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Abstract 

Background  Benign paroxysmal positional vertigo (BPPV) is a prevalent form of vertigo that necessitates a skilled 
physician to diagnose by observing the nystagmus and vertigo resulting from specific changes in the patient’s 
position. In this study, we aim to explore the integration of eye movement video and position information for BPPV 
diagnosis and apply artificial intelligence (AI) methods to improve the accuracy of BPPV diagnosis.

Methods  We collected eye movement video and diagnostic data from 518 patients with BPPV who visited the hos-
pital for examination from January to March 2021 and developed a BPPV dataset. Based on the characteristics 
of the dataset, we propose a multimodal deep learning diagnostic model, which combines a video understanding 
model, self-encoder, and cross-attention mechanism structure.

Result  Our validation test on the test set showed that the average accuracy of the model reached 81.7%, demon-
strating the effectiveness of the proposed multimodal deep learning method for BPPV diagnosis. Furthermore, our 
study highlights the significance of combining head position information and eye movement information in BPPV 
diagnosis. We also found that postural and eye movement information plays a critical role in the diagnosis of BPPV, 
as demonstrated by exploring the necessity of postural information for the diagnostic model and the contribu-
tion of cross-attention mechanisms to the fusion of postural and oculomotor information. Our results underscore 
the potential of AI-based methods for improving the accuracy of BPPV diagnosis and the importance of considering 
both postural and oculomotor information in BPPV diagnosis.
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Background
In recent years, deep learning methods have been widely 
used in the field of medical image processing [1–5]. For 
the diagnosis of many types of diseases, multiple forms 
of data are often required to be considered together, such 
as textual information (clinical presentation, past medi-
cal history, blood and urine test indicators), images (MRI, 
CT, ECG, etc.), etc. Traditional deep learning methods can 

usually only input a single form of data (time series, pic-
tures, videos), which will be difficult to apply to the medical 
diagnosis that integrates many forms of data for considera-
tion. In contrast, in recent years, research on multimodal 
fusion techniques in deep learning has progressed rapidly 
[6, 7] and its application in medical diagnosis has attracted 
widespread attention [8, 9]. The difficulty of how to apply 
deep learning methods to the diagnosis of BPPV lies in 
how to combine eye movement information (video)with 
head position information (vector). Accordingly, we pro-
pose a BPPV diagnosis model based on a multimodal deep 
learning approach. In this study, we collaborated with rel-
evant hospitals to collect eye movement videos and pos-
tural information from 518 BPPV patients. We propose a 
multimodal deep learning-based BPPV diagnostic model, 
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consisting of three parts: eye movement feature extrac-
tion, postural vector encoding, and feature fusion using a 
cross-attention mechanism module. Our proposed model 
achieves good performance on our acquired BPPV dataset, 
demonstrating its effectiveness for diagnosing BPPV.

BPPV is one of the most common vestibular periph-
eral disorders. Its prevalence is high, accounting for 
approximately one quarter of clinical vertigo patients, 
with a lifetime prevalence of 2.4%, a cumulative popula-
tion prevalence of up to 10%, and a recurrence rate of 50. 
Concerning this type of disorder, the annual incidence 
rate in the population aged 60 and above is approximately 
3.4%, with a higher incidence rate in females compared 
to males [10–12]. To diagnose BPPV, nystagmus analysis 
in different positions is commonly used [11, 13, 14], and 
there have been several relevant studies in this regard. 
For example, a lateral roll test used for BPPV diagnosis 
can conveniently determine the affected ear [15]; some 
studies have found that patients, in specific test posi-
tions, undergo nystagmus in a particular direction [16]; 
and there is a BPPV-assisted diagnosis and treatment sys-
tem that transforms manual consultation into automatic 
consultation, incorporating crucial neurological otologic 
examinations such as the Dix-Hallpike maneuver and 
Roll test [17]. Given that BPPV diagnosis relies on eye-
movement videos, deep learning methods have mainly 
been applied to images, texts, and temporal sequences, 
with less research conducted on video data and even less 
on the intelligent diagnosis of BPPV. Therefore, our work 
represents the attempt to apply deep learning methods 
to the diagnosis of BPPV. In the field of video under-
standing, the use of deep learning methods has greatly 
improved model accuracy in recent years. Videos are rich 
sources of spatio-temporal information, and models need 
to effectively represent this information. The multi-input 
channel network structure in 2DCNN(Convolutional 
Neural Network), which takes spatial and temporal infor-
mation as separate inputs, has been commonly used for 
this purpose [18].

