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Abstract

Tuberculosis (TB), primarily affecting the lungs, is caused by the bacterium Mycobacterium 
tuberculosis and poses a significant health risk. Detecting acid-fast bacilli (AFB) in stained 

samples is critical for TB diagnosis. Whole Slide (WS) Imaging allows for digitally examining 

these stained samples. However, current deep-learning approaches to analyzing large-sized whole 

slide images (WSIs) often employ patch-wise analysis, potentially missing the complex spatial 

patterns observed in the granuloma essential for accurate TB classification. To address this 

limitation, we propose an approach that models cell characteristics and interactions as a graph, 

capturing both cell-level information and the overall tissue micro-architecture. This method 

differs from the strategies in related cell graph-based works that rely on edge thresholds based 

on sparsity/density in cell graph construction, emphasizing a biologically informed threshold 

determination instead. We introduce a cell graph-based jumping knowledge neural network (CG-

JKNN) that operates on the cell graphs where the edge thresholds are selected based on the 

length of the mycobacteria’s cords and the activated macrophage nucleus’s size to reflect the 

actual biological interactions observed in the tissue. The primary process involves training a 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see 
https://creativecommons.org/licenses/by-nc-nd/4.0/

Corresponding author: Vasundhara Acharya (acharv2@rpi.edu). 

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was 
granted by the Tufts Institutional Animal Care and Use Committee (IACUC) (approved animal experiments) under Approval Nos. 
G2012-53, G2015-33, and G2018-33; and the Tufts Institutional Biosafety Committee (approved biohazardous infectious agent work) 
under Approval Nos. GRIA04, GRIA10, and GRIA17.

A. ABBREVIATIONS AND ACRONYMS
The abbreviations and acronyms used throughout the paper are tabulated in the Table 1.

ETHICS STATEMENT
Tufts Institutional Animal Care and Use Committee (IACUC) approved animal experiments under protocols G2012-53; G2015-33; 
G2018-33. Tufts Institutional Biosafety Committee approved biohazardous infectious agent work under registrations GRIA04; 
GRIA10; and GRIA17.

CONFLICTS OF INTEREST
The authors do not have any conflicts of interest to disclose.

HHS Public Access
Author manuscript
IEEE Access. Author manuscript; available in PMC 2024 March 21.

Published in final edited form as:
IEEE Access. 2024 ; 12: 17164–17194. doi:10.1109/access.2024.3359989.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Convolutional Neural Network (CNN) to segment AFBs and macrophage nuclei, followed by 

converting large (42831*41159 pixels) lung histology images into cell graphs where an activated 

macrophage nucleus/AFB represents each node within the graph and their interactions are denoted 

as edges. To enhance the interpretability of our model, we employ Integrated Gradients and 

Shapely Additive Explanations (SHAP). Our analysis incorporated a combination of 33 graph 

metrics and 20 cell morphology features. In terms of traditional machine learning models, Extreme 

Gradient Boosting (XGBoost) was the best performer, achieving an F1 score of 0.9813 and an 

Area under the Precision-Recall Curve (AUPRC) of 0.9848 on the test set. Among graph-based 

models, our CG-JKNN was the top performer, attaining an F1 score of 0.9549 and an AUPRC 

of 0.9846 on the held-out test set. The integration of graph-based and morphological features 

proved highly effective, with CG-JKNN and XGBoost showing promising results in classifying 

instances into AFB and activated macrophage nucleus. The features identified as significant by 

our models closely align with the criteria used by pathologists in practice, highlighting the clinical 

applicability of our approach. Future work will explore knowledge distillation techniques and 

graph-level classification into distinct TB progression categories.
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Acid-fast bacilli; cell graphs; convolutional neural network; granuloma; jumping knowledge 
neural network; pulmonary tuberculosis; whole slide image

I. INTRODUCTION

Tuberculosis (TB) is a contagious disease that is a significant cause of ill health and one 

of the leading causes of death worldwide. In 2022, it was diagnosed in 10.6 million human 

patients and resulted in 1.6 million deaths [1]. The infectious bacterium is the primary 

cause of pulmonary tuberculosis, which usually affects only the lungs after an airborne 

infection. Granulomas in the lung tissue are a defining feature of pulmonary TB in human 

and experimental animal models. The critical role of detecting acid-fast bacilli (AFB) in 

stained samples for TB diagnosis is a significant step in tuberculosis identification. WSI 

enables the digital examination of stained samples and allows for the analysis of tissues at a 

much higher resolution.

For many years, research on inbred laboratory mice has been instrumental in understanding 

the host reactions to Mycobacterium tuberculosis (M. tb), governed by individual cell types 

and genes. However, recently, researchers have focused on the introduction of genetically 

diverse animal models to pinpoint factors influencing lung damage from M.tb in immune-

adequate hosts and the adoption of novel techniques to discover biomarkers in line with the 

World Health Organization’s (WHO) Target Product Profiles [2]. A new population of mice 

called Diversity Outbred (DO) mice, which has a level of genetic diversity comparable to 

that of humans is used in this study.

Currently, there are few known [3] automated algorithms that can identify specific, isolated 

cells within TB granulomas, such as specific AFB or specific activated macrophage 

nucleus. Several methods are in practice for TB diagnosis. These range from plain 

microscopic smears like Ziehl-Neelsen (ZN) stain to fluorescence smears such as 
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auramine O and auramine-rhodamine stain. Molecular tests include transcription-mediated 

amplification, strand-displacement amplification, conventional PCR, and Xpert MTB/RIF. 

Other techniques include mycobacterial culture, drug susceptibility tests, histopathologic 

examinations, and immunologic tests like the tuberculin skin test (TST) and interferon-

gamma releasing assay (IGRA) [4]. The ZN stained histopathological examination, 

recognized as the standard approach, is commonly adopted for diagnosing pulmonary TB 

because of its cost-effectiveness [5].

In digital pathology, deep learning techniques have been utilized to analyze WSI to predict 

lung and prostate cancer diagnoses and detect breast cancer metastases [6]. [7]. WSIs 

present a unique computational challenge due to their immense size, often exceeding 

one gigapixel. The predominant approach in deep learning for WSIs involves extracting 

a limited number of patches, typically ranging from 32 × 32 to 224*224, to manage the 

high dimensionality [8], [9], [10], [11], [12]. This selective input method is akin to manual 

feature selection and restricts the analysis to a fraction of the available data. Existing patch-

based methods of WSI suffer from a trade-off between each image patch’s resolution and the 

available context. Working at higher resolutions enables the capture of finer cellular details, 

but it fails to capture the global tissue microenvironment. On the other hand, working at 

lower resolutions hinders access to cellular properties. Even if we could employ larger 

convolutional kernels to build Convolutional Neural Networks (CNNs) that handle larger 

images, the computational complexity of this operation would increase quadratically with 

the kernel size [13]. Another method known as a “bag of images” (a form of multi-instance 

learning) involves aggregating patch representations using autoregressive or attention-based 

methods to create a complete slide representation, disregarding regions outside of the tissue 

[14], [15], [16], [17]. However, they overlook crucial spatial relationships between patches 

by focusing on aggregated local features.

An emerging solution to fully leverage the rich information within WSIs is using cell 

graph representations that map the granuloma into a graph. However, existing methodologies 

[18], [19] for constructing cell graphs employ edge thresholding techniques, which can 

inadvertently discard vital biological information. This oversight may result in losing subtle 

yet crucial insights by producing overly sparse or dense graphs. Furthermore, the black-box 

nature of these models adds to the challenge by limiting interpretability, a critical aspect 

for domain experts who depend on transparent and actionable findings. Additionally, current 

approaches tend to simplify spatial interactions, ignoring the complexity of cellular interplay 

and thus compromising the predictive accuracy of the models.

The granuloma cell distribution is not random; instead, it is related to the underlying 

functional state. Cell graphs use graph features to mimic the interaction between different 

cells and the granuloma. We postulate that intricate spatial distribution information of the 

tissue environment is informative for predicting TB and that a graph neural network (GNN) 

model can efficiently utilize the functional patterns generated by cell graphs. A cell graph 

is constructed directly from the WSI, where the nucleus of activated macrophage and 

AFB are nodes, and graph edges are potential cellular interactions. The interactions are 

shaped using the biological context to provide a more informed representation. Our study 

introduces a Cell Graph Jumping Knowledge Neural Network (CG-JKNN) for node-level 

ACHARYA et al. Page 3

IEEE Access. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification. To construct the feature set, we extract local and global graph-level attributes 

and neighborhood overlap features. Additionally, we derive the morphological features from 

the WSI without employing downsampling. Within our proposed graph model, we use the 

ideas of ‘jumping knowledge’ [20] from GraphSAGE layers. It gathers information from 

multiple network layers, not just the last one, allowing it to capture vital insights about 

each node. This jumping knowledge is then enhanced with GATv2’s attention mechanism, 

ensuring that the model pays the right amount of attention to the most informative nodes. 

We trained a set of ML algorithms, such as Random Forest [21], XGBoost [22], LightGBM 

[23], and Extra Trees [24], using our feature sets to assess their efficacy. Our proposed graph 

model’s performance was benchmarked against other graph models, including GraphSAGE 

with various aggregators [25] and Graph Attention Networks (GATv2 and GATConv) 

[26]. To better understand the decision-making process of our model, we utilized model 

interpretation methods like Shapely values and Integrated Gradients. The significance and 

logic behind these model interpretations were later interpreted with the help of the domain 

expert.

The major contributions of this work can be summarized as follows:

• We introduced a novel approach to construct cell graphs by incorporating 

interaction threshold values based on the cord of mycobacterium and 

macrophage nucleus radius. This method enabled the creation of a biologically 

meaningful cell graph that accurately represented cell interactions.

