
Trial-by-trial variability in cortical responses exhibits scaling of 
spatial correlations predicted from critical dynamics

Tiago L. Ribeiro1, Peter Jendrichovsky2,3, Shan Yu1,4,5, Daniel A. Martin6,7, Patrick O. 
Kanold2,3, Dante R. Chialvo6,7, Dietmar Plenz1,8,*

1Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of 
Health, Bethesda, MD 20892, USA

2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA

3Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA

4Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, 
China

5CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of 
Sciences, Beijing 100190, China

6Center for Complex Systems & Brain Sciences (CEMSC3), Instituto de Ciencias Físicas, (ICIFI) 
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), San Martín 
1650 Buenos Aires, Argentina

7Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 
Buenos Aires, Argentina

8Lead contact

SUMMARY

In the mammalian cortex, even simple sensory inputs or movements activate many neurons, 

with each neuron responding variably to repeated stimuli—a phenomenon known as trial-by-trial 

variability. Understanding the spatial patterns and dynamics of this variability is challenging. 

Using cellular 2-photon imaging, we study visual and auditory responses in the primary cortices of 

awake mice. We focus on how individual neurons’ responses differed from the overall population. 

We find consistent spatial correlations in these differences that are unique to each trial and linearly 

scale with the cortical area observed, a characteristic of critical dynamics as confirmed in our 

neuronal simulations. Using chronic multi-electrode recordings, we observe similar scaling in 

the prefrontal and premotor cortex of non-human primates during self-initiated and visually cued 
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motor tasks. These results suggest that trial-by-trial variability, rather than being random noise, 

reflects a critical, fluctuation-dominated state in the cortex, supporting the brain’s efficiency in 

processing information.

In brief

Neurons in the mammalian cortex respond differently to repeated stimuli, a phenomenon known 

as trial-by-trial variability. Ribeiro et al. show that each trial’s neuronal variability differs from 

noise and follows a linear growth in correlation length, indicating a critical state of the cortex that 

optimizes information processing.

Graphical Abstract

INTRODUCTION

Even simple stimuli or movements engage large numbers of neurons in the mammalian 

cortex. These robust population responses are contrasted by the heterogeneity and 

fluctuations in responses of single neurons observed even during repeated sensory stimuli 

or motor outputs. This so-called trial-by-trial variability has been consistently found in 
vivo for neurons that are highly selective to a particular stimulus feature1–4 as well as 

for non-selective neurons.5 Response variability has been demonstrated in vitro under 

network and stimulus conditions of reduced complexity, supporting the notion that this 

variability is an essential feature of cortical networks (e.g., Haroush and Marom6). While 
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part of the variability has been attributed to single-neuron properties,7,8 numerous findings 

point to a significant role of the network dynamics in the observed variability. Response 

variability correlates with ongoing neuronal activity preceding a stimulus,9 is shared 

among neurons,10,11 includes interactions between selective and non-selective neurons,12 is 

supported by local cortical motifs such as fan in,13 and depends on the balance of excitation 

and inhibition.6 Response variability has also been found to correlate with macroscopic 

aspects of the animal such as animal movement and behavioral performance.14 Given the 

many potential sources contributing to trial-by-trial variability, it is currently not clear 

whether there are overarching principles that robustly quantify the spatial organization of 

this response variability among neurons.

Correlation length measures have been successfully applied to identify the relationship 

between local, fluctuating system components and global, coherent system responses.15 

This approach has been used to demonstrate that spontaneous fluctuations in the blood-

oxygenated signal scale linearly with the size of the brain region measured.16 Going beyond 

neuroscience, a linear relationship between correlation distance and system size has been 

identified in the context of bird flocks, where a flock still maintains a coherent trajectory 

in space despite fluctuations in single bird trajectories.17–19 Using neuronal simulations, we 

recently demonstrated that correlation distance measures can be obtained by either exploring 

systems of different sizes or increasing the window of observation for a large network of 

fixed size.20 This latter approach suggests that correlation measures can be extended to in 
vivo studies of neuronal dynamics, in which brain size is fixed while the spatial window to 

study the neuronal population can be changed.

Here, we evaluated the correlation length for cortical trial-by-trial variability in the primary 

visual (V1) and auditory cortex of awake mice at the microscale using 2-photon imaging 

(2PI). We demonstrate that neuronal fluctuations within trials are spatially correlated and 

exhibit a linear scaling in correlation length with the size of the cortical region observed. 

We expand our findings to the mesoscale in the prefrontal (PF) and premotor (PM) cortex 

of non-human primates by measuring responses in the local field potential (LFP) to cued 

and self-initiated motor behavior using chronically implanted high-density microelectrode 

arrays (MEAs). Our results identify a robust form of spatial scaling in the trial-by-trial 

variability for primary and higher cortical areas in vivo in line with our simulations of 

neuronal responses in networks exhibiting critical dynamics. We suggest this spatial scaling 

in correlated variability to be in line with critical dynamics in the cortex, which optimizes 

information processing.

RESULTS

The correlation length in mouse V1

For cellular analysis of the trial-by-trial variability, the spiking responses of pyramidal cells 

were recorded in the functionally identified V121 of awake mice (Figures 1A–1C; n = 7 

mice). Mice were quietly resting during recordings while 2-s-lasting drifting gratings were 

presented every 4 s for 8 different directions, separated by luminance-matched grayscale 

screens (Figures 1D and 1E). Using 2PI and the genetically encoded calcium indicator 

(GECI) Yellow Chameleon (YC2.6), we recorded from areas of L × L = 400 × 400 μm
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in superficial cortical layers at depths of ~100–150 μm from the cortical surface, resulting 

in simultaneous recordings of up to ~150 neurons. High trial-by-trial variability was found 

in the response of many single neurons,22 as demonstrated by a variance larger than one 

relative to the average spike count (Figure 1F). This variability was present with ~20% of 

neurons being tuned to the stimulus direction with a selectivity index larger than 0.4 and 

exhibiting minimal responses orthogonal to their preferred orientation (Figure 1G; see STAR 

Methods).