Additionally, some models directly take video data 
as input and automatically extract temporal informa-
tion using frame differences within the model [19]. 
With 3DCNN, three-dimensional convolutional kernels 
can effectively integrate spatio-temporal information, 
replacing the two-dimensional convolutional kernels of 
the 2DCNN structure [20]. By designing a two-channel 
structure, where each 3DCNN channel focuses on learn-
ing spatial and temporal information, respectively, the 
model can further improve performance [21]. To auto-
matically retrieve the optimal 3DCNN structure, a neu-
ral network search algorithm can be used in combination 

with other algorithms [22, 23]. Vit(Vision in Trans-
former) has shown significant potential in the image field 
[24], and the self-attention mechanism, which effectively 
integrates spatio-temporal information, can be a valuable 
tool for video analysis [25]. Recent studies have explored 
the potential of CNNs in feature extraction [26, 27], 
with larger convolution kernels that have larger percep-
tual fields than the typical 3x3 convolution kernels being 
especially helpful for improving model performance. In 
the context of diagnosing BPPV, eye-movement feature 
information contained in eye-movement videos is cru-
cial. To enable intelligent diagnosis of BPPV, CNNs with 
large convolution kernels that can effectively extract spa-
tio-temporal information are needed.

Multimodal learning is the capability of a model to rea-
son, learn, and understand information across different 
modalities. It achieves this by enabling the interaction 
and transformation of each modality, leading to the syn-
thesis and analysis of multiple modalities for decision-
making. The remarkable success of deep learning models 
such as CNNs and Transformers with diverse types of 
data, including images, text, and sequences, attests to 
their aptitude in comprehending multiple modalities and 
their deployment in multimodal learning [28, 29]. Feature 
fusion from different modalities is achieved through an 
encoder-decoder structure, which enables interaction for 
multimodal information integration, subsequently input-
ting to a classifier for classification [30]. Cross-atten-
tion, on the other hand, demonstrates a superior ability 
to interactively fuse multimodal feature information in 
visual language models [31], with its promising perfor-
mance in medical diagnoses such as Alzheimer’s disease 
and other illnesses [8].

Diagnosis of BPPV entails the combination of head 
position and eye movement characteristics observed 
from the eye movement video, which implies that BPPV 
diagnosis is also multimodal. By simulating the reasoning 
process of actual doctors during diagnosis, and consider-
ing the features of both eye movement and head position, 
we can achieve intelligent diagnosis of BPPV through 
multimodal learning.

Methods
Data source
In collaboration with the Second Affiliated Hospital of 
Army Medical University(Xinqiao Hospital), we col-
lected eye movement videos from the hospital’s vertigo 
clinic from January 2021 to March 2021 from 518 BPPV 
patients who came to the hospital for examination dur-
ing this period and their diagnostic findings. Also, dur-
ing the collection process, only the examination number 
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is retained and no data related to the patient’s personal 
information is collected. The study methods and data 
collection were reviewed by Xinqiao Hospital’s ethics 
committee, which waived the application for informed 
consent. The data is collected from hospitals utilizing 
BPPV diagnostic instruments. As shown in Fig.  1, the 
diagnostic instruments are equipped with two rotation 
axes - the main axis and the auxiliary axis - which allow 
the patient to be positioned at any angle. By following a 
specific test protocol, a physician can adjust the patient’s 
position and observe their eye movements to draw a 
diagnostic conclusion [12].

These cases were divided into six categories based pri-
marily on the location of the otolith in the semicircu-
lar canal: left posterior canal, right posterior canal, left 

horizontal canal, right horizontal canal, cupulolithiasis 
and cured or asymptomatic,The number of cases within 
each of these categories is shown in Table  1. We ran-
domly split the dataset into training and test sets in an 8:2 
ratio in each category.

Fig. 1  BPPV therapeutic instrument. a: operation scene. b: the treatment instrument can make the head position reach any angle and orientation 
through the cooperation of spindle and auxiliary axis