• To the best knowledge of the authors, this is the first study to utilize local 

and global neighborhood overlap features extracted from the cell graphs for TB 

detection.

• A Graph neural network model with jumping knowledge that leveraged cell 

graphs, cell morphology features, and spatial information to achieve accurate 

node classification.

• Conducted a thorough comparison of node classification performance between 

our graph-based and traditional machine learning (ML) models.

• Conducted four ablation studies, focusing on diverse node aggregation 

techniques, combinations of features, the impact of jumping knowledge, and 

the impact of random weight initialization along with different data subsets.

• Employed model interpretation techniques, including Shapely additive 

explanation (SHAP) [27] and Integrated Gradients [28], to gain insights into the 

model’s decision-making process and collaborated closely with domain experts 

to analyze the significance and rationale behind these interpretations.

The rest of the paper is organized as follows: Section II explains the related works. The 

methodology of the proposed work is described in Section III. The evaluation criteria are 

shown in Section IV. Section V represents the classification results of the study. The results 

of model interpretation are shown in Section VI. The results of the XGBoost with top K 

features are presented under section VII. The ablation studies are shown in the Section VIII. 

Section IX presents the work’s conclusion and future directions.
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II. RELATED WORKS

Characterization of TB in Animal Models:

In tuberculosis research, using mice and other rodents has provided helpful information 

about the host’s susceptibility to M.tb infection. This knowledge has been used to know the 

pathological pathway of the bacteria once it infects a host and to create perfect tools for 

diagnosing, treating, and preventing tuberculosis [5]. Mice are commonly chosen as model 

animals for several practical reasons. These include the ready availability of immunological 

tools specifically designed for mice, the presence of genetically modified mouse strains that 

enable targeted research, and the convenient attributes of mice, such as their compact size 

and cost-effective maintenance in laboratory settings [29], [30], [31], [32]. In the literature, 

works involved designing a histological categorization system to assess the advancement 

of pulmonary lesions in TB animal models. This system involved evaluating granulomatus 

lesions and assigning numerical categories based on the number of inflammatory cells 

present and the pattern of their infiltration within the tissue [33]. In [2], they infected 

DO mice with aerosolized M.tb, resulting in a range of human-like phenotypes. After 

examining gene expression and immune responses, they measured 11 proteins in 482 

mice (453 infected, 29 non-infected). Two mouse lung biomarkers were chosen through 

exhaustive testing of various classification algorithms and biomarker combinations. Their 

effectiveness in diagnosing active TB was tested on human samples from the Foundation 

for Innovative New Diagnostics. Deep learning methods have recently gained widespread 

adoption in this field, revolutionizing the analysis of pulmonary tissues in the tuberculosis 

mouse model. CNNs were utilized in [34] to classify seven distinct pathology features found 

in pulmonary tissues of the C3HeB/FeJ tuberculosis mouse model. In [35], the authors 

employed Attention-based deep learning to identify and quantify histopathology-based 

biomarkers in M.tb infected DO mice lung tissue samples. Unlike human pathologists, the 

model could accurately measure these features, making it a powerful tool for statistical 

analysis. The authors in [36] presented a novel approach that predicted specific gene 

expression values using histopathological images, serving as an intermediary step to detect 

‘supersusceptible’ pulmonary tuberculosis in DO mice subjected to experimental infection.

Cell Graphs:

Cell graphs are a representation of the interactions between cells in the tissue. They are built 

by transforming tissue images into a graph structure, where each node represents a single 

cell, and the connections between nodes reflect possible interactions between cells. Adding 

incorrect information to graph formulations could harm the training process, highlighting 

the necessity for thorough examination [37]. The cell graph can be analyzed using various 

graph theoretical methods to extract information about the organization and behavior of cells 

in the tissue. This can be used to gain insights into cell behavior and aid in understanding 

biological processes.

Graph edges are configured to denote the potential cellular interactions. It is assumed that 

nearby cells are more likely to interact with one another. Researchers frequently construct 

graphs using Delaunay triangulation [38], [39] or the K-nearest-neighbor (KNN) approach 

[18], [19], [40], [41] to depict these interconnections. The Waxman model [42] is another 
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alternative strategy that uses exponential decay based on Euclidean distance to represent cell 

interactions.

Based on the spatial proximity of the cells, edges are formed between individual cells or 

cell clusters that create a Delaunay triangle in the Delaunay triangulation technique. On 

the other hand, the K-nearest-neighbor technique links each cell or cluster to its K-nearest 

neighbors, highlighting the local cell-cell relationships. Cell graphs have applications in 

various biology and biomedical research tasks, from modeling bone tissue to predicting 

cancer and estimating distant metastasis. In [43], the authors combined the ECM formation 

with the distribution of cells in hematoxylin and eosin (H&E) stained histopathological 

images of bone tissue samples to achieve bone tissue modeling and classification. Cell 

graphs offer insights into the heterogeneity and complexity of the tumor microenvironment 

(TME), aiding in cancer staging. A hierarchical Transformer Graph Neural Network trained 

on cell graphs was employed for the colorectal adenocarcinoma grading task in [41], 

and a novel cell-graph convolutional neural network was employed for colorectal cancer 

grading in [40]. Graphs featuring 1000-3000 cells with 2000-10,000 links determined by 

spatial proximity enabled the distinction between cancerous, healthy, and inflamed cells 

in brain cancer tissue [44]. CGSignature, an AI-powered graph neural network approach 

utilizing spatial TME patterns from mIHC images to stage TME and digitally predict 

patient survival in gastric cancer, was proposed in [45]. All the abovementioned methods 

used simple spatial information, global graph-level features, or morphology features for 

further classification or clustering. In [37], the authors introduced a framework combining 

the global image-level insights obtained from CNNs with the cell-level spatial geometry 

captured by GNNs, enhancing overall image representation. They chose the edge threshold 

based on the tissue structure, image category, and magnification of the WSI. Augmented cell 

graphs with multilayer perceptron (MLP) were employed to classify brain cancer samples 

in [46]. Cell clusters were utilized as nodes in the cell cluster graph (CCG) constructed 

in [47]. Edges in the CCG were established using a decaying probability function with 

an exponent of −α. In [48], the authors introduced the Feature Driven Local Cell Graph 

(FeDeG) for constructing cell graphs from H&E stained tissue images and derived predictive 

metrics to train a linear discriminant classifier to predict lung cancer survival. A hierarchical 

cell-to-tissue-graph (HACT) model was developed in [49] that, compared to existing models, 

closely resembled pathological diagnostic procedures and captured both cellular interactions 

and tissue morphology for detecting breast cancer. By positioning nodes in Euclidean space 

and linking them with edges where the likelihood of a link exponentially decays with their 

Euclidean distance, the Waxman model proposed in [42] created a cell graph that reflected 

the incidence of cancer or disease-related traits.

Graph Neural Network With Cell Graphs for Disease Prediction/
Classification: There have been recent advancements in using GNN to learn patterns 

from the TME [40]. The detailed spatial distribution within the TME holds valuable 

information that plays a vital role in predicting diseases. A GNN model can understand 

the intricate patterns in cell graphs, turning them into valuable insights for diagnosis 

and prognosis. In [45], the authors constructed and compared four distinct GNN model 

architectures: GCNSag, GCNTopK, GINSag, and GINTopK to achieve accurate prediction 
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of patient survival in gastric cancer. Adaptive GraphSAGE was employed in [40] to 

dynamically merge multi-scale graph features to classify colorectal cancer cases. In [50], the 

authors utilized a Graph Convolutional Network combined with Jumping Knowledge and 

GraphSAGE to distinguish between Dysplastic and normal intestinal glands. They explored 

various message-passing neural network variants, contrasting them with a traditional graph 

method using approximated graph edit distance and a K-nearest neighbors classifier. The 

authors in [41] introduced a hierarchical network to achieve the grading of colorectal 

cancer images. It integrated the GIN module with the Min-CutPool module for enhanced 

graph differentiation. Additionally, a Transformer module was incorporated to capture long-

distance dependencies. The authors in [19] introduced the CGAT network for precisely 

classifying pancreatic cancer and its precursors from immunofluorescence histology images. 

It integrated a unique self-attention mechanism at its output, enhancing interactions among 

graph nodes. This mechanism assigned weights to node embeddings, with higher-weighted 

nodes playing a more significant role in model predictions.

In existing studies, cell graph construction lacked biological context, often prioritizing 

proximity-based interactions or striving for a balance between connected-only and complete 

graphs. Additionally, they either focused on simple spatial metrics such as the X and Y 

coordinates of the cell (center of the cell) or the morphology of the cells. Furthermore, 

they used the same settings across different models and did not fine-tune the model’s 

hyperparameters for each feature set.

CT and X-Ray Imaging in Tuberculosis Diagnosis: In [51], the authors proposed a 

3D-ResNet framework based on Computed Tomography (CT) Scan images to differentiate 

nontuberculous mycobacterium lung disease (NTM-LD) from mycobacterium tuberculosis 

lung disease (MTB-LD). Using data from 301 NTM-LD and 804 MTB-LD patients, 

the model achieved AUCs of 0.90, 0.88, and 0.86 in training, validation, and testing, 

respectively, and 0.78 on an external test set. The study concluded that 3D-ResNet, 

significantly outperforming radiologists in detecting lung abnormalities, was an effective 

rapid diagnostic tool for NTM-LD and MTB-LD, offering the potential for improving 

treatment strategies. In [52], they introduced Healthcare-As-A-Service (HAAS), a novel 

cloud-based lung cancer diagnosis service utilizing HAASNet, a CNN with a 96.07% 

accuracy rate. Integrating cloud technology and the Internet of Medical Things, HAAS 

offered accurate, globally accessible lung cancer diagnostics, achieving precision, recall, and 

F1-scores of 96.47%, 95.39%, and 94.81%, respectively. In [53], the authors introduced 

a depth-enhanced 3D block-based ResNet (depth-ResNet) for classifying the severity of 

TB from CT pulmonary images, addressing challenges in small datasets and localized 

abnormalities. The depth-ResNet demonstrated superior performance with a 92.70% 

accuracy in predicting TB severity scores, outperforming the standard ResNet-50. It also 

effectively assessed high severity probabilities, achieving average accuracies of 75.88% and 

85.29% using innovative probability-based severity measures.

