Skip to main content
. Author manuscript; available in PMC: 2024 Mar 21.
Published in final edited form as: IEEE Access. 2024 Jan 30;12:17164–17194. doi: 10.1109/access.2024.3359989

TABLE 16.

Combined features: performance and hyperparameters of graph models.

Model Train_Acc Val_Acc Test_Acc Train_F1 Val_F1 Test_F1 Hyperparameters
GraphSAGE_mean 95.136 ±0.07 90.183 ±0.069 86.656 ±0.209 0.9605 ±0.001 0.9532 ±0.003 0.8972 ±0.004 hidden dim=78, lr=0.0054, dropout=0.1975, Aggr=mean
GraphSAGE_max 93.04 ±0.65 88.57 ±0.655 84.593±0.499 0.9261 ±0.015 0.9111 ±0.025 0.9092±0.012 hidden dim=78, lr=0.0054, dropout=0.1975, Aggr=max
GATV2 93.30 ±0.28 89.68 ±0.88 83.78±1.013 0.9448 ±0.024 0.9359 ±0.014 0.8975±0.025 lr=0.012,heads=8, dropout=0.1, weight_decay=5e-4
GatConv 90.38 ±1.28 87.38 ±1.34 81.73±1.136 0.9524±0.012 0.948 ±0.013 0.8818±0.031 lr=0.073,heads=8, dropout=0.111, weight_decay=0.0005
Proposed Model 94.50 ±0.385 89.86 ±0.194 87.23 ±0.172 0.9642 ±0.001 0.9601 ±0.007 0.9509 ±0.004 lr=0.001, dropout=0.1 num_sage_layers=3, hidden_channel=33