Table 1  Number of BPPV cases of each type in the dataset

BPPV Types Quantity

Left posterior canal 120

Right posterior canal 147

Left horizontal canal 52

Right horizontal canal 81

Cupulolithiasis 67

Cured or asymptomatic 51
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Preprocessing
The length of eye movement videos varies across 
patients in our dataset. Patients with cupulolithiasis 
may experience prolonged episodes of nystagmus and 
vertigo, while those with horizontal canal BPPV may 
experience shorter episodes. Consequently, physicians 
typically keep patients in a fixed position for a set period 
of time during diagnosis to observe the presence of ver-
tigo and nystagmus. However, this approach results in 
inconsistencies in the total length of observation and 
the duration of observation for specific positions, which 
compromises the uniformity of input necessary for 
model training. Additionally, the sequence of postural 
changes performed by physicians during diagnostic tests 
is standardized, with eye movements recorded for each 
posture in video format. However, in practice, physi-
cians typically only observe a subset of the postures, 
with most positions being skipped. Statistical analysis of 
our dataset revealed that the majority of patients were 

observed in a particular posture for less than 50 sec-
onds, and that the most observation time was between 
10 and 50 seconds, with fewer than six postures requir-
ing longer observation times. The shorter observation 
times, typically less than 10 seconds, include time for 
position changes and for the physician to attend to the 
patient’s comfort, and are thus unlikely to contain useful 
information. Figure  2 shows the resulting statistics. To 
address this issue, we employed a preprocessing strategy 
to standardize the input: we selected six video segments 
from postures with longer observation times totaling 48 
seconds, resulting in 1200 frames of video. After sam-
pling the video at equal intervals and selecting one frame 
out of every four, we obtained a 300-frame video. For 
postures where the video was shorter than 48 seconds, 
we inserted black images with zero pixel values to align 
the image matrix. We then combined six video segments 
to produce a total of 1800 frames of input data. Figure 3 
illustrates this approach.

Fig. 2  a: the eye-movement video statistics of each duration. b: the percentage of videos of duration 10-50s and 50s or more, excluding videos 
of duration 0-10s
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Model structure
The association between a video and its corresponding 
head position vectors in each head position can be diffi-
cult for a model to learn when the video contains six head 
positions and six head position vectors simultaneously. 
To address this challenge, we process the videos segment 
by segment and utilize a video understanding module in 
our model to output six dynamic feature vectors, each of 
which corresponds to an eye-movement video recorded 
in a specific head position. We then feed the correspond-
ing head position vectors of the six head positions to an 
Encoder to output the six head position feature vectors. 
In Fig.  4, we demonstrate that the resulting eye-move-
ment feature vectors and head position feature vectors 
are input into a cross-attention module for information 
cross-fusion, ultimately generating fused feature vec-
tors. These vectors are stitched together across various 
head positions, and a classifier is selected from a layer of 
FC(Fully Connected) layer to classify the fused feature 
vectors.

Head position vector self‑encoder
In medical diagnosis, accounting for head position is 
a crucial aspect as it describes the patient’s current 

position in terms of upright, supine, and lateral posi-
tions. To intuitively represent postural information, we 
normalize the rotation angles of the major and minor 
axes (angles in the range of (-360,360)) to form a two-
dimensional vector as the postural vector. To make the 
head position information contained in the head posi-
tion vector learnable by the model, we propose adding 
a head position vector self-encoder. The self-encoder 
abstracts the two rotation axis angles into head position 
feature vectors. The encoder part of the self-encoder 
comprises three-layer FC layers, while the decoder part 
comprises two-layer FC layers.

Moreover, we designed a pre-training task to simulate 
the direction of the human eye’s line of sight in 3D coor-
dinates for each head position during the actual diag-
nosis. We utilize the main axis and auxiliary axis angles 
as variables, and the decoder outputs its coordinates in 
the 3D Cartesian coordinate system (see equation  12). 
Finally, the mean square error between the output of the 
decoder and the actual transformed 3D Cartesian coordi-
nates is added to the final loss function as a penalty term. 
This way, the self-encoder can learn the spatial informa-
tion contained in the head position vector during the 
model training process.

Fig. 3  Video sampling process. Video clips less than 10s in length, such as the head position 2 clips in the figure, we do not use them as input, 
some clips do not reach 48s in length, we interpolate them to make their length consistent
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Eye movement feature extraction
The eye-movement video dataset of BPPV, composed 
of simple scenes, objects, and movements, presents a 
unique challenge. The patient wears a helmet during the 
detection and thus the background part of the video is 
black, with the only object being the patient’s eye. Move-
ment is restricted to the eye part, with the representation 
of the area other than the eye on the image being essen-
tially unchanged. As a result, the amount of information 
contained in this type of video is relatively sparse. How-
ever, due to the need to observe in multiple positions, 
and for some types of BPPV (e.g., Cupulolithiasis), a 
certain amount of time in a specific position is required. 
Thus, post-preprocessing, the video length is long, with 
1800 frames per case. We posit that the eye-movement 
video dataset has two distinct features: 1) the scenes are 
single and the information content is relatively sparse; 
2) the video length is long, offering a wealth of data. To 
address these features, we employ TDN(Temporal Differ-
ence Module), a lightweight video understanding model 
based on 2D convolutional neural networks, as the eye-
movement feature extraction model [19]. TDN comprises 
two modules: a short-term and a long-term module, and 
details on both modules can be found in Fig. 5a and b