LungNet, a novel hybrid deep-convolutional neural network model that leveraged CT scans 

and medical IoT data to diagnose lung cancer accurately, was proposed in [54]. With its 

unique 22-layer CNN architecture, LungNet achieved a high accuracy of 96.81% and a 

low false positive rate of 3.35%, efficiently classifying lung cancer into five classes and 
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further into sub-stages 1A, 1B, 2A, and 2B with 91.6% accuracy. This advanced diagnostic 

capability positioned LungNet as a significant advancement in automatic lung cancer 

detection systems. In [55], a multiclass lung disease classification using a fine-tuned CNN 

model was proposed to identify ten different lung diseases from chest X-rays, including 

COVID-19, Tuberculosis, and Pneumonia. Initially employing eight pre-trained models like 

VGG16 and ResNet50, the VGG16 was then enhanced into LungNet22, a customized model 

achieved by adding several layers to the VGG16 model. This model achieved a notable 

accuracy of 98.89%. This approach, validated through performance metrics like ROC curves 

and AUC values, marked a significant step in efficient, reliable lung disease diagnosis 

using X-ray imaging. The works discussed here utilize CT scan and X-ray images for 

diagnosing lung diseases. CT scans are invaluable for identifying granulomas’ location, size, 

and spread. However, CT scans and X-rays, while effective for macroscopic analysis, do 

not allow for direct observation of tissues at the cellular level, such as individual cells or 

bacteria. This limitation is due to the nature of CT imaging and X-rays, which are not 

designed for cellular-level detail, unlike WSI, which offers rich microscopic information.

The summary of the works that use cell graphs for disease classification is tabulated in Table 

2.

III. METHOD

The workflow of the proposed study is presented in figure 1.

A. DATASET

Eight-week-old female DO mice, sourced from The Jackson Laboratory in Bar Harbor, 

ME, were accommodated in a Biosafety Level 3 facility at the New England Regional 

Biosafety Laboratory, part of Tufts University’s Cummings School of Veterinary Medicine 

in North Grafton, MA. These mice underwent an infection process, exposing them to 20-100 

Colony Forming Units of M.tb Erdman, utilizing the CH Technologies nose-only exposure 

technique, as cited in prior studies [57], [58]. WSI was then generated from these stained 

lung tissue samples for further analysis in our proposed method.

For this work, we used 44 WSI with an average size of 42831*41159 at 40X magnification. 

The cells in the images are divided into AFB and the nucleus of activated macrophage. The 

dataset was split into training, validation, and test sets, with 34 WSI in the training and 

validation set and 10 in the test set. Given that the focus of the study was primarily on 

infected samples, only two were uninfected, with the majority being infected. This resulted 

in more AFBs than the nucleus of activated macrophages, leading to an imbalanced dataset. 

Sample images from the dataset are shown in figure 2.

B. DETECTION AND SEGMENTATION OF NUCLEUS OF ACTIVATED MACROPHAGES 
AND AFB

The detection of M.tb, which stains positive using the modified Ziehl-Neelsen method, plays 

a crucial role in diagnosing tuberculosis. Activated macrophages are a vital component of 

the immune response to infection. A two-layer CNN was developed to detect these two 

types of cells using Aiforia Cloud version 5.1.1 from Aiforia Technologies in Helsinki, 
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Finland. The main advantage of using this platform is that the researchers can focus on 

data annotating and improving AI models’ performance without worrying about fine-tuning 

hyperparameters. The model was trained on WSI from experimental mouse tuberculosis 

infections.

The training set consisted of 18 whole slide images from the lungs of DO mice, C57BL/6J 
mice, and BALB/c mice [59]. The first layer was trained to segment the tissue in the 

WSI, while the second layer was trained to classify three different types of objects within 

the segmented tissue layer: individual AFB, clusters of AFBs, and nuclei of activated 

macrophages. The training images were manually annotated by a second-year veterinary 

student (Diana Choi, DC) under the supervision of a board-certified veterinary pathologist 

(Gillian Beamer, GB). The individual and cluster of AFBs were recognized by their dark 

red color, small size in longitudinal, oblique, or cross-sectional profiles, and intracellular 

or extracellular location. The macrophage nucleus was recognized by its relatively large 

size, “open-faced” appearance, and abundant cytoplasm. AFBs were annotated using an 

object diameter of 5μm and the nucleus of activated macrophage was annotated using an 

object diameter of 10μm. In this two-layered training approach, the first layer is designed 

to identify and remove non-relevant elements, such as artifacts and white spaces, from the 

images. The second layer is specifically trained to focus on distinguishing and excluding 

histological features that are neither acid-fast bacilli (AFBs) nor the nuclei of activated 

macrophages. The model was tested on 160 WSI. The error rate was used as a performance 

metric to evaluate the accuracy of the model’s predictions. The algorithm successfully 

detected lung tissue, the nucleus of activated macrophage, and AFBs with error rates of 

3.09%, 2.27 %, and 9.05% (when compared with ground truth annotations). Figure 3 

displays a heatmap of the regions segmented, while Figure 4 illustrates an example of a 

false positive result produced. In the rest of this article, the term ‘nuclei’ is used to refer to 

the nucleus of an activated macrophage.

1) PROCESSING OF AFB AND NUCLEUS FOR MORPHOLOGICAL FEATURE 
EXTRACTION—The OpenSlide library [60] facilitated direct access to the high-resolution 

SVS files (WSI) without downsampling. The AFB and nucleus of activated macrophage 

were extracted with dimensions (40 × 40) centered around specific coordinates in the 

input image provided by our model and then converted to grayscale. The bounding box 

dimensions were chosen based on the object detector size used in the cell detection stage. 

A series of morphological operations, including top-hat and black-hat transforms with 

structuring elements of size (3,3), were applied to enhance the grayscale image. A threshold 

value obtained using global Otsu’s threshold was used to convert the image to binary. 

Post-processing was considered in the proposed method to get an accurate region of interest. 

Morphological opening and erosion using an ellipse-shaped structuring element of size (1,1) 

were performed to remove noise and imperfections from the binary image [61].

The hole-filling operation was performed as it helps to complete regions that might have 

been missed during the previous processing steps. The distance transform was computed 

using “ndi.distance_transform_edt()”. Peak local maxima within this distance-transformed 

image were detected using “peak_local_max().”The identified peak maxima were used 

to generate a marker image by applying the “ndi.label()” [62] function, which assigns 
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unique labels to each detected maximum. Watershed segmentation was then performed on 

the distance-transformed image using the marker image as the input. This segmentation 

technique effectively separated overlapping objects and defined their clear boundaries. The 

processing quality was validated in collaboration with a domain expert, who assessed the 

results using a representative sample of images. The final image with the region of interest 

was considered for morphological feature extraction. The cell processing stages are shown in 

Figure 5.

C. CONSTRUCTION OF THE CELL GRAPH

The threshold (edge threshold) for intercellular communication plays a pivotal role in 

cellular studies, and many studies have been conducted to determine the effective distance 

threshold for intercellular communication. The inputs from pathologists can offer valuable 

insights for improving the graph representation, ensuring it accurately reflects the biological 

relationships between the cells [50].

Euclidean distance as a proximity measure is a common approach in image analysis. A 

threshold distance of 20 micrometers between cell-cell pairs was used in [45]. Any cell-cell 

pairs closer than this distance would be connected by an edge in the graph. A fixed distance 

was used in [40] to assign an edge between two nuclei. Each node’s maximum degree 

was also set to k, the number of its k-nearest neighbors. Graphs with three different edge 

thresholds, 60, 75, and 90μm, were constructed and tested to identify the suitable threshold 

value in [63]. The threshold value 75μm resulted in a densely connected graph and was 

finally opted. The likelihood of nodes being connected decreased as a function of the 

distance in [64]. The probability of two cells being linked (i.e., being grown from the same 

parent cell) was related to the distance between them. The closer the cells were to each 

other, the more likely they were linked. A slightly different approach was employed in [18] 

where a hierarchical graph was formed by first identifying individual cells in the breast 

tissue image, and a grid was used to divide the image into smaller regions. The probability 

that each region is a cluster (lobe) of cells was calculated by dividing the number of cells 

in the region by the region’s size. A threshold value was set, and regions with a probability 

more significant than this threshold were considered clusters. In [65], the threshold values 

were chosen based on nucleus-membrane ratio and cell diameter. A 10-fold cross-validation 

approach was employed to identify the threshold value between the cells in the bone tissue 

modeling [43]. The threshold ranging from 20 to 60 pixels with increments of 5 pixels was 

selected that determined the sparsity or density of the resulting graphs. Lower thresholds 

resulted in sparser graphs, and higher thresholds resulted in denser graphs with more distant 

nodes being connected [66]. In [37], the authors chose the edge threshold based on the 

tissue structure, image category, and magnification of the WSI. A dataset was developed to 

forecast microanatomical tissue structures using cell graphs derived from placenta histology 

whole slide images in [56]. The authors of this paper constructed the intersection graph by 

combining two edge-building algorithms, KNN, and Delaunay Triangulation, using a value 

of k=5. A cell graph was generated in [42] using the Waxman model with edges where the 

probability of a link exponentially decayed with their Euclidean distance.
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The cords of the M.tb infected cells are very long, reaching a length of up to 150 

micrometers after 72 hours of infection [67]. Unlike the nucleus of activated macrophages, 

which are typically spherical, AFBs exhibit a distinct shape. This non-spherical morphology 

facilitates more significant detection as the macrophages extend pseudopods to sense their 

environment [68]. The position of the cells in the tissue affected by M.tb determines which 

cells will interact with each other. Cells can extend part of their body (pseudopods) beyond 

their normal boundary (radius) to detect other cells that are farther away, allowing the 

detection range to exceed the standard limit of the cell’s radius [68].