We next studied what type of spatial correlations exist within this variability (Figure 2A) 

by examining, for each trial, the deviation of a neuron’s response from the population 

response (Figure 2B, top). Accordingly, we subtracted the spatial population average as a 

function of time from each neuron’s time series (Figure 2B, bottom) and calculated the 

mean pairwise correlation in the deviations across neurons as a function of distance r, C r . 

In this approach, the population response depends on the size of our cortical observation 

window, an ad hoc experimental constraint in 2PI. Thus, we systematically calculated C r
for different sizes of our squared observation window quantified by its length L. The 

resulting series of functions C r, L  (Figure 2C) decayed with distance and eventually 

turned negative, i.e., neuronal responses became anticorrelated around the mean. These 

robust functions, which cross zero at increasing distances for windows of increasing size 

(r0; Figure 2C, arrows), show that the residual fluctuations of individual neurons around 

the population mean are significantly correlated over distances, as further demonstrated by 

their disappearance after trial shuffling or shuffling neuronal positions directly (Figure 2D). 

Furthermore, we found that C r  decayed similarly for larger windows, and we achieved a 

full collapse of C r, L  for L ≥ 160 μm (Figure 2E; n = 7 mice; see also STAR Methods) 

both for drifting gratings and gray screen conditions, i.e., spontaneous activity. This collapse 

can be expressed as17

C r
r0 L , L ⋅ r0 L γ = F r

r0 L ,

Equation 1

where γ is calculated from the derivative of C at r0 (see STAR Methods) and F  is 

a dimensionless scaling function that does not depend on the window extent L (as 

approximated by the average in Figure 2E, black line).

Linear scaling of correlation length in mouse V1

The correlation length, ξ, can then be obtained as23

ξ2(L) = 0
r0(L) r2C(r, L)dr
0
r0(L) C(r, L)dr

Equation 2

(see also STAR Methods). How the estimated correlations between neurons change with 

spatial window size L, ξ(L), has been found in simulations to be informative about the 

underlying network dynamics.20 Specifically, linear scaling with the spatial extent of the 
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observed system has been found for critical dynamics, in contrast to a sublinear scaling 

linked to sub- or supercritical dynamics.

As can be seen in Figure 2F, ξ(L) scaled linearly with L both during gray screen as well 

as during drifting gratings (p = 2.4×10−3 chi-squared test for comparing the obtained linear 

regression to the data vs. the chi-squared distribution; see STAR Methods). We were able 

to capture the distance-dependent scaling of ξ(L) in a balanced neuronal network with 

local synaptic interactions and critical dynamics (Figure 3). In these simulations, neurons 

were connected locally and could induce firing in neighboring, non-refractory neurons with 

probability P. The network of 200 × 200 neurons was driven by a low external rate ℎ, which 

induced a low probability of spontaneous firing (Figure 3A; see STAR Methods). Changing 

P allowed the network to be tuned to subcritical, critical, or supercritical dynamical regimes 

(Figure 3B). We found that ξ(L) grew close to linear in the critical regime, whereas growth 

was more sublinear, with asymptotic ξ in the sub- and supercritical regimes (Figure 3C). 

Furthermore, we showed that the collapse of C(r, L) was best in the critical regime (Figures 

3D and 3E), at which the sensitivity of the network to external input, i.e., susceptibility, was 

maximized (Figure 3F). These results demonstrate robust scaling in long-range correlations 

despite high trial-by-trial variability in the V1 in line with predictions from locally 

interacting neurons establishing critical network dynamics.

Scaling of correlation length in mouse auditory cortex

We extended our findings from the V1 to the auditory cortex in awake mice (Figure 4) 

using a window up to 4 times larger and close to ~1 × 1 mm (Figures 4A and 4B). Awake 

mice passively listened to short (1 s) auditory stimuli (pure tones or a combination of two 

tones between 4 and 32 kHz) presented every 5 s.24,25 Calcium responses were recorded 

in pyramidal neurons from superficial layers (n = 11 mice; ~900 cells on average per 

recording) using 2PI and the GECI GCaMP6s.26 We calculated the correlation functions 

C(r) from evoked responses for different recording window sizes, L, to obtain correlation 

lengths, ξ (Figures 4B and 4C). As demonstrated for the V1, the corresponding correlation 

functions C(r, L) in the primary auditory cortex (A1) could be collapsed for L ≥ 269 μm and 

were similar for tone-OFF and tone-ON conditions (Figure 4D). Importantly, the correlation 

length ξ was found to scale linearly with L during both tone-OFF and tone-ON conditions 

(Figure 4E; p = 0.025 chi-squared test for comparing the obtained linear regression to the 

data in the 400–1,000 μm range vs. the chi-squared distribution; n = 11 mice; see also STAR 

Methods).

Our findings demonstrate that spatial correlations in trial-by-trial fluctuations around the 

population mean between neurons in the visual and auditory cortex do not exhibit a finite 

length but, instead, scale linearly with the size of the observation windows.

Scaling of correlation length in the frontal cortex of behaving non-human primates

To further evaluate the robustness of our findings in neuronal response variability, we 

studied trial-by-trial variability in cortical responses of behaving non-human primates. To 

expand scaling in correlation length to the cortical mesoscale, we employed high-density 

MEAs (10 × 10 electrodes without corners; 400 μm interelectrode distance) and recorded 
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the LFP in PF (monkey A) and PM (monkey B) cortex (Figure 5A; for details, see Yu et 

al.27). Monkey A was trained in a visual-motor mapping task (Figure 5B, top; see STAR 

Methods), while monkey B performed a self-initiated movement task (Figure 5B, bottom). 

