Skip to main content
. Author manuscript; available in PMC: 2024 Mar 21.
Published in final edited form as: IEEE Access. 2024 Jan 30;12:17164–17194. doi: 10.1109/access.2024.3359989

TABLE 7.

Morphology features: performance and hyperparameters of ML models.

Model Train_Acc Val_Acc Test_Acc Train_F1 Val_F1 Test_F1 Hyperparameters
XGBoost 88.88 86.14 86.8 0.853 0.8174 0.829 gamma=0.1, learning_rate=0.2, max_depth=5, estimators=100, reg_alpha=0.2, reg_lambda=0.3
Random Forest 85.29 82.99 83.58 0.8471 0.7786 0.7901 min_samples_leaf=1, min_samples_split=6, estimators=400
LightGBM 87.15 85.73 86.29 0.831 0.812 0.822 lr=0.1, max_depth: −1, min_child_samples: 20, num_leaves=31
Extra Trees 86.66 82.51 83.36 0.817 0.758 0.773 criterion=gini, min_samples_leaf=10, min_samples_split=5, estimators=100