems for CFD model creation. Three 

examples are illustrated below. The first example is shown in Fig. 5-a, where MIScnn 

segmented vessel geometry appeared to have an overly smoothed aneurysm sac (see 

arrows). In Fig. 5-b, in the MIScnn segmented vessel geometry, the ophthalmic artery’s 

connection to the internal carotid artery was flattened out, likely due to the presence of 

image noise. Furthermore, the aneurysm apex was mistakenly connected to a downstream 

artery. Similarly, in Fig. 5-c, MIScnn segmented vessel geometry had two errors: (1) a 

missing ophthalmic artery and (2) an unwanted connection at the internal carotid artery (see 

arrows). Manual editing was required to fix unwanted connections prior to mesh generation; 

unwanted vessel connections resulted in a failure rate of 25% for MIScnn, whereas a 

flattened (Fig. 5-b) or missing (Fig. 5-b) small ophthalmic artery was not repaired for the 

subsequent CFD model generation.

Using AI-based image segmentation is in part, motivated by the goal of streamlining CFD 

model creation in the clinical workflow. Our preliminary data suggest that a good fraction 

of cases (e.g., 25% for MISCnn) require manual editing. In our initial experience, a trained 
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engineer can typically complete such manual editing within 5–10 minutes because the scope 

of the manual editing is limited, as shown in Fig. 5. However, the required manual editing 

still challenges clinicians in using computational hemodynamics.

Our data suggested that some discrepancies in the created CFD models (e.g., missing 

or imperfectly connected to a small artery) did not significantly influence hemodynamic 

parameters. As shown in Tables 2 and 3, there were almost perfect positive correlations 

and ICC values for five hemodynamic parameters, except for Mean_OSI, Std_OSI, and 

Systole_TADVO. It is interesting to note that the consistency for Mean_OSI, Std_OSI, 

and Systole_TADVO was low among the pair of human users as well. Inconsistency in 

Mean_OSI and Std_OSI is largely due to the fact that the oscillatory shear index (OSI) 

is a sensitive metric. OSI often falls into a narrow range (e.g., between 0.006–0.025), and 

small changes in the surface smoothness of a segmented aneurysm may cause relatively 

substantial changes in OSI values. Similarly, Systole-TADVO is also a sensitive metric 

related to tracking aneurysmal flow vortex cores over the systole phase because flow 

vortices are estimated using velocity derivatives33. For instance, slight modifications of 

aneurysm ostium size (i.e., critical flow pathway entering aneurysm dome) could lead 

to significant changes in Systole-TADVO. As shown in Fig. 4, on average, two AI 

segmentation methods overestimated the ostium area by 5mm2, equivalent to 20%. Further 

improving AI segmentation methods to avoid such a critical overestimation is an important 

future research topic.

It is interesting to note that, based on performance metrics that are widely used to assess 

image segmentation methods (see Table 1), DeepMedic slightly outperformed MIScnn. But 

our experience with CFD model creation suggested otherwise. We found that the MIScnn 

model performed better in (1) avoiding unwanted vessel connections and (2) reducing the 

missing small but important arteries. As shown in Fig. 2, MIScnn is a re-implementation 

of the U-Net model. Thus, in MIScnn, extracted features from five resolution levels were 

effectively combined to generate a final vessel segmentation mask. In contrast, DeepMedic 

(see Fig. 3) first combined features from two resolution levels and then used a fully-

connected layer to obtain a finalized vessel mask. In theory, the feature fusion at the five 

different resolutions, instead of at two levels in DeepMedic, allowed the MIScnn model to 

detect small vessels and avoid unwanted vessel-to-vessel or vessel-to-aneurysm connections.

To further improve the performance of CNN-based image segmentation for CFD model 

creation involving cerebral vasculature, we probably need to investigate all three aspects 

of the CNN-based image segmentation: (1) pre-processing, (2) post-processing, and (3) 

feature extraction and fusion. Many pre- and post-processing techniques surveyed in Salvi 

et al.’s review paper34 can be used to improve the outcomes of image segmentation. 

Particularly, using conditional random field (3DCRF) and 3D connected component 

optimization (3DCCO) to improve vessel connectivity while removing artifacts has been 

very popular. Referring to feature extraction and fusion, it is well recognized that 

convolution operations are local, and thus, CNN cannot learn global and long-distance 

semantic information interaction well. Thus, Attention and Transformer mechanisms have 

been popular. Particularly, the combination of a global Transformer with local low-level 

details through convolutions may be an effective way to improve the segmentation of 
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complex cerebral vasculature, including IAs. Our ongoing work is designing innovative 

CNN-based image segmentation models to improve cerebral vessel segmentation.

