Skip to main content
. Author manuscript; available in PMC: 2024 Mar 21.
Published in final edited form as: IEEE Access. 2024 Jan 30;12:17164–17194. doi: 10.1109/access.2024.3359989

TABLE 9.

Graph features: performance and hyperparameters of graph models.

Model Train_Acc Val_Acc Test_Acc Train_F1 Val_F1 Test_F1 Hyperparameters
GraphsAGE_mean 92.67 ±0.2 87.71 ±0.111 84.61 ±0.621 0.955±0.004 0.943 ±0.006 0.881 ±0.011 hidden_dimensions=78, lr=0.01 ,dropout=0.309, Aggr=mean, num_layers=2
GraphSAGE_max 90.46 ±0.08 86.61 ±0.4243 83.42 ±0.825 0.909 ±0.005 0.880 ±0.003 0.868 ±0.005 hidden_dimensions=78, lr=0.01,dropout=0.309, Aggr=max, num_layers=2
GATV2 91.42 ±0.888 87.79 ±0.601 85.83±0.096 0.927 ±0.029 0.915 ±0.030 0.891±0.01 lr=le-2,heads=8, dropout=0.6, weight_decay=5e-4, num_layers=2
GatConv 88.35 ±1.266 85.08 ±1.53 84.12±1.03 0.874±0.041 0.852±0.03 0.8825 ±0.01 lr=0.0047, dropout=0.6928, heads=8, weight_decay=5e-4, num_layers=2
Proposed Model 92.88 ±0.021 88.47 ±0.62 87.21 ±0.98 0.9681 ±0.004 0.9603 ±0.005 0.9057 ±0.01 lr=0.01, hidden_channel=33, num_layers=4, dropout=0.2, heads=1, num_layers=4