We hypothesize that AFBs can interact with other AFBs within 150 μm [67]. It is equivalent 

to 615 pixels in the magnification of this study. The nucleus of activated macrophages can 

interact among themselves and other AFBs if they are at a distance of 200 times [68] their 

radius, which comes up to 500 μm. It is equivalent to 2049 pixels in the magnification of this 

study. These threshold values have also been reviewed and approved by our domain expert. 

As a result of these interactions, the cell graphs in our study exhibited an average of 3.2k 

nodes per graph. This number was comparable to the number of nodes per graph reported in 

[40]. The adjacency matrix can be computed as follows:

Aij
1 if Distance(u, v) < d
0 otherwise.

Distance denotes Euclidean distance computing using the equation 1. The coordinates (xu, 

yu) belongs to node ‘u’ and the coordinates (xv, yv) belons to node ‘v’ in the image.

d(u, v) = (xu − xv)2 + (yu − yv)2

(1)

The distance threshold values chosen are tabulated in the table 3.

Figure 6, (A) shows the cell graph of an uninfected case. (B) shows the cell graph of 

an infected case. The density of cell interactions is observed to be higher in cases of 

infection. This can be attributed to the presence of granulomas in the infected lung tissues, 

which are absent in uninfected lung tissue samples. This difference in the number of cell 

interactions between the two cases can be used as a diagnostic marker for infection or 

disease progression, and it also provides insight into the underlying mechanisms of the 

disease. Figure 7 presents the cell graphs overlaid on the WSI.

D. ARCHITECTURE OF CELL GRAPH NETWORK

A graph is defined as G = (V, E), where V denotes the set of nodes. Each node v is 

associated with a d-dimensional feature vector xv ∈ ℝd. Edges are denoted as E where eu,v = 

(u, v) ∈ E signifies the presence of an edge between nodes u and v. The adjacency matrix 

A ∈ ℝn × n represents the graph. Let ℎv
(l) ∈ ℝd denote the hidden features of node v in the l-th 

layer of a neural network. We initialize the input layer as ℎv
(0) = xv, meaning the initial hidden 

features in the network equal the node features for the input layer.
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In the proposed CG-JKNN, we use GraphSAGE to learn the nodes’ hidden representation. 

Each GraphSAGE layer processes the predefined aggregation function (in this case, 

‘mean’ aggregation) to gather information from neighboring nodes. The mean aggregation 

computes the average of neighboring node representations. After processing through each 

layer with mean aggregation, the model combines the multi-level node representations by 

concatenating them. The neighborhood aggregation step is written as eq. 2 and combining 

step is demonstrated in eq. 3.

hN(v)
(l) = MEAN hu

(l − 1), ∀u ∈ N(v)

(2)

where ℎN(v)
(l)  represents the aggregated representation of the neighborhood N(v) for node v at 

layer l. ℎu
(l − 1) represents the representation of neighboring node u at the previous layer (l − 1).

hv
(l) = σ W ⋅ hv

(l − 1), hN(v)
(l)

(3)

where ℎv
(1) represents the updated representation of node v at layer l. ℎN(v)

(l)  represents the 

aggregated neighborhood representation for node v at layer l, which was computed in the 

neighborhood aggregation step. W represents a learnable weight matrix that is applied to the 

concatenated representations of ℎv
(l − 1) and ℎN(v)

(l) .

The “jumping knowledge representation learning” was introduced in [20]. This approach 

allows a model to aggregate information from all hidden layers, not just the final layer. 

This can lead to a more comprehensive node representation that captures local and global 

graph structures. The authors in [20] experimented with three aggregation mechanisms: 

concatenation, max-pooling, and an LSTM-attention mechanism.

We incorporate a concatenation-based jumping knowledge mechanism into our network. 

Figure 8 depicts the overall architecture, and Figure 9 illustrates the concept of the jumping 

knowledge. Like typical neighborhood aggregation networks, each layer expands the range 

of influence by gathering information from neighborhoods in the previous layer [20]. At 

the last layer, for each node, we select all the intermediate representations from layers 

1 to layer l-1 (total ‘l’ layers) representations which “jump” to the last layer. The total 

number of layers varies based on the feature set. The final hidden representation of a 

node is obtained by concatenating its hidden representations from each GraphSAGE layer. 

Specifically, after each layer, we store the intermediate node representations. At the end of 

the network’s forward pass, these stored representations for a specific node from all layers 

are concatenated to produce the node’s comprehensive and final hidden representation. Eq 4 

represents the concatenation. This aggregation mechanism optimizes the weights to combine 

subgraph features in a manner that is most suitable for the dataset as a whole rather than 

being node-adaptive. We do not incorporate the max readout operation [40], [41] used for 

graph-level classification tasks, as our focus is on node-level classification. After obtaining 

the hidden representation through concatenation, these concatenated features are then fed 
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into the GATv2 layer [69]. This layer further refines the node representations by leveraging 

attention mechanisms.

hv
(Concatenated) = Concatenate hv

(1), …, hv
(l)

(4)

As shown in eq. 5, for a node v and its neighboring node u, the attention mechanism can be 

expressed to capture the importance of node u to node v.

αvu = softmaxu LeakyReLU aT W hv
(Concatenated)

‖W hu
(Concatenated)

(5)

Here, a is the attention mechanism’s weight vector, and W is a weight matrix transforming 

the concatenated node representations. The updated node representation is obtained using 

eq.6.

hv
(GAT ) = σ ∑

u ⊂ N(v)
αvuW hu

(Concatenated)

(6)

where N(v) denotes the neighbors of node v, and σ is the activation function. We use a 

rectified linear unit (ReLU) as the activation function. We finally apply the softmax function 

to the output to obtain the node-level predictions.

Over-Smoothing Problem: Over-smoothing has been consistently identified as a 

significant challenge in the GNNs, as reported in numerous works in the existing literature 

[40], [70], [71], [72], [73], [74]. Over-smoothing occurs when deep graph convolutional 

networks utilize too many layers, causing nodes to lose their original input characteristics 

and making training difficult.

Several techniques exist aimed at mitigating over-smoothing issues in GNNs. Energetic 

Graph Neural Networks introduce energy-based modeling [75], while Graph DropConnect 

adds graph-specific dropout [76].

Graph-coupled oscillator Networks use non-linear oscillators coupled through the graph to 

change GNN dynamics [77]. Additionally, adding residual connections in deep GNNs aids 

information flow and mitigates oversmoothing [78]. The DropEdge approach employed in 

this study addresses both issues by selectively removing edges during training, enhancing 

model performance, and avoiding over-smoothing. It also consistently leads to performance 

improvements in various GCNs, whether they are shallow or deep [79]. During each training 

epoch, the DropEdge technique simulates edge dropout in the input graph by randomly 

removing a proportion ‘p’ of edges from the adjacency matrix [79]. ‘A_drop’ signifies the 

resulting matrix, ‘A’ is the original matrix, and ‘A0’ is a primarily empty matrix with some 
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extra connections randomly chosen from the initial set of connections represented by ‘E’. 

‘Vp’ denotes the number of additional connections selected randomly from ‘E’ to expand 

the sparse matrix ‘A0’. The approach is as follows:

Adrop = A − A0

(7)

V is the total number of edges, and p is the dropping rate. We conducted experiments 

using a range of probability values, spanning from 0.1 to 0.9, and finally chose p = 0.1 for 

our overall experiment. In the proposed work, we utilize the edge index representation to 

represent the connections in the graph.

E. FEATURE EXTRACTION

GNN is a deep learning model designed explicitly for graph-structured data. It can 

effectively capture the complex relationships between nodes in a graph and learn valuable 

representations that can be used for various graph-related tasks. Many research papers [18], 

[40], [43], [45], [50], [64] in this domain have focused on using morphological features or 

graph features or simple spatial information. In contrast, our paper takes a unique approach 

by not only extracting a wide range of graph-based features (including both local and 

global neighborhood overlap metrics) but also incorporating various morphological features. 

The neighborhood overlap features prove valuable as they address the gap created by the 

limitations of node and graph level features in capturing relationships between neighboring 

nodes [80]. Table 4 and 5 list the features and descriptions. The features are scaled using 

the standard scaler (due to the wide variation between feature values) before training the 

graph-based models. It helps to ensure that all features are on a similar scale and can help 

reduce outliers’ impact [81]. There is an argument that handcrafted features are less effective 

than learned features, such as CNN features, and CNN-based methods can obtain more 

comprehensive morphological information [41]. Given the limited size of our dataset, we 

decided to utilize handcrafted morphology features.

IV. EVALUATION CRITERIA

To evaluate the performance of the model, accuracy, AUPRC, and F1-score are calculated 

for each set (training set, validation set, and test set), respectively. F1-score represents the 

harmonic mean of precision and recall. It is a valuable metric for evaluating the performance 

of a model on an imbalanced dataset. Accuracy measures how well a model can predict the 

correct output. It is defined as the number of accurate predictions the model makes divided 

by the total number of predictions made. In this particular scenario, it measures the model’s 

correctness in class label identification as either the nucleus of activated macrophage or 

AFB.