We applied the methods described in the previous sections to investigate whether similar 

findings could be established at this larger scale. Amplitude fluctuations in the LFP were 

obtained by subtracting the instantaneous average on the squared subarrays of width L from 

each electrode LFP (Figure 5C). We then obtained C(r, L) between pairs of electrodes for the 

subarray of width L in multiples of the interelectrode distance. C(r, L) decayed with distance 

(Figure S1) in remarkably similar shapes for different L, allowing for the successful collapse 

of the curves (Figures 5D and 5E, left). The collapsed functions were similar among both 

monkeys during baseline and task-evoked activity (Figures 5D and 5E, cp. insets). As found 

for the V1 and auditory cortex, ξ scaled linearly with L for both cortical regions and was 

similar between baseline and sensory/motor processing epochs (Figures 5D and 5E, right; p 

< 10−4 chi-squared test for all cases). Importantly, this was not the case when trial shuffling 

was employed, as that procedure leads to a non-decaying near-zero correlation function 

(Figure S1), in line with results obtained for cellular trial-by-trial shuffled responses in our 

2PI experiments from mice.

Linear growth of the correlation length can be misleading in the presence of common 
input

To highlight the importance of subtracting population averages when calculating the 

correlation length, we reanalyzed the data without that step. In this approach, we simply 

obtain the Pearson’s pairwise correlation for every pair of neurons/channels, from which 

we calculate the correlation function C(r) by averaging correlation values from the same 

distance between neurons/channels. The observed function decays as a power law with 

distance (Figure S2), which is in line with expectations from criticality theory,28 but the 

function is noisy and subjected to finite-size effects. When studying the Pearson’s pairwise 

correlations as a function of window size (Figure S3), we note that the curves for different 

L follow the same general function, with the difference being a trivial limitation of the 

maximum distance between neurons that can be observed for different window extents 

(Figure S3A, top). When calculating ξ for the V1 dataset (Figure S3A, bottom), we cannot 

see the expected linear growth with L. When trial shuffling the data (Figure S3B, top), 

despite C(r) being close to zero for most distances, ξ still follows a similar function of 

window extent (Figure S3B, bottom). Similarly, when studying our non-human primate PF 

cortex datasets (Figure S4), we find that C(r) remains above zero even after trial shuffling 

(cp. Figures S4A and S4B, top). These residual correlations must be related to common 

input to those channels since the only signal maintained after trial shuffling is the average 

input from the cue presentation. In this case, the non-zero residual correlations lead to 

a linearly scaling ξ(L), regardless of trial-shuffling (Figures S4A and S4B, bottom; p < 

10−4 chi-squared test for both cases). We note that when employing the original method 

to calculate the correlation functions, that is, removing the population average from each 

channel, trial shuffling resulted in near-zero correlations across all distances (see Figures 

2D and S1). In the brain, where external drive is constantly present, our results highlight 

the importance of reducing the impact of common input when estimating inter-neuronal 
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correlations. Our findings demonstrate that this can be achieved by a simple subtraction of 

the population average as a function of time.

DISCUSSION

Trial-by-trial variability transcends all sensory and motor responses in systems neuroscience 

and has been successfully linked to many domains, from single neurons to networks to 

behavior. Our comparative study assessed trial-by-trial variability for different sensory 

dimensions (2-dimensional visual space vs. 1-dimensional auditory space), spatiotemporal 

scales (microscale in 2PI vs. mesoscale in array recordings), cortical areas (primary vs. 

frontal cortex), sensory vs. motor responses, experimental conditions (2PI vs. LFP), and 

species (mouse vs. non-human primate). Our identification of a common scaling function 

that is sensitive to trial shuffling suggests an overarching principle in the correlations that 

govern trial-by-trial variability.

Linear growth in correlation length indicates systemwide correlations among neurons

If the distance over which neuronal activities correlate were to be finite, e.g., <100 μm, 

then our approach would have revealed an upper bound in window size, or cortical area, for 

which the correlation length saturated. Instead, for all our experimental approaches—first, 

for up to 400 μm at the level of individual neuronal firing in the V1, then extending for 

up to 1 mm in the auditory cortex using 2PI, and, finally, for up to 4 mm in the LFP in 

awake non-human primates using high-density arrays—we demonstrated that the correlation 

length scales linearly with the extent of the cortical area observed. These results identify 

a dynamical framework that captures the intracortical spatial correlations that coexist with 

high trial-by-trial variability in layer 2/3 of the cortex. Such scale-free correlations signify 

that these layers exhibit inter-neuronal correlations that can span the whole network over 

long distances, i.e., neuronal activity from local interactions significantly correlates with 

and thus might influence activity at far distant cortical regions, even if these regions are 

not directly connected through long-range connections. Such an organization in spatial 

correlations could be of an advantage for information processing when local information 

from different cortical sites needs to be integrated for higher-order cortical functions. As 

outlined further below, our results strongly suggest that critical dynamics in layer 2/3 of the 

cortex give rise to the observed scaling in spatial correlations.