From the Bland-Altman plots shown in Fig. 4, the 95% limits between two AI methods 

were actually better than those between two human users for Aneurysm Volume, Systole-

WSSMin. Referring to the Systole-TADVO metric, the 95% limits were essentially the 

same between two categories: User1 versus User2 and MIScnn versus DeepMedic. Also, 

biases in all three above-mentioned parameters were nearly zero, and no outlier was 

found between the two AI segmentation methods. This observation is encouraging but still 

needs to be verified in a large study and should not be over-interpreted. Nevertheless, our 

preliminary results suggest that AI-segmentation has the potential to be used for CFD model 

creation. More technological developments must be devoted to resolving the two significant 

geometric errors mentioned above.

In this feasibility study, one limitation is that we selected only two AI segmentation 

methods, MIScnn and DeepMedic, which are two classic but different CNN-based image 

segmentation configurations. More specifically, as shown in Figs. 2 and 3, MIScnn contains 

only convolution layers, while DeepMedic concatenates a multi-resolution CNN model 

with fully-connected layers. Of note, many CNN-based vessel segmentation methods were 

designed for 2D vessel extraction (e.g., FrangiNet35) and were not considered in this study. 

In this sense, our results are encouraging because the DICE scores achieved were around 0.9 

and close to the state-of-the-art, as reported by the Medical Image Computing and Computer 

Assisted Intervention (MICCAI Society) challenge21. If newer models and deep-learning 

techniques36,37 are adopted, fine-tuned CNN-based image segmentation methods can further 

improve their performance. We also attempted to use traditional 3D image segmentation 

methods. After an extensive search followed by trials, only two semi-automatic 3D image 

segmentation methods, a level-set-based method23 and a graph-cuts-based method38, can 

be used to obtain reasonable geometries for CFD model creation. However, both methods 

require human input. For instance, the Level-Sets model requires the selection of two 

specified thresholds as the initial level sets and requires a user to place two seeds on the 

imaging data. In contrast, the Graph-Cuts method requires a user to specify the foreground 

and background seeds on the imaging data. Since we evaluate automatic image segmentation 

for CFD model creation, the level-set and graph-cuts methods were not included for 

comparison in this study.

The second limitation of this study is that only a subset of summary morphological and 

hemodynamic parameters was selected for comparison. This is largely due to the fact 

that those parameters are extensively used in conjunction with machine learning methods 

for predicting the risk of aneurysm rupture in the literature. Over 90 morphological and 

hemodynamic parameters have been reported, as summarized in a recent survey paper39. 

Hence, it isn’t easy to include all of them while keeping our presentation concise. 

Furthermore, more detailed investigations comparing spatially-distributed hemodynamic 

parameters are ongoing. Given the feasibility nature of this study, our study design is a 

good first step.
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We also recognize that only 23 data sets were used and considere this another limitation. 

Although the results are encouraging, more testing and development are needed. To 

demonstrate the repeatability of this study, upon the acceptance of our work, all source 

codes used in this study will be uploaded to Githubf along with the 23 sets of imaging data.

5. Conclusion

Our study demonstrated the feasibility of using AI segmentation methods for the creation 

of CFD models. No significant discrepancies were found between human-created and 

AI-segmented CFD models in terms of morphological and hemodynamic parameters for 

a vast majority of parameters investigated. Our observations also identified that further 

developments in AI segmentation methods need to resolve (1) unwanted vessel connections 

and (2) missing small arteries. The unmet needs motivate our ongoing work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
An overview of study design and typical computational hemodynamics workflow
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Fig. 2: 
An illustrative diagram of MIScnn architecture. The model is a standard 3D U-Net without 

any batch normalization layer or dropout layer. The Tversky loss function was used for 

training.
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Fig. 3: 
A schematic diagram showing DeepMedic’s model architecture. The model consists of two 

convolution pathways followed by two fully connected layers and one classification layer.
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Fig. 4: 
Bland-Altman plots for visualization of agreements between different raters’ outcomes in 

Aneurysm volume, Ostium area, Systole-WSSMin and Systole-TADVO. The blue dashed 

and red solid horizontal lines in each subplot represent the limits of agreement (95% 

confidence interval) and the biases, respectively.