The Short-term module utilizes a frame difference 
approach and extracts motion features via the residual 
network layer (ResLayer) [32] in a low-resolution archi-
tecture to minimize the number of model parameters. 
Despite being restricted to a lower resolution, this archi-
tecture does not significantly sacrifice accuracy and 

is particularly well-suited for the BPPV eye-tracking 
dataset. Although the original architecture introduces 
a downsampling process, it does not take the tempo-
ral dimension into account. As the video length of the 
BPPV eye-movement dataset is larger than most public 
datasets, valid information is mainly concentrated in the 
period before and after the occurrence of nystagmus; 
thus, the temporal dimension exhibits a sparse signal. In 
light of this, we replaced the 2D convolution operation in 
the original architecture of short-term with 3D convolu-
tion to downsample from the temporal dimension, dras-
tically reducing the computational effort. The output flow 
of short-term module is as follows:

Where Ii is the i-th frame, D(Ii) = [D−2,D−1,D1,D2] 
is the dynamic feature map obtained by frame difference 
between Ii and the two frames before and after respectively. 
The dynamic feature map is downsampled by Avgpool 
averaging and 3D convolution downsampled image format 
of the i-th frame and summed to output a spatio-temporal 
feature map with spatial and dynamic information.

From the spatial dimension, the eye region in the eye 
movement image occupies a substantial portion of the 
image, and when the eye moves, a significant part of the 

(1)O1 = Conv3D(Avgpool(D(Ii)))

(2)O2 = Conv3D(Ii)+ Upsample(O1)

(3)
Output = Reslayer(O1)+Upsample(Reslayer(O2))

Fig. 4  Model structure. In the short-term module, the convolutional kernel is a 4 ×1× 1 3D convolutional module for downsampling in the time 
dimension. In the big kernel long-term module, the large convolution kernel expands the model perceptual field and extracts eye-movement 
features
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image is altered. Utilizing large convolution kernels can 
enhance the receptive field of the convolutional layer, 
thus increasing the model’s capacity to detect the eye part 
motion. In the long-term structure, we expand the original 
3 × 3 convolutional layers into 13× 13 and 7 × 7 convolutions 
respectively, thereby improving the model’s ability to per-
ceive the eye movement region of the eye movement video. 
We name the improved long-term module as “Big kernel 
long-term module”. And for the whole TDN model, we 
named BKTDN.

(4)FT,C,H,W Conv1×1,spilt
−−−−−−−−→ F

T1,C//r,H ,W
1 , F

T2,C//r,H ,W
2

(5)DF(F1, F2) = F1 − Conv13×13(F2)

(6)M1(F1, F2) = Conv7×7(DF(F1, F2)

To obtain the long-term dynamic features, TDN splits 
the whole feature map into several segments of longer 
length, and each adjacent segment is made to differ to 
obtain the dynamic feature map between segments. As 
in Eq.  4. F is the spatio-temporal feature map output 
by the short-term module with the length of T frames 
F1, F2 is the feature map split by channel downsampling 
T ≤ T1 + T2 and T1 = T2.

(7)M2(F1, F2) = Upsample(Conv7×7(Maxpool(DF(F1, F2))))

(8)
M(F1, F2) = Sigmoid(Conv(D(F1, F2)+M1(F1, F2)+M2(F1, F2)))

(9)Output = F ⊙
1

2
(M(F1, F2)+M(F2, F1))+ F

Fig. 5  BKTDN structure. a: short-term module structure b: Big kernel long-term module structure
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Feature fusion module
The improved cross attention module based on self atten-
tion has shown good results in information fusion used 
for multimodal [33, 34]. We used the cross attention 
module for the fusion of head position information and 
eye movement information. Where Attention is calcu-
lated as follows.

Specifically, after encoding the head position vector 
and extracting features using TDN, we obtained length-
aligned head position and eye movement feature vectors. 
Inspired by LXMERT [31], we treated these two vec-
tors as Query in the Cross-attention module to enable 
information interaction fusion. To further enhance the 
internal association of the fused information, we added 
a layer of self-attention, the structure can be seen in 
Fig.  6. In the end, we included another layer of cross-
attention to achieve additional information interaction 
and improve information fusion. The calculation process 
is as follows:

where Fe, Fp refers to eye movement feature vector and 
head position feature vector, Across(Fe, Fp) refers to 
attention computation with Fq as Query and Fe as key 
and value key-value pairs. Aself  means self-attention 
computation.