Removal of the spatial average uncovers inter-neuronal correlations unique to single trials

We used the fluctuations of local neuronal activity around the instantaneous mean of the 

observed network to evaluate its correlation length from individual trials. The subtraction 

of the (observed) population average before calculating correlations has been successfully 

applied in, e.g., the context of bird flocks,17 where one needs to evaluate how birds move 

about one another, disregarding the overall movement of the flock. This approach is more 

common in physics and, to our knowledge, has been applied here for the first time to single 

neurons and local neuronal populations in awake animals to study evoked responses. While 

removing the average spatial velocity is readily interpreted in the context of a moving flock, 

the impact of removing the spatial average is more difficult to assess with respect to brain 

activity. Our trial-shuffling controls provide an important step in that direction. In these 
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controls, the pairwise correlation between neurons i and j is calculated from responses to 

different trials, which removes any within-trial correlations between them, while common 

correlations are maintained. We clearly demonstrated that (1) trial shuffling destroys any 

spatial dependencies equivalent to randomizing the position of neurons themselves and (2) 

if the spatial average is not subtracted, then the resulting correlation functions demonstrate 

similar growth in the original presentation or after trial shuffling. Our results show that 

subtracting the spatial average focuses our analysis on identifying the organization of local 

cortical correlations that cannot be explained from common input. Importantly, in contrast 

to previous work on ongoing activity,16 our work clearly links the spatial and linear growth 

of connected correlations to that of sensory- and movement-evoked neuronal activities, i.e., 

during times of information processing. To ensure the reliability of the method used to 

calculate the correlation length, we compared our results, which were obtained using a 

more traditional method, to those previously obtained in the literature.16,17 In contrast to 

the method employed so far, which identifies the zero crossing of the correlation function, 

here, we are using an integral approach, restricting the integration to positive C(r) values 

(C(r0) = 0). Note that, analytically, assuming the family of C(r, L) curves can be collapsed 

into a single function that does not depend on L (see Figures 2E, 4D, 5D, and 5E), it can 

be shown that the correlation lengths obtained by the two methods are proportional (see 

STAR Methods).16,17 However, the required collapse in scaling functions cannot be a priori 
assumed for the general case.

The correlation length identifies robust spatial dependencies in neuronal correlations that 
differ from common input

“Noise” correlations have been commonly identified as inter-neuronal correlations that are 

not due to common input.29,30 “Noise” correlations are typically calculated between a small 

number of neuronal pairs, making it difficult to identify spatial dependencies that arise 

from inter-neuronal interactions. In contrast, our present analysis readily obtains robust 

spatial dependencies in correlations that cannot be explained by common input. Importantly, 

these spatial dependencies can be readily collapsed; thus, the resulting functional is not 

dependent on the windowing procedure itself. The collapse was found for all studied 

datasets. These results corroborate what was found in simulations of critical networks20 

when comparing correlation functions obtained from the complete system to those obtained 

from a window into those systems, where the obtained collapse implies that correlations 

missed due to neurons being outside the window of observation do not add up to a change 

in the underlying correlation function, i.e., within-window and outside-window correlations 

follow the same spatial structure. We conclude that our analysis provides a robust estimate 

of spatial functions that describe inter-neuronal correlations. The exact relationship between 

traditional “noise” correlations and connected correlations reported here are beyond the 

scope of the current study.

Linear growth in correlation length in superficial layers of the cortex

Our findings of a similar growth in connected correlations when using spikes (2PI 

recordings) or the LFP (MEAs) might be specifically attributable to cortical dynamics in 

superficial layers, for which several studies demonstrated a relatively tight correspondence 
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between the local firing rate and the LFP, the latter reflecting largely local, subthreshold 

activity. Rasch et al.31 successfully reconstructed extracellular spike trains based on the 

ongoing LFP in superficial layers of the V1 of non-human primates. Petermann et al.32 

showed that the negative LFP amplitude monotonically increases with the local firing rate 

and the synchronization of extracellular units in superficial layers of the PM and PF cortex 

in awake non-human primates. At the cellular level, neuronal avalanche dynamics in layer 

2/3 of mouse and rat, whether recorded with GECIs reflecting suprathreshold spiking33 or 

with genetically encoded voltage-sensitive dyes reflecting largely subthreshold activity,34 

reveal similar statistical changes to anesthesia. These studies are in line with our findings 

reported here that, in the superficial cortex, both the LFP and spiking in local neuronal 

groups demonstrate a similar growth in connected correlation yet demonstratively at largely 

different spatial scales.

That the cortical state is known to affect trial-by-trial variability35 and correlation among 

neurons10,36 has been a longstanding observation, and part of this variability originates 

from the cortical network itself.11,37–39 It is well established that the correlation length 

diverges at criticality in the thermodynamic limit,15 which, for systems of finite size, 

can be demonstrated by showing that the correlation length grows with system size. Our 

demonstration of linear scaling in correlation length is in line with findings in network 

simulations with critical dynamics20 and our simulations in the present study.

Trial-by-trial variability is in line with the cortex operating in a critical regime to improve 
information processing

Critical dynamics has been a fundamental driver in understanding the optimization of 

information processing in complex systems considering the evidence that fluctuations or 

variability are high at criticality (e.g., Fraiman and Chialvo,16 Shew et al.,40 and Tkacik 

et al. 41). Decades ago, it was suggested that critical dynamics optimize information 

transfer in gene-regulation networks.42 For the brain, highly desirable aspects of information 

processing have been shown to improve at criticality, such as the maximization of mutual 

information between stimulus input and output,43–47 increased information capacity (i.e., 

the number of possible internal states a network can establish),40,48,49 improved stimulus 

discrimination,50,51 and the ability of neurons to flexibly change synchronization while 

maintaining an overall robust degree of phase locking.52–55

In conclusion, our findings support the notion that trial-by-trial variability, rather than 

reflecting pure noise, might represent an intrinsic property of critical cortical networks 

during information processing.

Limitations of the study

We evaluated the correlation length as a function of subsamples of the recorded region, 

i.e., compact windows, and not as a function of system size, which is the more common 

approach in physics. While it is known that windowing differs to a certain degree from 

finite-size effects,56 it has been shown recently for two different models that such a “box 

scaling” Ansatz20 leads to similar results for networks with critical dynamics. However, it is 

important to note that differences in the scaling of the correlation length for systems slightly 
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outside criticality can be hard to distinguish,20 and thus one needs caution when interpreting 

the observed scaling in regard to originating from a critical system.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Dietmar Plenz (plenzd@mail.nih.gov).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The data reported in this paper will be shared by the lead contact upon request.