The F1-score is computed using the equation 8. The accuracy is obtained using equation 9. 

AUPRC is particularly well suited for datasets with class imbalances because it thoroughly 

evaluates the trade-off between accuracy and recall [82], [83]. In our study, the minority 

class (nucleus of activated macrophage) is also of more interest as its detection will help 
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identify if the sample is infected/uninfected. The computation is described in the equation 

10. In this paper, we have chosen to show the AUPRC achieved on the test set, as it serves as 

an apt metric to evaluate our model’s performance on an unseen imbalanced dataset.

F1score = 2
1

Recall + 1
Precision

(8)

Accuracy = (TP + TN)/(TP + TN + FP + FN)

(9)

where TP denotes True positives and TN denotes True Negatives.

AUPRC = ∫
0

1
p(r)dr

(10)

where p(r) is the precision at recall r.

A. EXPERIMENTAL SETUP

We implemented the models using the PyTorch framework [84] and ran them on one 

NVIDIA A100 GPU. Ensuring a systematic and fair comparison requires the optimization 

of hyperparameters for every model and test problem individually [85]. In contrast to prior 

literature [40], [41], which utilized the same hyperparameters across all models and feature 

sets, we performed hyperparameter tuning individually for each of the morphology and 

graph features across all models. However, we employed the Adam optimizer for training 

all our models and trained them for 50 epochs. We set the batch size to 10. The Adam 

optimizer is chosen because of its adjustable learning rates and effectiveness in obtaining 

quicker convergence and stability in several deep learning tasks. The Adam optimizer has 

also been used in [37], [40], and [56], further demonstrating its efficacy. Additionally, we 

employed the cross-entropy loss as our objective function.

The hyperparameters for the GNN models are chosen with the assistance of Optuna [86], 

a Python library for hyperparameter optimization. We ran 100 trials to optimize the model 

hyperparameters to achieve the highest F1 score on the validation set.

In the architecture of our CG-JKNN model, the number of GraphSAGE layers was carefully 

determined through extensive hyperparameter tuning using Optuna. We explored layer 

counts ranging from 1 to 10. While using morphology and combined features, we employed 

3 GraphSAGE layers. This decision was based on maximizing the validation F1 score. 

Specifically, when utilizing graph features, the CG-JKNN comprised 4 GraphSAGE layers. 

Importantly, we emphasize that the test set was not involved in this decision-making process. 

All decisions regarding the number of GraphSAGE layers were based solely on the model’s 

performance on the validation set, ensuring the integrity and generalizability of our results.
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The performance on the test set was then evaluated using the best hyperparameters from 

these trials. Similarly, the Hyperopt [87] was employed for hyperparameter tuning of ML 

models.

V. RESULTS

A. DECISION ON NOT PRUNING CELL GRAPHS

The pruning of cell graphs in computational pathology involves selectively removing certain 

elements, such as edges or nodes, from the graph to simplify the structure and reduce 

computational complexity. Typically, there are two primary approaches to pruning:

• Edge threshold selection: In this approach, as proposed in [18] and [43], the edge 

threshold is varied to determine the optimal connectivity that balances graph 

density and performance. It involves experimenting with different threshold 

values and assessing their impact on classification accuracy.

• Cell sampling techniques: Strategies such as random or farthest point sampling 

are implemented to reduce the number of cells/nodes in the graph as proposed 

in [40]. It assumes that certain cells carry redundant information and that a 

representative subset can maintain overall interpretability and accuracy.

In our study, we chose a specific edge threshold guided by domain expertise and supported 

by relevant literature [67], [68], mainly focusing on the cord of mycobacterium and the 

macrophage nucleus radius. This decision was made based on the recommendations of Dr. 

Gillian Beamer, a veterinary pathologist and a research scientist specializing in tuberculosis. 

Dr. Beamer emphasized that each AFB and macrophage nucleus carries unique information, 

and their connectivity is crucial to our analysis, making it imperative to include all of 

them in our cell graphs. Given the domain expert guidance and the unique nature of our 

study’s focus on mycobacterium, we decided not to prune the cell graphs through either 

of the approaches above. Pruning the cell graphs for our study would lead to the loss of 

valuable information that each cell contributes to, potentially impacting the performance of 

our models.

B. COMPARISON WITH OTHER MODELS

To demonstrate the effectiveness of our proposed graph model for node classification, 

we conducted a comparative analysis against the latest state-of-the-art techniques. We 

trained various state-of-the-art graph models on this dataset, including GraphSAGE with 

mean aggregator and max aggregator, GATv2, and GATConv. In this work, we employed 

the GraphSAGE-based model incorporating the SAGEConv layer. This SageConv variant 

improves upon the standard GraphSAGE by enhancing its expressive power and information 

capture capabilities. It offers degree-normalized aggregation skip connections for improved 

training stability and computational efficiency. Subsequently, we systematically compared 

the performance of these benchmark models against our proposed model.

We also carried out experiments with ML models, including Random Forest, XGBoost, 

LightGBM, and Extra Trees. The ML models were used in two ways:
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• Evaluation and Assessing Feature Set Efficacy: We used Random Forest, 

XGBoost, LightGBM, and Extra Trees to evaluate the feature sets derived from 

cell morphology and graphs. These ML models were trained exclusively on these 

feature sets without incorporating cell graph structure, unlike our GNN models, 

which integrated the cell graph structure with the features. The performance of 

these ML models with our derived feature sets was compared against that of 

our GNN models. This approach helped us evaluate the effectiveness of these 

features across different modeling techniques.

• Feature Agreement Analysis: We analyzed the agreement in feature selection 

(as mentioned under the section VI) between the traditional ML models and 

our CG-JKNN model. This comparison was performed to validate the relevance 

of the features identified by our graph-based approach against the insights of 

domain experts.

We could not evaluate the efficacy of our model using the CRC/extended CRC dataset (for 

colorectal cancer) used in [40] and [41] as our model is specifically designed for node-level 

classification, rather than the graph-level classification required by this dataset.

C. CLASSIFICATION RESULTS

The performance of the ML models with different feature sets is tabulated in the table 6 and 

7. These tables showcase the evaluation metrics associated with the best split. ‘Best split’ 

refers to the specific combination of train-test-validation sets that yielded the optimal results.

Figure 10 illustrates the AUPRC achieved by ML models on the test set. The XGBoost 

model, when utilizing graph-based features, achieved an F1 score of 0.9734 on the test set. 

Random Forest achieved a test F1 score of 0.9586. LightGBM, with a test F1 score of 0.937, 

also demonstrated considerable effectiveness. Extra Trees showed a test F1 score of 0.9025.

However, when only morphology features were used, the F1 score attained by XGBoost was 

0.829. Random Forest achieved a test F1 score of 0.7901. LightGBM showed a competitive 

performance with a test F1 score of 0.822. Extra Trees obtained a test F1 score of 0.773. 

While this is the lowest among the models chosen, it still represents a decent level of 

performance. Feature scaling was omitted in our approach for ML models, as these models 

are tree-based and inherently robust to scaling [88]. In developing our GNN models, we 

employed the Standard Scaler technique [81] for feature scaling, as GNN models require 

scaled features to ensure that each input feature contributes proportionately to the model’s 

learning process [40].

Table 8 and 9 show the results of the graph-based models averaged over three trials. Figure 

11 illustrates the AUPRC achieved by graph models on the test set. The results show that 

the proposed CG-JKNN outperforms the other graph models by achieving a test F1 score of 

0.8713 by utilizing morphology features and an F1 score of 0.9157 by using the graph-based 

features. However, we also observe that the graph-based models, including CG-JKNN, 

do not outperform the ML models, and we attribute this primarily to the limited dataset 

size. Despite fine-tuning each model for various feature sets, we notice that graph models 

typically require larger datasets to learn effectively.
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The introduction of the CG-JKNN model in our study presents new avenues for potential 

research. The performance of GNN models can be significantly enhanced through 

knowledge distillation [88], [89]. This process could enable the GNN models to require 

even fewer parameters than XGBoost while delivering comparable performance. The 

preliminary experiments we conducted that were aimed at exploring the potential of 

knowledge distillation with CG-JKNN as a teacher model to enhance the performance of 

GNN models are showing promising results. This is part of our ongoing research, and 

the results of these experiments are not included in this paper. In particular, models like 

GATv2 show performance levels comparable to XGBoost, requiring significantly fewer 

parameters. Additionally, GNNs have inherent advantages in explainability, making them 

valuable interpretive analysis tools. This aspect is further supported by the feature attribution 

results of our proposed graph model, which show a high degree of agreement with both the 

outcomes of the XGBoost model and the insights provided by domain experts, as detailed in 

section VI. Additionally, including GNN models such as CG-JKNN in our study, alongside 

traditional models such as XGBoost, allowed us to compare how each model identifies 

essential features. This comparison enhances our knowledge of the distinct strengths of each 

model. It also highlighted the capability of GNNs to provide insights consistent with expert 

evaluations, demonstrating their practical value in analytical tasks.

VI. MODEL INTERPRETATION AND DOMAIN EXPERT ANALYSIS

The construction of the graph is task-specific and significantly depends on domain 

knowledge. Therefore, a thorough evaluation is necessary to identify how much the 

geometric data affects the prediction tasks [37]. A comprehensive analysis was conducted 

using established model interpretation techniques to understand the influence of geometric 

(spatial) data and other features on the predictions. The SHAP method was employed for 

the machine learning models, whereas the integrated gradient technique was utilized for 

the graph-based models. These interpretative tools facilitate the identification of features 

that drive the predictive outcomes of the models. Additionally, the outcomes of these 

analyses were subjected to discussion and validation by domain experts to ensure the results' 

robustness and validity. The results of the SHAP summary plots to interpret the extent of 

each feature’s influence over the predictions are shown in the figure 13 and 14. These plots 

allowed us to identify which specific features substantially impact our model’s predictions. 