Cross-attention is a powerful technique for fusing 
head position and eye movement information. In our 
subsequent experimental evaluation, we compared the 
performance of different information fusion schemes, 
and the experimental results demonstrated the supe-
rior performance of our proposed Cross-attention 
approach.

(10)Attention(Q,K ,V ) = softmax(
QKT

dk
)⊙ V

(11)Output = Across(Aself (Across(Fe , Fp)),Aself (Across(Fp , Fe))

Results
Training strategy
In order to ensure that the encoder part of the self-
encoder can learn the spatial information contained in 
the head position vector and encode it into a feature vec-
tor containing spatial information, we pre-trained the 
encoder and decoder + fine-tuned them. The pre-train-
ing task we designed is the task of simulating the orienta-
tion of the human eye’s vision, converting the principal 
and secondary axis angles, into coordinates in 3D space.

We use the synthetic vector of the two vectors, which 
we refer to as the spatial coordinates of the line-of-sight 
orientation vector, to simulate the patient’s line-of-sight 
orientation at the time of diagnosis, as shown in Fig. 7. 
The spatial coordinates of the visual orientation vector 
are determined by the main and auxiliary axis angles, as 
given by Equation. To learn the spatial information in 
the head position vector, namely the main and auxiliary 
axis angles, we trained a self-encoder using the coordi-
nates of the line-of-sight orientation vector as the output 
labels, and randomly generated 200 head position vec-
tors for pre-training. After 100 rounds of training, the 
MAE(Mean Absolute Error) of the transformation of 
the line-of-sight orientation coordinates reached 0.0066. 
Figure 8a shows the fit of the encoder output value to the 
calculated value of the coordinates. Next, we loaded the 
pre-trained model parameters into the self-encoder in 
the model for formal training.

During formal training, we used the mean square error 
of the decoder output of the self-encoder with respect to 
the eye angle orientation coordinates as the penalty term 
of the loss function, to ensure that the training direction 

(12)















x = cosφ

y = sin θ ±

�

1−cos2φ

1+tan2θ

z = cos θ ± tan θ

�

1−cos2φ

1+tan2θ

θ ,φ ∈ (−2π , 2π)

Fig. 6  Big kernel long-term module structure. Video clips less than 10s in length, such as the head position 2 clips in the figure, we do not use them 
as input, some clips do not reach 48s in length, we interpolate them to make their length consistent
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of the encoder is not shifted. Additionally, for the overall 
training of the model, we trained for 1000 rounds with a 
learning rate of = 0.01, using a cross-entropy function as 
the loss function. The variation of the loss function dur-
ing the training process is shown in Fig. 8b, which dem-
onstrates that the model converges significantly faster 
after the addition of the pre-trained encoder to the for-
mal training process.

Experimental results
To assess the individual impact of each module in our 
model on its overall performance, we conducted a series 
of separate comparison experiments. Firstly, we evalu-
ated the diagnostic accuracy of the model using unimodal 
inputs and multimodal inputs, respectively, for BPPV dis-
orders. Secondly, we investigated the feature information 
fusion component of the model’s multimodal data. To 
test the effectiveness of our cross-attention mechanism 
for feature fusion, we devised multiple feature fusion 
schemes for comparison, and evaluated their impact on 
the model’s performance. Finally, we introduced a large 
convolution kernel to adapt to the BPPV dataset, and 
assessed its impact on enhancing the model’s perfor-
mance. The experimental results are shown in Table 2.

Unimodal and Multimodal Inputs
To investigate the role of position information in 
BPPV diagnosis, we conducted a comparison experi-
ment between an unimodal input model and a mul-
timodal model. As shown in Fig.  9 we tested two types 

of unimodal input models: (1) a model with the self-
encoder removed, leaving only the attention module, and 
all cross-attention inputs changed to the eye-movement 
feature vector, which is equivalent to a self-attention 
mechanism; (2) a model with all parts related to the head 
position vector directly removed, both the self-encoder 
and cross-attention module were removed, and only the 
eye-movement feature vector was used for classification. 
We kept training parameters consistent for both uni-
modal and multimodal models and randomly initialized 
the modal parameters for five training sessions, taking 
the average of the five results on the test set for each. As 
shown in Fig. 10, the results indicate that the unimodal 
model relying solely on eye-movement video experi-
ences a sharp decrease in accuracy from 81.7% to 52.8%. 
Further removing the attention module causes a further 
decline to 39.4%. This highlights the crucial role of head 
position information in BPPV diagnosis and confirms 
the effectiveness of our model design for processing such 
information. Our model incorporates a head position 
vector self-encoder and cross-attention module for infor-
mation cross-fusion, effectively learning the spatial infor-
mation within the head position vector and incorporating 
both the oculomotor and head position features when 
making a BPPV diagnosis. These findings are consistent 
with medical principles of diagnosis and demonstrate the 
importance of incorporating position information in our 
model.