• All original code has been deposited at GitHub and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals—All procedures followed the Institute of Laboratory Animal Research (part 

of the National Research Council of the National Academy of Sciences) guidelines and 

were approved by the NIMH Animal Care and Use Committee or by the Johns Hopkins 

University Institutional Animal Care and Use Committee. Wild type (C57BL/6J) mice or 

F1 offspring of CBAxThy1-GCaMP6 (adult, males and females) housed under a reversed 

12 h-light/12 h-dark cycle with ad libitum access to food and water were used in the 

two-photon imaging part of the study. Adult rhesus monkeys (Macaca Mulatta, a 9 years-old 

male and an 8 years-old female) were used in the electrophysiology part of the study.

METHOD DETAILS

Mouse surgery and preparation—Wild type (C57/Bl6, Jackson Laboratory) mice (V1) 

or F1 offspring of CBA (Jax# 000654)xThy1-GCaMP6 (Jax#024275; A1),26 were housed 

under a reversed 12 h-light/12 h-dark cycle with ad libitum access to food and water. 

Imaging experiments were generally performed near the end of the light and the beginning 

of the dark cycle. A custom-made titanium head bar was surgically implanted onto the skull 

of the mice under isoflurane anesthesia (4% induction, 1–1.5% maintenance). A circular 

craniotomy (~3 mm) was made above the area of interest (visual or auditory cortex). For 

V1 experiments, a virus containing the genetically encoded calcium indicator YC2.6 was 

injected at a depth of ~250–300 μm. After that, a cranial window composed of two 3 mm 

diameter coverslips glued to a 5 mm coverslip was implanted and the entire area (except for 

the window) was sealed with dental cement.

Identification of V1 maps—Retinotopic maps of V1 were generated for individual mice 

before recording using published methods.21 Briefly, awake, head-fixed mice faced with 

their left eye a 19″ LCD monitor placed at 10 cm distance and tilted 30 toward the 
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mouse’s midline. Using Psychophysics toolbox,58 contrast-reversing, spherically corrected 

checkerboard bars were drifted across the screen vertically (altitude) and horizontally 

(azimuth) for each of the four directions (30 repeats per direction). Simultaneous wide-field 

imaging (Quantalux, Thorlabs) captured YC2.6 fluorescence, which was averaged for each 

direction. Altitude and azimuth phase maps were calculated by phase-wrapping the first 

harmonics of the 1D Fourier transform for each of the four averages and subsequently 

subtracting the maps of the opposite directions. Sign maps were generated by taking the 

sine of the angle between the gradients in the altitude and azimuth maps as previously 

described.21 Borders were drawn around visual area patches and overlaid onto anatomical 

reference images to identify V1.

Visual stimulation and response measures—Visual stimuli were prepared in 

MATLAB using the Psychophysics Toolbox and delivered via a monitor (Dell, 60 Hz 

refresh rate) placed ~25 cm in front of the contra-lateral eye of the mouse. The stimulus 

was composed of moving gratings at 8 different directions presented for 2 s at maximum 

contrast, 0.04 cycles per degree and 2 cycles/s. Stimuli were interspaced by gray screen 

(matched for average luminance) for 2 s. Each direction was presented 20 times in 

randomized order, for a total of 160 iterations. We calculated the direction selectivity index 

using the common definition: DSI = RP − RO / RP + RO , where Rp and RO are the responses 

to the preferred and opposite direction, respectively. Significance of DSI for each cell was 

assessed by comparing the values obtained from the original data with those obtained from 

shuffling the inter-spike intervals.

Acoustic stimulation—Sound stimuli were synthesized in MATLAB using custom 

software, passed through a multifunction processor (RX6, TDT), attenuated (PA5 

Programmable Attenuator, TDT), and delivered via an ES1 speaker placed ~10 cm from 

the animal’s right ear (contralateral to the left brain hemisphere where imaging took place). 

The stimuli were generated as either pure tones, consisting of a single tone of 4, 8, 16 or 32 

kHz, or six two-tone combinations of these (ten different stimulus types in total). 50 trials 

were repeated for each stimulus, resulting in 500 trials total presented throughout ~42 min 

with a 5-s inter-trial interval. SPL of all stimuli was calibrated to 70 dB (±3 dB) SPL using 

Brüel and Kjær Type 4944-A microphone and Type 1704 Signal Conditioner. 24–26

Two-photon imaging and analysis of the visual cortex—Images were acquired by a 

scanning microscope (Bergamo II series, B248, Thorlabs) coupled to a pulsed femtosecond 

Ti:Sapphire 2-photon laser with dispersion compensation (Chameleon Vision S, Coherent). 

The microscope was controlled by ThorImageLS software. The wavelength was tuned to 

830 nm to excite YC2.6. Signals were collected through a 16× 0.8 NA microscope objective 

(Nikon). Emitted photons were directed through 535/22 nm (yellow) and 479/40 nm (cyan) 

band filters onto GaAsP photomultiplier tubes. The field of view was ~400 × 400 μm. 

Imaging frames of 512 × 512 pixels were acquired at 30 Hz by bidirectional scanning of 

an 8 kHz resonant scanner. Beam turnarounds at the edges of the image were blanked with 

a Pockels cell. The average power for imaging was <70 mW, measured at the sample. The 

obtained images were corrected for motion using dft registration software with MATLAB. 

Regions of interest (ROIs) were identified from the average image of the motion corrected 
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sequence using custom code. For each labeled neuron, raw fluorescence signals over time 

were extracted from the ROI overlying the soma. The mean ratiometric signal, R, in each 

ROI was calculated across frames and converted to a relative fluorescence measure, ΔR/R0. 