This section will focus on the models that demonstrated the best performance, namely 

XGBoost and CG-JKNN. As shown in figure 13, AFBs have a higher hub-promoted index 

than nuclei in the network; it indicates that the node representing AFB is connected to other 

nodes with a higher degree or number of connections.

The domain expert concurred with this observation as the bacteria’s ability to move around 

is contingent upon the host cell’s interaction with them. AFBs also have higher values for 

the closeness of nodes. This means that a node representing AFB plays a significant role 

in connecting different network parts and acts as a hub. This higher hub-promoted index 

suggests that the node denoting AFB strongly influences the overall network structure and 

information flow. According to the domain expert, it resonates with the biological context 

as the host’s inflammatory responses and immune system are triggered by the presence of 

the bacteria. We also see a higher node clustering coefficient for the node denoting AFB. 
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It implies that the neighboring nodes of the node representing AFB are more likely to 

be connected, forming local clusters or communities. This can indicate a higher level of 

interconnectivity and cohesive structure around this node. They also have lower eccentricity 

values, suggesting that AFBs are more localized or closely connected within their immediate 

neighborhood or cluster of cells. This might align well with reality as the clusters of bacteria 

tend to replicate themselves. Their interactions with the host cell or granuloma environment 

are also local.

As shown in the figure 14, higher values of the contrast and lower values of circularity 

and area correspond to AFB. According to the expert, AFB exhibits distinct transitions or 

boundaries between different texture regions. This might be related to the unique cell wall 

properties of AFBs, which create sharp intensity transitions within the cells and give them 

well-defined edges or structures. The staining procedure involves using a red dye for AFB 

and a blue color for the other tissue. This might be the cause for higher GLCM contrast 

for the AFB. They are also smaller than the nucleus of activated macrophages and possess 

a rod shape compared to the disk-shaped nucleus. Pathologists also recognize AFB and 

macrophage nucleus with the help of circularity and size. AFBs tend to have higher values 

of variance. Bacterial cells have outer walls that surround them. These walls are made up of 

various molecules and structures. When we use a staining process to color the bacteria in an 

image, these walls can react differently to the staining. Some bacteria might have walls that 

absorb colors more efficiently, while others might absorb less colors. Bacteria with varying 

levels of absorbed red color will show higher variations in pixel intensities. This is because 

some parts of the bacteria will be intensely colored due to more absorbed color, while others 

will have lower pixel values due to less absorbed color.

Pathologists also rely on the chromatic pattern of the nucleus as a diagnostic indicator. 

GLCM features can potentially assess alterations in the pattern of nuclear chromatin [89], 

[90], [91]. The nucleus of the activated macrophage exhibited a lower energy value in its 

GLCM analysis. This lower energy value indicates that the texture patterns within this 

nucleus are characterized by non-uniformity, suggesting variations and irregularities in its 

structure. As per the insights from domain experts, the nucleus showcases a range of 

chromatin patterns with dense and sparse configurations. Figure 12 shows an example of 

both the patterns. Lower energy values can be attributed to the nature of the chromatin 

pattern. However, it is worth noting that domain experts consider the nuclear chromatin 

pattern as a final step for distinguishing between macrophage nucleus and AFB. Their initial 

approach involves assessing circularity, size, and color as primary factors for differentiation.

Figure 15 illustrates the integrated gradient feature attribution results of morphology features 

using different graph models. The results of our proposed graph model exhibit a high degree 

of agreement with both the XGBoost model and the domain expert’s insights. Specifically, 

for class AFB, the feature attribution analysis reveals that the model assigns negative 

scores to perimeter and homogeneity while assigning a positive score to variance. These 

findings closely align with the domain expert’s qualitative analysis, confirming the model’s 

interpretability. Additionally, there is a strong inverse correlation between homogeneity and 

contrast [92]. This implies that instances belonging to class AFB tend to exhibit higher 

contrast. This observation aligns with the practices of domain experts who frequently rely 
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on assessing contrast as a critical feature during their analytical processes. Similarly, for 

the instances within the class macrophage nucleus, our feature attribution analysis shows 

that a negative score is allocated to eccentricity, indicating that nuclei tend to have lower 

eccentricity values, implying a more circular or less elongated shape. The nucleus also 

has a higher homogeneity score than AFB, suggesting lower contrast. Furthermore, the 

negative score assigned to the variance indicates that the nucleus consistently and uniformly 

absorbs the stain. Figure 16 illustrates graph features’ integrated gradient feature attribution 

results using different graph models. CG-JKNN agrees with XGBoost for the AFB class, 

demonstrating a higher score for features such as the mean of all neighbors and node 

closeness and a lower score for the hub-depressed index. In contrast, for detecting nucleus, 

CG-JKNN assigns a lower score for the hub-promoted index, node closeness, and node 

clustering but a higher score for the hub-depressed index. The model interpretation results 

highlight how closely the models align with the insights of domain experts.

VII. RESULTS OF XGBOOST MODEL (TOP PERFORMING MODEL) WITH 

TOP K GRAPH AND MORPHOLOGY FEATURES

We trained the XGBoost model by gradually adding features based on their importance from 

a SHAP plot (Features are sorted in descending order by Shapley values). We started with 

the most important feature, then added the next one, and so on, until we included the top 11 

features. When we added a new feature for each step, we trained the model again. At every 

step, we checked how well the model did by looking at the accuracy, F1 score, and AUPRC 

on the test set. This experiment was conducted with morphology and graph-based features.

The table 10 presents the performance of the XGBoost model as it sequentially incorporates 

the top K morphology features identified from a SHAP analysis. As more features are added 

(increasing K value), there is a general trend of improvement across all three metrics. This 

suggests that each additional feature provides new information that helps the model make 

better predictions. The F1 score also shows an upward trend. It starts at 0.65 for K=1 and 

goes up to 0.82 for K=11. The AUPRC value starts at 0.71 and increases to 0.8565. Figure 

17 shows the performance plot with morphology features.

The table 11 presents the performance of the XGBoost model as it sequentially incorporates 

the top K graph features identified from a SHAP analysis. As more features are added 

(increasing K value), there is an improvement across all three metrics (similar to 

morphology features). Figure 18 shows the performance plot with graph features.

While the XGBoost model trained with the top 11 SHAP-selected features shows promising 

results, it is essential to note that there is a slight decrease in performance when compared 

to the model trained with all features. Specifically, the model with all features (as seen from 

the table 7) achieves a test accuracy of 86.8%, a test F1 score of 0.829, and a test AUPRC 

of 0.8654. In contrast, the model with the top 11 features achieves a test accuracy of 86.5%, 

an F1 score of 0.82, and an AUPRC of 0.856. However, the reduced model with 11 features 

still performs quite close to the full model, which speaks to the effectiveness of SHAP-based 

feature selection.
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Next, when we utilized the full suite of graph features, it resulted in a test accuracy of 

97.77%, an F1 score of 0.9734, and an AUPRC of 0.9797, as seen in Table 6. Upon applying 

feature selection to our XGBoost model and choosing the top 11 features indicated by the 

SHAP plot, there was a slight decrease in performance compared to using all features. The 

test accuracy decreased from 97.77% to 94.95%, the F1 score from 0.9734 to 0.9390, and 

the AUPRC from 0.9797 to 0.9525.

The table detailing the mean and standard deviation of the top K morphology features, as 

identified by the SHAP analysis, for both AFB and macrophage nucleus samples are shown 

in table 14. For the ‘Contrast’ feature, our data table indicates that the AFB has a higher 

mean value (on average, samples classified as AFB tend to have a greater ‘Contrast’ value) 

than the macrophage nucleus. Looking at the SHAP plot, we find that higher ‘Contrast’ 

values (indicated by the red color) are more associated with the AFB. Feature ‘Dissimilarity’ 

has a higher mean value for the macrophage nucleus, which is consistent with the SHAP 

plot’s indication that higher values of ‘Dissimilarity’ are influential in predicting the 

macrophage nucleus. Upon analyzing the ‘Homogeneity’ feature, we observe a relatively 

small difference in mean values between the AFB and macrophage nucleus. This is also 

reflected in the SHAP analysis, where ‘Homogeneity’ demonstrates lower importance than 

other features. The more minor mean difference suggests that ‘Homogeneity’ is not critical 

in distinguishing between the two classes.

The table detailing the mean and standard deviation of the top K graph features identified 

by the SHAP analysis for both AFB and macrophage nucleus samples is shown in Table 

12. For the ‘Hub Promoted’ feature, our data table indicates that the AFB has a higher 

mean value than the macrophage nucleus. When we look at the SHAP plot, we find that 

higher ‘Hub Promoted’ values (indicated in red) are more associated with the class AFB. 

For the AFB, the ‘Sorenson’ feature has a mean of approximately 59.55 and a standard 

deviation of about 61.24. For the macrophage nucleus, the mean is significantly higher 

at 95.15, with a standard deviation of approximately 71.56, which is consistent with the 

SHAP plot’s indication that higher values of ‘Sorenson’ are influential in predicting the 

macrophage nucleus. The ‘Global_Overlap’ feature, as observed in our dataset, exhibits 

minimal differences in its mean values between the AFB and macrophage nucleus. The 

feature ‘Global_Overlap’, as seen from our statistics table, does not vary significantly 

between the two classes. Corroborating this, the SHAP feature importance plot places 

‘Global_Overlap’ at the lower end of the spectrum, indicating its relatively minor role in 

influencing the model’s predictions compared to other features.