Feature fusion
In the feature fusion part of the model, we made differ-
ent attempts during our research: the eye movement 
feature vector and head position feature vector obtained 
from the eye movement video and head position vector 
in 6 different head positions were directly spliced, after 
which they were directly input to the classifier; trainable 
weights were added and the eye movement feature vec-
tor and head position feature vector were weighted and 
summed to obtain the synthetic feature vector, which 
was input to the classifier; the introduction of the cross-
attention mechanism is introduced as a feature fusion 
module, and the eye-movement feature vector and the 
head position feature vector are directly used as inputs to 
obtain the synthetic feature vector. The final experimen-
tal results show that the model performs best with the 
introduction of the cross-attention mechanism.

To investigate the necessity of the cross-attention 
mechanism for model feature information fusion, we 
conducted a comparison experiment on the cross-atten-
tion mechanism. We first changed the cross-attention 
module into a self-attention module by directly removing 
the input of the head position feature vector of the model 
cross-attention module and keeping only the input of the 

Fig. 7  Line of sight orientation vector. The virtual vector a1 
simulates the main axis, a2 simulates the auxiliary axis orientation, 
and the synthetic vector of a1, a2 simulates orientation of human eye
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eye movement feature vector (as shown in Fig.  11). In 
addition, we added the feature fusion methods taken in 
previous studies: direct splicing synthesis and weighted 
summation schemes to the comparison experiments on 
the cross-attention mechanism. First, the direct splicing 
synthesis of the two feature vectors directly removes the 
entire cross-attention module, and the model retains only 
the TDN head. TDN directly splices the eye-movement 

feature vector and the head position feature vector into 
the final FC layer. Next, we add trainable weights, the two 
feature vectors are weighted and summed, and the model 
goes through the training process to adjust the weights 
to obtain the synthetic feature vectors. The experimental 
results are shown in Fig. 12.

Comparative experimental results demonstrate that 
the inclusion of the cross-attention module is highly 

Fig. 8  a: Fit of the encoder output value to the calculated value of the coordinates b: Comparison of the change in loss value between the training 
process of the model with and without encoder pre-training
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conducive to information fusion and the construction of 
internal associations of information. Strikingly, remov-
ing the entire cross-attention module leads to a consid-
erable drop in the model’s performance by almost 10%, 
resulting in an accuracy of only 71.1% on the test set and 
73.0% in the weighted summation scheme. These findings 
underscore the significant improvement on the informa-
tion fusion ability of the model when the cross-attention 
module is incorporated. Interestingly, eliminating the 
cross-inputs of the head position feature vector and eye 
movement feature vector of the cross-attention model 
in the self-attention + splicing synthesis scheme only 

results in a minor 2% decrease in accuracy compared to 
the cross-attention scheme. However, the accuracy of the 
final result in the weighted summation scheme is signifi-
cantly boosted by 3.9% when the self-attention mecha-
nism is introduced. This suggests that the self-attention 
mechanism has a more substantial impact on the model’s 
ability to construct internal correlations of information 
and extract key information related to BPPV from the 
eye movement feature vector and head position feature 
vector.

Large convolution kernel
In recent research, it has been demonstrated that large 
convolution kernels exhibit stronger performance than 
traditional 3 × 3 convolutions in CNNs [26, 27]. Consid-
ering the significant proportion of the eye region in the 
BPPV dataset’s image area, we employ a large convolution 
kernel to replace the original convolution kernel in the 
TDN structure. This is done to leverage the larger recep-
tive field of the large convolution kernel and improve 
the TDN’s ability to extract features of eye movements. 
To verify the effectiveness of the large convolution ker-
nel design, we conduct comparison experiments between 
the large convolution TDN and the original TDN with 
all TDN structures replaced with 3 × 3 convolution ker-
nels. As shown in Fig.  13, the TDN structure replaced 
with large convolution kernels in the TDN model exhib-
its varying degrees of accuracy improvement in the test 

Table 2  Experimental results of the model on the BPPV test set

Model Input Feature fusion Accuracy

BKTDN Multimodal Cross-attention module 81.7%

BKTDN Unimodal Self-attention module 52.8%

BKTDN Unimodal Concatenate 39.4%

BKTDN Multimodal Self-attention module 79.8%

BKTDN Multimodal Concatenate 73.0%

TDN Multimodal Cross-attention 79.8%

TDN Multimodal Self-attention 75.9%

TDN Multimodal Concatenate 71.1%

BKTDN Multimodal Weighted summation 73.0%

BKTDN Multimodal Weighted summation+Self-
attention

76.9%

Fig. 9  Feature fusion part of the model under different modal inputs. Under unimodal input, the attention module is retained, and the original 
cross-attention module becomes the self-attention module; the attention module is removed and output directly after extracting 
the eye-movement features
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Fig. 10  Model performance for different modal inputs

Fig. 11  Schematic diagram of feature fusion scheme. a: Weighted summation + self-attention module feature fusion scheme b: Self-attentive 
feature fusion scheme
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set, regardless of the structure. This provides evidence 
that our large convolution kernel design is effective in 
enhancing the model’s ability to extract features of eye 
movements.

Disease classification performance
In order to comprehensively validate the superior per-
formance of the BKTDN model for BBPV diagnosis, we 
used classic time-series classification models, including 
ResNet [35], MSCNN [36], MLSTM [37], InceptionTime 
[38], and Rocket [39], as control groups. We trained these 

control networks with the same specifications as the 
BKTDN model. Training hyperparameters were set with 
1000 training epochs, a batch size of 20, and the Adam 
optimizer was chosen as the loss optimizer. The learning 
rate followed a sine decay strategy, starting at 0.01. For 
each BBPV type, 80% of the data was used for training, 
and the remaining 20% was used for testing.

Four commonly used performance metrics for model 
classification were selected as quantitative standards 
for testing results: Accuracy, Precision, Sensitivity, and 
Specificity. These metrics are calculated based on the 

Fig. 12  Comparison of the performance of different feature fusion schemes

Fig. 13  BKTDN and TDN performances comparison
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quantities of the four possible classification outcomes: 1. 
True Positive (TP): a positive example correctly predicted 
as positive; 2. True Negative (TN): a negative example 
correctly predicted as negative; 3. False Positive (FP): a 
negative example incorrectly predicted as positive; 4. 
False Negative (FN): a positive example incorrectly pre-
dicted as negative. From these four classification out-
comes, the corresponding classification performance 
metrics can be calculated.

The trained models were tested for performance on 
the test dataset, and the experimental results are shown 
in Table 3. It can be observed that BKTDN achieved the 
best classification results in the comparative experiments 
with different models. Each metric showed significant 
improvements compared to the control models, with 

(13)



















Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

Accuracy (Acc) reaching as high as 81.7%, which is 10.5% 
higher than the ResNet. This once again confirms that the 
model designed for BBPV in this paper has a strong com-
petitive edge, even when compared to these well-estab-
lished high-performance models. Additionally, in order 
to explore the performance of BKTDN across different 
BBPV disease types, We tested the diagnostic perfor-
mance of the model for each type of BPPV in the dataset 
separately for that type of BPPV. The results are shown in 
Fig.  14. After comparing the test results, we found that 
the accuracy of the test results was higher in the poste-
rior and horizontal semicircular canal BPPV, but lower 
for the cupulolithiasis type of BPPV and the healed or 
asymptomatic type.

Discussion
We have verified the indispensability of head position 
information in the diagnostic model of BPPV, as well 
as the efficacy of utilizing a large convolution kernel 
to improve model performance. Moreover, our experi-
mental results have demonstrated the superiority of 

Table 3  Performance comparison between classical models in the BBPV dataset

Models Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

ResNet 71.2 73.9 90.6 94.0

MSCNN 75.0 77.8 91.9 94.9

MLSTM 72.1 74.4 90.9 94.2

Inceptiontime 74.0 75.8 91.7 94.9

Rocket 75.0 76.7 92.0 95.0

BKTDN 81.7 82.1 94.1 96.5

Fig. 14  Performance of models in different types of diseases
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cross-attention module as a feature fusion scheme in 
the diagnostic model. However, despite our efforts, the 
classification accuracy of individual BPPV types fell 
below the desired threshold during testing, thus com-
promising the overall model performance on the given 
dataset. Through previous observation of the physi-
cian’s diagnostic process in the field and communica-
tion with the physician to understand, we believe the 
possible reasons are 