The baseline signal R0 was estimated by using a sliding window that calculated the average 

fluorescence of points less than the 10th-percentile during the previous 1.3-s window (40 

frames).

Two-photon imaging and analysis of the auditory cortex—The animal was placed 

in a holder under the microscope (Ultima 2Pplus, Bruker). We imaged a region previously 

identified as A1 by widefield imaging session of the whole cranial window.24–26 Two-

photon imaging was done using a 16× 0.8 NA microscope objective (Nikon) and at an 

optical zoom of 1×. The field of view was of size 1109.9 × 1109.9 μm, yielding on 

average ~900 cells and acquired images had 1024 × 1024 pixels. The frame rate was 

15 Hz. During the experiment, the head of the mouse was upright while the microscope 

nosepiece was rotated from the vertical position by 50–60° to match the angle of the cranial 

window surface. The imaging laser (Chameleon Discovery NX, Coherent) was tuned to 

a 920 nm wavelength to excite GCaMP6s. For analysis, we used the Suite2P package 

to perform motion correction, automated ROI detection, and raw cellular and neuropil 

fluorescence trace extraction.57 Fluorescent traces for individual ROIs from Suite2p were 

further analyzed with custom MATLAB scripts.

Monkey behavioral training and electrophysiological setup—Experiments were 

described previously.27 In short, two adult rhesus monkeys (Macaca mulatta) were surgically 

implanted with a titanium head post. After recovery, they were trained to sit head-fixed in a 

primate chair for behavioral performance. In the cue-initiated task, monkey A (male, 9 years 

old, 8 kg) had to press a bar in front of the chair upon presentation of the ‘trial-initiation’ 

cue on a computer screen. After ~2 s, the initiation cue was followed by an ‘instruction’ 

cue, for the duration of 1 s. Upon cue disappearance, monkey A had to release the bar 

and reach with his right arm to one of two specialized feeders, depending on which of two 

possible cues were presented. Approaching the incorrect feeder rapidly triggered a proximity 

sensor to sequester the food rewards in both feeders, which prevented the monkey from 

obtaining a reward on that trial. The inter trial interval was 3–5 s. In the self-initiated motor 

task, monkey B (female, 8 years old, 7 kg) had to move her right arm to touch a pad 

placed ~30 cm in front of the monkey chair after which a food reward was given. After the 

monkeys learned their respective tasks, a multi-electrode array (MEA; 96 channels, 10 × 10 

without corners, inter-electrode distance 400 μm; electrode length 1 mm for monkey A and 

0.55 mm for monkey B; BlackRock Microsystems) was chronically implanted in the arm 

representative region of the left prefrontal area (area 46, monkey A) or the left premotor 

cortex (monkey B). The LFP (1–100 Hz band-pass filtered; 2 kHz sampling frequency) was 

obtained from the implanted MEA. Electrophysiological signals as well as the timing of 

behaviorally relevant events, e.g., touching the pad, presentation of visual cues, etc., were 

stored for offline analysis.

Correlation analysis—The correlation of the fluctuations as function of distance17 was
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C(r) = 1
C0

i, j uiujδ r − rij

i, j δ r − rij

(Equation 3)

where δ r − rij  is a smoothed Dirac δ function defining all pairs of neurons located at mutual 

distance r, rij is the Euclidean distance from the i-th neuron’s spatial location to the spatial 

location of neuron j, and ui is the value of the signal v of neuron i at time t, after subtracting 

the overall mean of signals v from neurons inside the observation window of size L at that 

time t:ui(t) = νi(t) − ν‾(t). To ensure that C(r = 0) = 1, the normalization factor 1/C0 was used. 

We note that since the instantaneous average is subtracted, C(r) is not equivalent to the 

commonly used pairwise Pearson correlation function.

The objective of computing the C(r) is to determine how the correlation length ξ changes 

with system size. Since system size, i.e., cortex area in our experimental data, was fixed, 

we investigated how ξ changes with system size subsampled by our recordings and neurons/

electrodes within a window of length L. This proxy, known as “box-scaling” was validated 

recently by Martin and colleagues20 using neuronal network simulations and a ferromagnetic 

2D Ising model. More specifically, for the 2PI data in mice, fields of view ranging from ~40 

× 40 μm (windows with fewer than 5 units were ignored to avoid bias introduced by the 

average subtraction procedure when the number of units is too small) to the maximum 

possible size were considered, while for the monkey LFP data the smallest subarray 

considered was 3 × 3. To reduce noise effects, results were averaged across all possible 

subregions for any given size. The time series were smoothed in the time domain (using 

MATLAB routine medfilt1.m with 20 samples for the mice 2PI data, 8 samples for the 

monkey LFP data). This smoothing procedure improved statistics without changing the 

results qualitatively. To estimate the zero-crossing point more precisely for the experimental 

data, we fit 3rd order polynomial functions to the C(r) curves around the zero-crossing.