Also, it is essential to differentiate between the variability of a feature’s influence on model 

predictions, as illustrated by the spread of SHAP values, and the dispersion of the feature’s 

actual values within the dataset, quantified by the standard deviation. The spread in SHAP 

values depicted in the SHAP feature importance plot reflects the range of influence that the 

feature exerts across different instances in the model’s predictions. This influence variability 

is separate from the standard deviation of the feature’s values. The standard deviation is a 

separate statistical measure that indicates the extent to which the feature values are spread 

around their mean in the dataset.
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VIII. ABLATION STUDIES

Four pivotal ablation studies were undertaken to assess the robustness of our models. The 

first study focused on establishing consensus across models trained on distinct subsets of 

train-validation and test data. This investigation aimed to reveal the models’ generalization 

capabilities and ability to deliver consistent results regardless of dataset variations. The 

second study investigated the impact of morphology and graph-based features on model 

performance. By integrating these distinct feature sets, we aimed to determine their 

effects on improving the predictive capabilities. The third study dealt with measuring the 

performance with different node aggregation mechanisms. The fourth and final ablation 

study evaluated the effectiveness of the jumping knowledge technique implemented in our 

model. This study involved conducting experiments both with and without the application of 

jumping knowledge.

A. MODEL CONSENSUS: EFFECT OF RANDOM WEIGHTS INITIALIZATION AND 
DIFFERENT SUBSETS OF DATA

We conducted experiments to explore whether the consensus (in terms of feature stability) 

[93] among models varies across different subsets of training, validation, and test data. 

We generated SHAP summary plots for each ML model using these distinct subsets and 

extracted the top 6 features from each plot. Similarly, we followed a similar procedure for 

the graph models but selected the top 6 features from the integrated gradient plots. This 

process allowed us to derive the final consensus among the models. Figure 19 shows the 

consensus among the ML models concerning both graph and morphology features.

During our experiments, we noticed that SHAP summary plots (not shown here) consistently 

highlighted the same features, with minor variations in their ranking order. Several factors 

contribute to the consistent feature importance rankings observed in our analysis. Firstly, 

the selected features may exhibit a high degree of robustness and informativeness across 

various subsets of the data. These features consistently capture essential patterns and 

relationships, even when trained on different data samples. Additionally, the inherent 

regularization mechanisms employed by the machine learning models used in our analysis 

play a pivotal role. The regularization techniques, such as feature sampling and depth 

limitations, contribute to the stability of feature importance rankings [94]. We also 

conducted experiments using graph-based models with random weight initialization to 

investigate the variability in feature attribution. Specifically, we were interested in observing 

whether the selection of influential features changed across different trials of the model. In 

our study, we conducted three separate trials for the proposed model.

Figure 20 and 21 illustrate the feature attribution results for class AFB and class macrophage 

nucleus averaged across the test instances for the three trials. The term ‘nuclei’ refers 

to the macrophage nucleus. We observed variations in the morphology features identified 

as influential in each trial, although some similarities were also observed. This is due to 

random weight initialization that leads to different starting points for the model’s parameters 

in each run. These initial differences can set the model on distinct learning trajectories, 

causing it to assign varying importance to features during training. We observed a relatively 

slight variation in the choice of graph features, as the model consistently selected almost the 
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same set of features (with differences in importance scores) in each trial, as seen in Figure 

21. The consistent selection of these specific graph features across multiple trials with 

random weight initialization shows their robustness and impact on the model’s predictions. 

Figure 22 shows the consensus among the graph models that yielded the best results across 

the three trials, considering each of the feature sets.

By comparing Figure 19 and Figure 22, it is evident that both the ML models and graph 

models consistently highlight the importance of hub-promoted index, hub-depressed index, 

and node clustering as top features for the classification. Regarding morphological features, 

models consistently opt for contrast and variance as the top features. Notably, while global 

graph features may not be extremely useful in node-level classification, their relevance 

will be seen for graph-level classification, mainly when categorizing M.tb infected DO 
mice samples into Supersusceptible Progressor, Asymptomatic Controller and Susceptible 

Controller categories [95].

B. EFFECT OF NODE FEATURES

We constructed the cell graph using morphological and graph features to test their 

effectiveness. We also trained the ML models with these feature sets. We will refer to 

this specific combination of features throughout the rest of the article as the “combined 

feature set”. The results can be seen in Table 15 and 16. The test F1 score of XGBoost 

using morphological features is 15.23% lower than the model with combined features, 

highlighting the importance of cell structure for node classification. The test f1 score 

with graph features is 0.79% below the score with combined features, demonstrating the 

significance of the structural relationships and interactions between cells within the tissue 

sample. The combination of morphological and graph-based features provides the best 

predictive power for our model. The AUPRC results for both ML and graph-based models 

using combined features on the test set are presented in Figure 23. While morphological 

features are informative, they do not perform well independently. Likewise, graph-based 

features are helpful but benefit from integrating morphological features to achieve the 

highest F1 score on the test data. We see similar results in graph-based models. When 

utilizing combined features, the CG-JKNN model achieved a test F1 score, surpassing 

its performance with only graph features by 4.35% and exceeding its results with just 

morphological features by 9.39%.

However, despite these improvements, the XGBoost model still outperforms the CG-JKNN. 

The upper bound of trainable parameters in the XGBoost model is estimated based on the 

maximum potential size of each decision tree. For a tree of maximum depth ‘d’, the total 

number of nodes (and hence parameters) is approximately 2Λ(d + 1) − 1. When multiplied 

by the number of trees (‘n_estimators’), this gives us an overall upper bound. According to 

our calculations, assuming each tree grows to its maximum depth, which might not always 

be the case due to pruning, the total number of parameters is approximately 171 · (2Λ11) 

− 1, equaling 350,037. Table 15 indicates that the gamma value is too small to result in 

significant pruning.

Despite the current performance gap, we believe that the efficiency of GNN models like 

CG-JKNN can be substantially improved through the concept of knowledge distillation [96]. 

ACHARYA et al. Page 23

IEEE Access. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This technique could enable these models to achieve performance comparable to XGBoost 

while requiring significantly fewer parameters. This approach allows us to simultaneously 

make GNN models better and more efficient, meeting the need for models that work well 

without requiring significant computing power.

C. IMPACT OF DIFFERENT NODE AGGREGATION TECHNIQUE

One of the pivotal operations within graph neural networks is the aggregation process. 

Its primary objective is to systematically exploit the information from neighboring nodes, 

leading to the gradual updation of the target node’s latent representation [97]. We investigate 

the impact of two aggregation techniques: Mean aggregator and Max aggregator [25], [98]. 

The experimental results can be seen in Table 17. The plot of the AUPRC on the test 

set is shown in the figure 24. We achieved an F1-score of 0.8707 with mean aggregator 

and morphology features. Furthermore, we attained an even higher F1-score of 0.9157 

using the mean aggregator with graph features. We chose the mean aggregator as our 

aggregation technique based on these results because it performs better than the max 

aggregator. Previous literature has consistently demonstrated the superiority of the mean 

aggregator over other aggregation techniques in node classification tasks [97], [98]. This is 

seen in the studies involving rich node features and where the distribution of the features 

in the neighborhood provides a strong and valuable signal, significantly enhancing the 

performance [98].

D. IMPACT OF JUMPING KNOWLEDGE ON CG-JKNN

In this section, we learn the specific impact of the jumping knowledge technique on 

CG-JKNN’s performance. Previous works employing cell graph methodologies have 

demonstrated the efficacy of Jumping Knowledge, particularly in graph-level classification 

tasks [40], [41], [50]. To comprehensively assess this aspect, we conducted a series 

of experiments both with and without the implementation of jumping knowledge. 

Concatenation was selected among three jumping knowledge techniques: concatenation, 

max-pooling, and an LSTM-attention mechanism. The concatenation-based jumping 

knowledge technique aggregated node features across different layers rather than just the last 

layer. Our experiments were conducted with different feature sets, including graph features, 

morphology features, and a combination of both. To ensure the validity and reliability of 

our findings, we maintained consistency in the data points used across all experiments. This 

approach ensured that any observed changes in the model’s performance could be attributed 

directly to the presence or absence of jumping knowledge, thereby eliminating the potential 

influence of varying data points.

The results of the models are averaged over three trials. The table 18 presents a detailed 

comparison of the CG-JKNN model’s performance using graph-based features, both with 

and without the incorporation of jump knowledge. Table 19 presents a detailed comparison 

of the CG-JKNN model’s performance using morphology-based features, both with and 

without the incorporation of jump knowledge, and table 20 presents a detailed comparison 

of the CG-JKNN model’s performance using combined features, both with and without the 

incorporation of jump knowledge.
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When analyzing the performance of our models using graph features, as seen from 

the table 18, the F1 scores show improvement with jump knowledge across training, 

validation, and test datasets. The Train F1 score sees an increase from 0.883±0.005 to 

0.9681±0.0040, the val F1 score improves from 0.8981±0.0171 to 0.9603±0.005, and the 

test F1 improves from 0.892±0.0018 to 0.9057±0.01. The utilization of jumping knowledge 

alongside morphological features exhibits a consistent trend of performance improvement, 

mirroring the improvements seen with graph features. Train F1 score rises from 0.765±0.016 

to 0.813±0.005, and test F1 score increases from 0.82±0.006 to 0.861±0.012. When 

analyzing the performance of our models using combined features, the addition of jumping 

knowledge led to substantial improvements in the F1 scores across all evaluation phases. 

For the training phase, the F1 score increased from 0.9306 ±0.033 to 0.9642±0.001. During 

validation, we observed an improvement in the F1 score from 0.927 ±0.027 to 0.9601± 

0.007. The test F1 score, indicative of the model’s performance on new data, also improved 

from 0.9057±0.0109 to 0.9509±0.004. AUPRC results (obtained after 50 epochs), as shown 

in Figure 25 across various feature sets, clearly demonstrate that incorporating jumping 

knowledge consistently improves performance.

IX. CONCLUSION AND FUTURE DIRECTIONS

In our study, we introduce the CG-JKNN model, a cell graph convolutional network 

integrating the ‘jumping knowledge’ mechanism, offering a new perspective in analyzing 

GNNs with cell graphs. Our unique approach in constructing cell graphs focuses on 

mycobacterium bacteria’s cords and the radius of the activated macrophage nucleus in 

activated macrophages, reflecting actual cellular interactions within the granuloma. The 

CG-JKNN model effectively combines morphological features with spatial information 

of cells, showing promising results compared to classical GNN architectures. Notably, 

XGBoost outperforms other ML models, indicating the effectiveness of cell graph-derived 

features. We have also integrated model interpretation techniques, revealing key features 

such as contrast, circularity, and area that align with domain expert insights. The model’s 

attention to attributes like node clustering mirrors cellular interconnections in the tissue 

microenvironment. However, our approach faces limitations due to the small dataset size 

and the need to consider temporal dynamics in disease progression. For future work, we 

aim to categorize M.tb-affected DO mice samples into three groups at the graph level: 

Supersusceptible Progressor, Asymptomatic Controller, and Susceptible Controller. We also 

plan to expand the dataset and develop a more complex teacher model for knowledge 

distillation, assessing the performance of our proposed model in comparison with Scalable 

Inception Graph Neural Networks.
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FIGURE 1. 
Overall Workflow: (a). Specimen processing: Extract lung tissues from DO mice and stain 

them with Ziehl-Neelsen stain. (b). Detect cells, construct cell graphs, and process them. 

(c). A total of 44 cases are considered (Images of mice in this figure are adapted from The 

Jackson Laboratory (2023). Retrieved from https://www.jax.org/strain/009376). (d). Split of 

Data. (e). Overall Methodolog.
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FIGURE 2. 
Sample images. (A) and (B). TB infected. (C) and (D). Uninfected.
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FIGURE 3. 
(a) Green region indicates model detection of lung tissue from a whole slide image. (b) The 

heat map shows activated macrophage nuclei detected by the model. (c) The heat map shows 

AFB detected by the model. The heat maps demonstrate the location and spatial information 

of AFB and activated macrophage nuclei within lung tissue.
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FIGURE 4. 
Verification of model training: example of a false negative result. (A) A human annotation of 

6 single AFBs (red open circles) and 1 normal nucleus (blue open circle) within the training 

region. (b) The AI model detected 5 AFBs and one nucleus. The filled in circles indicate 

successful detection, true positives. The red open circle indicates where the model did not 

detect.
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FIGURE 5. 
Upper Row: (A). Original Image. (B). Region of Granuloma with AFB. (C). Single AFB 

at the location (pixel) (46200,12954)in the original image. (D). Grayscale image. (E). 

Enhanced image. (F). Binary image before post-processing. (G). AFB. Lower Row: (A). 

Original Image. (B). Activated macrophage nucleus at the location (pixel) (25424,16909) 

in the original image. (C). Grayscale image. (D). Enhanced image. (E). Image after 

morphological operations. (F). Nucleus.
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FIGURE 6. 
Blue nodes indicate nucleus of activated macrophage. Red nodes denoted AFB. Black lines 

(edges) denote the interactions between the nodes. (A). Cell graph of an uninfected sample. 

(B). Cell graph of an infected sample.
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FIGURE 7. 
Typical cell graphs from (A) Uninfected Sample (B) Infected Sample.
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FIGURE 8. 
Overview of the CG-JKNN.
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FIGURE 9. 
Jumping knowledge architecture.

ACHARYA et al. Page 41

IEEE Access. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 10. 
Area under the precision-recall curve of ML models with different feature sets obtained with 

best split. (A). With local graph features. (B). With morphological features.
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FIGURE 11. 
Area under the precision-recall curve of graph models that resulted in best results across 

the three trials with different feature sets. (A). With graph features. (B). With morphological 

features.
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FIGURE 12. 
Nucleus of activated macrophage. (A). Sparse chromatin pattern. (B). Dense chromatin 

pattern.
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FIGURE 13. 
SHAP summary plot utilizing graph features: (A). XGBoost model. (B) and (C). Random 

forest model. (D) and (E). Extra trees model. (F) and (G). LightGBM model.
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FIGURE 14. 
SHAP summary plot utilizing morphology features: (A). XGBoost model. (B) and (C). 

Random forest model. (D) and (E). Extra trees model. (F) and (G). LightGBM model.

ACHARYA et al. Page 46

IEEE Access. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 15. 
Integrated gradient feature attribution utilizing morphology features: (A). Proposed model. 

(B). GraphSAGE with max aggregator (C). GraphSAGE with mean aggregator (D). 

GATConv. (E). GATV2.
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FIGURE 16. 
Integrated gradient feature attribution utilizing graph features: (A). Proposed model. (B). 

GraphSAGE with max aggregator (C). GraphSAGE with mean aggregator (D). GATConv. 

(E). GATV2.
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FIGURE 17. 
Morphology features (A). Plot of accuracy versus K. (B). Plot of F1 Score versus K. (C). 

Plot of AUPRC versus K.
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FIGURE 18. 
Graph features (A). Plot of accuracy versus K. (B). Plot of F1 Score versus K. (C). Plot of 

AUPRC versus K.
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FIGURE 19. 
ML model consensus for class AFB and class macrophage nucleus; Upper Row: Graph 

Features (A). Consensus among the models while using the best-performing split. (B). 

Consensus among the models while using a different subset of the train-val-test set. 

(C). Consensus among the models while using another subset of the train-val-test set. 

Lower Row: Morphology Features (D). Consensus among the models while using the 

best-performing split. (E). Consensus among the models while using a different subset of 

the train-val-test set. (F). Consensus among the models while using another subset of the 

train-val-test set.
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FIGURE 20. 
Integrated gradient feature attribution by employing proposed model utilizing the 

morphology features (A). Attribution scores of features for class AFB and class macrophage 

nucleus during the run 1. (B). Attribution scores of features for class AFB and class 

macrophage nucleus during the run 2. (C). Attribution scores of features for class AFB 

and class macrophage nucleus during the run 3.
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FIGURE 21. 
Integrated gradient feature attribution by employing proposed model utilizing the graph 

features (A). Attribution scores of features for class AFB and class macrophage nucleus 

during the run 1. (B). Attribution scores of features for class AFB and class macrophage 

nucleus during the run 2. (C). Attribution scores of features for class AFB and class 

macrophage nucleus during the run 3.
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FIGURE 22. 
Graph model consensus for class AFB and class macrophage nucleus; Upper row: Graph 

features (A). Consensus among the models for class AFB. (B). Consensus among the models 

for class macrophage nucleus. Lower Row: Morphology Features (C). Consensus among the 

models for class AFB. (D).Consensus among the models for class macrophage nucleus.
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FIGURE 23. 
Area under the precision-recall curve of ML models and graph based models with combined 

feature set (A). Performance of ML models (B). Performance of graph based models.
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FIGURE 24. 
Performance of different aggregation techniques: (A). Proposed model with Mean and Max 

Aggregator and Graph Features. (B). Proposed model with Mean and Max Aggregator and 

Morphology Features. (C). Proposed model with mean and max aggregator and combined 

features.
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FIGURE 25. 
Comparison of AUPRC with and without jump knowledge with different feature sets.
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TABLE 1.

Abbreviations and acronyms.

TB Tuberculosis

ZN Ziel-Neelsen

AFB Acid Fast Bacilli

CG Cell Graph

JKNN Jumping Knowledge Neural Network

WSI Whole Slide Image

GNN Graph Neural Network

XGBoost Extreme Gradient Boosting

GAT Graph Attention Network

DO Diversity Outbred

ML Machine Learning

SHAP Shapely Additive Explanation

TME Tissue Microenvironment

AUPRC Area under the precision-recall curve

GLCM Gray Level Co-Occurrence Matrix

IGRA Interferon-gamma Releasing Assay

SVM Support Vector Machine

KNN K-Nearest Neighbors

MLP Multilayer perception

GIN Graph Isomorphism Network

AUC Area under the ROC Curve
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TABLE 3.

Distance thresholds.

Node ’u’ Node ’v’ Distance ’d’ in pixels

AFB AFB 615

AFB Nucleus 2049

Nucleus AFB 2049

Nucleus Nucleus 2049
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TABLE 10.

Performance metrics achieved with morphology features for every K value.

K Value Test Accuracy Test F1 score Test AUPRC

1 0.727148237 0.651203501 0.713969089

2 0.763916467 0.69669247 0.751091436

3 0.786922287 0.719184263 0.772249125

4 0.796439575 0.727022312 0.78117288

5 0.821225608 0.763260495 0.808666456

6 0.82978432 0.773464553 0.81772094

7 0.842177337 0.787420456 0.83110704

8 0.850393701 0.799375631 0.840057218

9 0.86203355 0.816065723 0.852615778

10 0.865183156 0.819870094 0.856086222

11 0.865525505 0.820113574 0.856493032
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TABLE 11.

Performance metrics achieved with graph features for every K value.

K Value Test Accuracy Test F1 score Test AUPRC

1 0.726350088 0.623723834 0.731050091

2 0.87351103 0.852534562 0.878307163

3 0.916190374 0.898872059 0.920405592

4 0.914908392 0.897378084 0.919122938

5 0.925965493 0.911039795 0.92925645

6 0.933710806 0.91976466 0.937584011

7 0.941028791 0.92863607 0.944584073

8 0.945836227 0.934453782 0.949200114

9 0.9490946 0.93848835 0.952099228

10 0.9490946 0.938512162 0.952039998

11 0.949521927 0.939020456 0.952469116
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