1.	 The cupulolithiasis type of BPPV usually has a longer 
period of vertigo or nystagmus during the diagnosis 
process, which is not triggered by nystagmus in some 
positions, and during the diagnosis process, the phy-
sician will repeatedly ask the patient whether he or 
she has symptoms of vertigo, but the process of ask-
ing about vertigo is not recorded, but vertigo is also 
an important basis for the diagnosis of this type of 
condition. We collected the data set at a later stage 
due to the lack of vertigo records, so we only used 
the eye movement video and head position informa-
tion as the classification basis of the model during 
the model design. And our understanding of cases of 
BPPV with cupulolithiasis is limited. We have not yet 
discussed issues related to the affected canals with 
medical professionals. Exploring this particular cat-
egory of cases will be a focus of our future research 
efforts, and it may necessitate the development of a 
dedicated classification scheme.

2.	 At the same time, for healed patients, doctors will 
also perform the steps of therapeutic reset during 
the diagnosis process, and during the reset process, 
patients may also have some symptoms of nystag-
mus, which will be recorded in the video, but when 
to start the process of therapeutic reset, these are 
also not recorded in our later collection of videos.

3.	 For patients such as cupulolithiasis, or patients cured 
in the course of treatment, the doctor’s observation 
in some positions is longer than 48s, but in order to 
ensure the input shape is consistent and to prevent 
the data volume of BPPV’s eye movement video data-
set from being too large, we only intercept the eye 
movement video in each position for a maximum 
length of 48s during the preliminary processing, 
resulting in some important information after 48s 
not being intercepted This resulted in some impor-
tant information after 48s not being captured.

Therefore, the model showed less precision and less 
accuracy for these symptoms with certain missing infor-
mation such as cupulolithiasis BPPV. The model per-
forms better for symptoms such as posterior semicircular 

canal where nystagmus symptoms are more transient and 
obvious.

Based on the aforementioned limitations and chal-
lenges, there are several avenues for future research 
that we plan to pursue. Firstly, to improve the accuracy 
of the diagnostic model for BPPV, we will explore novel 
data collection techniques that can document important 
diagnostic information such as vertigo symptoms and 
the timing of therapeutic reset. Secondly, we will inves-
tigate the use of advanced machine learning techniques 
to better capture the temporal dynamics of BPPV symp-
toms over extended periods of time, thereby enabling 
more accurate classification of individual types of BPPV. 
Thirdly, we will examine the feasibility of using a combi-
nation of different types of data, such as eye movement 
video, head position information, and audio recordings 
of physician-patient interactions, to provide a more com-
prehensive basis for the diagnosis of BPPV. Furthermore, 
based on the advice of specialized medical professionals, 
we have learned that, in order to investigate the affected 
ocular pathways, examining the rotational movement of 
the eyeballs is more critical than assessing their linear 
motion. The rotational movement of the eyeball, which 
constitutes a 3D spherical motion, involves considera-
tions related to video clarity, experimental equipment 
functionality, and extraction algorithms. This will be one 
of the directions we aim to explore in our future research 
endeavors.

Overall, we believe that these efforts will enhance our 
understanding of BPPV and improve the accuracy and 
effectiveness of diagnostic models, ultimately leading to 
better patient outcomes and improved quality of care.

Conclusion
In this study, we propose a novel multimodal diagnos-
tic model for BPPV, which combines head position and 
eye movement video data to improve the accuracy and 
effectiveness of diagnosis. Our model is based on a deep 
learning architecture that leverages both head position 
vectors and eye movement videos as inputs. To opti-
mize the model’s performance, we have made several 
enhancements to our video understanding model, TDN, 
including the introduction of a large convolutional ker-
nel to extract relevant information from eye-movement 
videos. Additionally, we have developed a head position 
vector self-encoder and pre-training method to extract 
spatial features from head position vectors and transform 
them into feature vectors containing spatial information. 
Finally, we have introduced a cross-attention mechanism 
to perform effective feature fusion of the output feature 
vectors from different modalities. Our experimental 
results demonstrate that the proposed multimodal model 
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performs best in diagnosing various types of BPPV com-
pared to other classical time-series classification mod-
els. However, due to limitations in the available dataset, 
certain critical diagnostic information was not captured, 
leading to suboptimal accuracy in some BPPV types. And 
our research on cupulolithiasis-type BPPV is not suffi-
ciently in-depth. In the experiments, we did not specify 
which semicircular canal was affected (horizontal canal, 
posterior canal, or anterior canal) and did not mention 
the affected side. Addressing these challenges will be a 
key focus of our future research efforts.
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