REZAEITALESHMAHALLEH et al. Page 17

J Mech Med Biol. Author manuscript; available in PMC 2024 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Comparison segmentation results between MIScnn method (right column) and a human user 

(left column). The human user results have been corroborated with the clinicians’ results 

provided by AueuriskWEB and, therefore, can be considered as ground truth. Arrows in the 

right column point to problematic areas visible from MIScnn results, while arrows in the left 

column guide readers to view the correct segmentation results.
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Table 1:

A summary of performance assessed using DICE (overlap between the segmented volume and ground truth), 

RVE (relative volume error), Sensitivity, Specificity, HD95 (maximum Hausdorff distance between segmented 

points and ground truth set in mm), and ASSD (average symmetric surface distance between the segmented 

points and ground truth set in mm).

DICE RVE Sensitivity Specificity HD95 ASSD

MIScnn 0.88±0.06 0.16±0.15 0.90±0.11 0.998±0.004 29.3±24.5 0.16±0.15

DeepMedic 0.89±0.04 0.13±0.11 0.90±0.09 0.998±0.002 15.9±10.8 0.13±0.11
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Table 2:

A summary of estimated PCC values for geometrical and hemodynamic parameters in three categories: user 

versus user, MIScnn versus DeepMedic, and averaged user versus averaged AI. Geometrical and 

hemodynamic parameters were calculated following the workflow shown in Fig. 1 in 8 IA cases.

User 1 .vs User2 MIScnn .vs DeepMedic user .vs AI

Systole_STAWSS 0.9463 0.9475 0.9900

Systole_WSSMin 0.9188 0.9113 0.9364

Systole_WSSMax 0.8992 0.9148 0.8886

Mean_OSI 0.7838 0.4868 0.7019

Std_OSI 0.5535 0.6015 0.5911

TA_LSA 0.9621 0.9391 0.9354

TA-L_SA_Std 0.9158 0.9320 0.9206

Aneurysm Volume 0.9994 0.9999 0.9999

Aneurysm Height 0.9982 0.9872 0.9882

Sac_Max_Width 0.9993 0.9984 0.9971

Size_ratio_height 0.8545 0.9917 0.9359

Size_ratio_width 0.9702 0.9930 0.9928

AspectRatio* 0.9527 0.9688 0.9738

VesselDiameter 0.8736 0.9548 0.9795

Systole_TADVO 0.3254 0.3076 0.9123

Ostium Minimum 0.9618 0.9760 0.9293

Ostium Maximum 0.9866 0.9622 0.9902

Aneurysm Area 0.9995 0.9998 0.9996

Ostium Area 0.9923 0.9628 0.9922

Median PCC 0.9572 0.9622 0.9738

Mean PCC 0.8890 0.8860 0.9292
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Table 3:

A summary of estimated ICC values for geometrical and hemodynamic parameters in three categories: user 

versus user, MIScnn versus DeepMedic, and averaged user versus averaged AI. Geometrical and 

hemodynamic parameters were calculated following the workflow shown in Fig. 1 in 8 IA cases.

User 1 .vs User2 MIScnn .vs DeepMedic User .vs AI

Systole_STAWSS 0.9723 0.9725 0.9883

Systole_WSSMin 0.9499 0.9465 0.9090

Systole_WSSMax 0.9398 0.9047 0.9086

Mean_OSI 0.8761 0.6400 0.8055

Std_OSI 0.6978 0.7371 0.6925

TA_LSA 0.9785 0.9681 0.9655

TA_LSA_Std 0.9560 0.9643 0.9559

Aneurysm Volume 0.9996 0.9999 0.9995

Aneurysm Height 0.9997 0.9991 0.9975

Sac_Max_Width 0.9990 0.9991 0.9984

Size_ratio_height 0.9940 0.9935 0.9919

Size_ratio_width 0.9849 0.9964 0.9963

AspectRatio* 0.9714 0.9840 0.9866

VesselDiameter 0.9288 0.9768 0.9893

Systole_TADVO 0.4910 0.3791 0.9510

Ostium Minimum 0.9752 0.9691 0.9593

Ostium Maximum 0.9856 0.9753 0.9948

Aneurysm Area 0.9997 0.9998 0.9996

Ostium Area 0.9961 0.9772 0.9895

Median ICC 0.9752 0.9753 0.9883

Mean ICC 0.9313 0.9148 0.9513

J Mech Med Biol. Author manuscript; available in PMC 2024 June 10.


	Abstract
	Introduction
	Materials and Methods
	Manual Segmentation
	AI Segmentation
	MIScnn
	DeepMedic

	Mesh Generation
	CFD Simulations
	Data Analysis

	Results
	CFD Model Creation by AI Methods
	Consistency Assessments

	Discussion
	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Table 1:
	Table 2:
	Table 3:

