Skip to main content
. Author manuscript; available in PMC: 2024 Mar 21.
Published in final edited form as: IEEE Access. 2024 Jan 30;12:17164–17194. doi: 10.1109/access.2024.3359989

TABLE 15.

Combined features: performance and hyperparameters of ML models.

Model Train_Acc Val_Acc Test_Acc Train_F1 Val_F1 Test_F1 Hyperparameters
XGBoost 99.99 98.7 98.56 0.99 0.9832 0.9813 gamma=0.073,learning_rate=0.2459, max_depth=10, estimators=171, reg_alpha=0.2, reg_lambda=0.3
Random Forest 99.83 96.76 96.41 0.9979 0.9579 0.95328 min_samples_leaf=1, min_samples_split=9, estimators=112,max_depth=30
LightGBM 99.76 98.25 98.21 0.9969 0.9774 0.9768 lr=0.313, max_depth= 23, min_child_samples=12, num_leaves=46,max_depth= 23
Extra Trees 99.35 96.33 95.8 0.9916 0.9528 0.9461 min_samples_leaf=1, min_samples_split=3, estimators=100, max_depth=20