To define the correlation length, we employed a traditional23 integral approach: 

ξ2 ∫0
r0 r2C(r)dr/∫0

r0 C(r)dr, where r0 is the zero-crossing of the correlation (see also Equation 

2). We set C(0) = 0, so effectively the integral starts at the shortest distance between units 

in the evaluated dataset. To quantify the linear growth in correlation length ξ as a function 

of window length L, we first obtained a linear regression of the ξ(L) data followed by 

chi-square statistics χc
2 = ∑i ξ Li − R Li

2/R Li , where Li is the ith measured value of L
and R Li  is the linear regression value at Li. χc

2 can be used to obtain a p value that 

estimates how likely the data fit the linear regression that well by chance from the chi-square 

distribution. We rescaled the correlation vs. distance curves by normalizing the distances by 

r0, the zero-crossing of the correlation function, and by rescaling the correlations by r0 to 

the power of γ, calculated from the equation dC
dr′ r′ = 1 − L−γ by fitting a power law to the 

derivative of C in respect to r′ = r/r0 at r′ = 1 as function of L to then estimate the slope γ.17 

To obtain the collapse error Δ, we calculate the mean absolute difference between C(r, L) and 

the average curve after collapse across L C(r, L) × r0
γ

L. Note that this renormalization does 
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not have free parameters since all variables are obtained directly from the data, and therefore 

there is no minimization procedure for Δ as a function of γ. We note that, γ indicates how 

quickly correlations drop as function of distance and we have found it to generally be small 

(γ = 0.13, 0.44, 0.87 and 0.74, on average, for the V1, A1, monkeys and critical simulation 

datasets). In the case of starling flocks,17 γ was found to be close to 0.

Equivalance of correlation lengths and correlation distance with existing 
scaling collapse—Assuming correlation functions obtained at different windows L
collapse as shown in the Results section, from Equation 1 we have:

C r
r0(L) , L = F r

r0(L) ⋅ r0(L) −γ,

Then, with a variable change to r′ = r/r0 and applying the integral formula for the correlation 

length in Equation 2, we have:

ξ(L) = ∫ C(r, L)r2dr
∫ C(r, L)dr = ∫ F r′ r0(L) −γ r′r0(L) 2r0dr′

∫ F r′ r0(L) −γr0dr′

ξ(L) = r0(L) 2∫ F r′ r′2dr′
∫ F r′ dr′ = r0(L) ∫ F r′ r′2dr′

∫ F r′ dr′

Therefore, ξ(L) r0(L)

Trial shuffling and spatial shuffling—Trial shuffling for the V1 data was obtained by 

randomly permuting the responses from each of the 8 presented directions separately. This 

was done for each neuron independently. Therefore, in each trial of the trial shuffled dataset 

activity from each cell corresponds to a response to the same stimulus presented in the 

original data but taken from different presentations of that stimulus.

Numerical simulations—We simulated a neural network, as described previously.43 In 

short, each neuron can be in one of three states at each time step: 0 for resting, 1 for active, 

and 2 and 3 for refractory. The model considers S2 neurons on a square lattice. Each neuron 

outputs to K other neurons, selected with an exponentially decaying probability function of 

the Euclidian distance r between them (PConn e−r/R0, with R0 = 5). A spatial cutoff is set in the 

interaction distance: neurons cannot directly connect at distances greater than Ic = 4R0 spatial 

units, the interaction length. Furthermore, to reduce small S effects, we employed periodic 

boundary conditions. Results were computed on a square grid of length L < < S, to reduce 

finite-size artifacts and to better mimic experimental data. A small Poisson drive (ℎ = 10−7

per time step) to each neuron determined the overall rate of firing. The control parameter of 

the model determines the branching of the neural activity and was defined as σ = K × P , 

where P  is the probability that an active neuron (i.e., in state 1) can excite each one of 

the K neighbors that it connects to. Therefore, as shown previously, the model was made 
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critical by selecting a transmission probability P  such that σ 1, for any given K (K = 8 was 

employed for all simulations).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using MATLAB. To evaluate the correlation length 

linear growth, the chi-square statistics was computed and used to obtain a p value 

from the chi-square distribution (see the Correlation analysis subsection above for more 

details). Relevant statistical values (number of animals n and p values) are reported in the 

corresponding figure legends as well as in the main text. Values are reported as mean ± 

standard deviation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The cortex shows varying responses to repeated stimuli, termed trial-by-trial 

variability

• This variability reveals unique spatial correlations among neurons that differ 

from noise

• The corresponding correlation length grows linearly with the observed 

cortical area

• Such linear growth suggests cortex operates at criticality, improving 

information processing
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Figure 1. Trial-by-trial variability and tuning in single neurons during visually evoked activity in 
the primary visual cortex (V1) of an awake mouse
(A) Sketch of stimulation and head-fixed 2PI recording from an awake mouse.

(B) 3 mm craniotomy window with overlaid sign map identifying the V1 in blue (single 

mouse; see STAR Methods).

(C) Identified V1 patch for 5 different mice (colors) and their position relative to the 3 mm 

craniotomy window (circle).

(D) Variable response of a single V1 pyramidal neuron to semi-random presentation of 2 s 

large-field drifting gratings at 8 directions. Black: ΔR/R; red: MLspike fit of ΔR/R; green 

circles: estimated spikes (see STAR Methods). Color bars: stimulus direction. Gray bar: 

contrast-matched gray screen.

(E) Full recording of single neuron to semi-random presentation of 8 stimuli. Gray area: 

enlarged period shown in (D).

(F) Trial-by-trial variability of single neuron responses (dots; n = 228 cells across n = 7 

animals), quantified by dividing response variance by response average, exceeds prediction 

from a Poisson process (red broken line).

(G) About 20% of responding neurons show a direction-selective index (DSI) above 0.4. 

Cumulative probability function (CPF) for n = 7 animals (mean ± SD). Inset: neurons with a 

DSI >0.4 show minimal response at orthogonal directions. Mean direction selectivity profile 

normalized to corresponding preferred direction (n = 47 cells; n = 7 animals; mean ± SD).
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Figure 2. Neuronal fluctuations around the population response exhibit within-trial spatial 
correlations that grow with the window of observation
(A) Example of a 400 × 400 μm 2PI showing Yellow Chameleon 2.6 (YC2.6) expressing 

pyramidal neurons in V1 (~120 μm cortical depth). Example to measure pairwise correlation 

between two V1 neurons (black circles) separated by distance r for 3 windows of different 

lengths L.

(B) Top: overplot of single neuron responses (gray) and average neuronal response (black) 

for a single trial. Bottom: same overplot of single neuron responses with the average 

neuronal response for that trial subtracted. Blue shaded region denotes stimulus on. Note the 

remaining high fluctuations in single neuron responses after subtracting the spatial average 

(full window of recording).

(C) Correlation in the fluctuations around the mean of activity during visual stimulation 

decays with distance and crosses zero. The zero crossing defines r0, which is seen to 

increase with window length (arrows). Mean ± SD for n = 7 mice. Colors: window length. 

Broken line: zero correlation.

(D) Spatial correlations in fluctuations around the mean are specific to each trial and are 

abolished by trial shuffling (top), which is similar to shuffling neuronal positions (bottom). L 
= 343 μm case is shown for n = 7 mice (mean ± SD).

(E) Scale-invariant spatial correlation functions in V1 during sensory stimulation obtained 

by collapsing correlation functions for L ≥ 160 μm for drifting gratings and gray screen 

(inset). Rescaled correlations Cr0
γ as a function of distance normalized by r0. Black solid line: 

average approximating the general function F in Equation 1.

(F) Linear increase in correlation length ξ with window extent L in V1 in response to drifting 

gratings (red) or during gray screen (gray). Red solid line: linear regression for drifting 

grating (p = 2:4×10−3 chi-squared test; see STAR Methods).
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Figure 3. Neuronal model identifying linear scaling in correlation length to be unique to critical 
dynamics
(A) The model consists of an L × L grid of units, whose state at each time step can be 

resting, firing, or refractory (Rest, Fire, R1, R2). A resting unit can fire with probability h = 

10−7 or via a firing neighbor with probability P, which can be adjusted to make the network 

critical. Units are connected with a probability that decays with distance as Pconn = er/5, 

where r is the distance between the units and the connectivity K is set to 8.

(B) Correlations in activity fluctuations as a function of distance for critical (P = 0.066, left), 

subcritical (P = 0.059, right), and supercritical regime (P = 0.073, right inset). Color code: 

the linear size of the observed window or grid extent L. Broken line: zero correlation. Mean 

± SD.

(C) Correlation length ξ as a function of grid extent L for subcritical (green), critical 

(orange), and supercritical (purple) networks. Dashed line: linear growth as a visual guide. 

Note that ξ approaches linear scaling for the critical network while asymptoting outside 

criticality (green and purple).

(D) Same as (B) but rescaling the axis by the correlation zero crossing r0.

(E) Collapse error Δ is minimized at criticality (orange).

(F) Susceptibility χ, calculated as the area under the correlation function C(r) up to r0 (see 

arrow and shaded area in B), has a sharp peak at criticality.
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Figure 4. Linear scaling in correlation length for the auditory cortex
(A) Sketch of auditory stimulation during 2PI recording of a head-fixed awake mouse. A 

pure tone or two-tone combination is presented every 5 s using a microphone 10 cm away 

from the mouse’s right ear while simultaneously recording from A1 in the contra-lateral 

hemisphere.

(B) Left: example craniotomy window with tonotopic mapping of auditory areas (A1, 

primary auditory cortex; A2, secondary auditory cortex; AAF, anterior auditory field). A 

black rectangle outlines the borders of the 2PI view of the A1. Right: example ~1 × 1 

mm area of 2PI aligned to the wide-field craniotomy window on the left with windows of 

different extent. Small green regions show labeled neurons.

(C) Correlation in the fluctuations around the mean in response to auditory stimuli decays 

with distance and crosses zero, similarly as shown for V1 (mean ± SD for n = 11 mice). 

Colors: window length. Broken line: zero correlation.

(D) Collapsed correlation functions for different L (color code) during tone ON (main) and 

tone OFF (inset) (averages for n = 11 animals). Broken line: zero correlation.

(E) Correlation length scales linearly with window extent during tone ON (red) and tone 

OFF (black).
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Figure 5. Linear scaling in correlation length for the frontal cortex in behaving non-human 
primates using multi-electrode array recordings of the local field potential (LFP)
(A) Sketch of experimental design for monkey tasks. Left: monkey performs self-initiated 

pad touch for rewards while premotor cortex is recorded. Right: working memory task in 

which the monkey has to approach the correct feeder based on a cue while activity from the 

prefrontal cortex is recorded through a multi-electrode array.

(B) Overplot of LFP traces from a single trial with single electrodes (gray) and population 

average over all electrodes (black). Top: prefrontal cortex after visual “cueon” in preparation 

for motor movement. Bottom: premotor cortex for self-initiated pad touch (arrow).

(C) Example schematics to group-adjacent electrodes into square subarrays.

(D) Left: collapsed correlation functions for the different subarray sizes (colors) during “cue 

on” and “pre” (inset) periods. Right: linear growth of ξ for “cue on” (red) and “pre” (blue) 

periods. Line: linear regression.

(E) Same analysis as in (D) for self-initiated movement in premotor cortex.

For all linear regressions in (D) and (E), chi-squared test p < 10−4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Yellow Chameleon (YC2.6) NIMH, Bellay et al., 201533 N/A

Experimental models: Organisms/strains

Mouse: C57BL/6J Jackson Laboratories RRID:MGI:3028467

Mouse: CBA Jackson Laboratories RRID:IMSR_JAX:000654

Mouse: Thy1-GCaMP6 Jackson Laboratories RRID:IMSR_JAX:024275

Monkey: Rhesus (Macaca Mulatta) NIMH colony Poolesville N/A

Software and algorithms

MATLAB (various versions) Mathworks N/A

Suite2P Pachitariu et al. 201757 https://github.com/MouseLand/suite2p

Psychophysics Toolbox Kleiner et al. 200758 https://github.com/Psychtoolbox-3

Code for analysis This paper https://doi.org/10.5281/zenodo.10525350
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