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Abstract

Operant conditioning of neural activation has been researched for decades in humans and

animals. Many theories suggest two parallel learning processes, implicit and explicit. The

degree to which feedback affects these processes individually remains to be fully understood

and may contribute to a large percentage of non-learners. Our goal is to determine the explicit

decision-making processes in response to feedback representing an operant conditioning

environment. We developed a simulated operant conditioning environment based on a feed-

back model of spinal reflex excitability, one of the simplest forms of neural operant condition-

ing. We isolated the perception of the feedback signal from self-regulation of an explicit

unskilled visuomotor task, enabling us to quantitatively examine feedback strategy. Our

hypothesis was that feedback type, biological variability, and reward threshold affect operant

conditioning performance and operant strategy. Healthy individuals (N = 41) were instructed

to play a web application game using keyboard inputs to rotate a virtual knob representative

of an operant strategy. The goal was to align the knob with a hidden target. Participants were

asked to “down-condition” the amplitude of the virtual feedback signal, which was achieved

by placing the knob as close as possible to the hidden target. We varied feedback type

(knowledge of performance, knowledge of results), biological variability (low, high), and

reward threshold (easy, moderate, difficult) in a factorial design. Parameters were extracted

from real operant conditioning data. Our main outcomes were the feedback signal amplitude

(performance) and the mean change in dial position (operant strategy). We observed that

performance was modulated by variability, while operant strategy was modulated by feed-

back type. These results show complex relations between fundamental feedback parameters

and provide the principles for optimizing neural operant conditioning for non-responders.

Introduction

Operant conditioning is a commonly used procedure that provides a reinforcing stimulus as a

consequence to a desired behavior [1]. Operant conditioning of neural activity has been
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investigated for decades [2, 3], primarily at the level of the brain [4]. In this manner, an indi-

vidual learns to self-modulate a neural circuit, with the implication of neuroplastic changes

[4–7]. LaCroix [8] hypothesized that in operant conditioning there are both implicit automatic

learning processes occurring in parallel with explicit ones. However, these processes combined

with physiology of a complex brain circuit is a poorly understood process [4]. As opposed to

complex neural circuity, there exists a simpler model for neurofeedback that targets well-

understood monosynaptic stretch reflexes [9–11]. In this model, an evoked response from

electrical stimulation of the peripheral nerve is measured from the innervated muscle (i.e. H-

reflex [12]), and its amplitude is directly provided as feedback to the user. This technique,

known as operant H-reflex conditioning, was developed by Wolpaw and colleagues both in

human and animal models [13, 14]. These researchers have shown the importance of corti-

cospinal tracts in enabling operant learning of the H-reflex amplitude [15], indicated the sites

of neuroplastic changes on a synaptic level [16], and provided evidence for its translation to

humans [14]. They suggest that operant H-reflex conditioning provides an excellent model for

learning of a simple motor skill [13, 17].

Operant H-reflex conditioning typically requires about three months of training. However,

there are a substantial portion of individuals who do not learn to self-modulate the spinal cir-

cuit, known as non-responders [4, 6]. Such an investment in training for an unknown out-

come becomes prohibitive for both scientific research and clinical translation, thus it is critical

to understand why certain individuals have difficulty in learning. Operant H-reflex condition-

ing has traditionally been assumed to rely on implicit mechanisms because of its initiation in

rodent models [9, 18, 19]. Further, explicit self-modulation strategies reported in earlier oper-

ant H-reflex conditioning work were unrelated to CNS processes responsible for the task-

dependent changes in H-reflex size [14]. In contrast, functional magnetic resonance imaging

(fMRI) neurofeedback was initiated in humans and was first believed to be entirely governed

by explicit processes [7]. However, a contemporary work showed implicit learning with no

instructed explicit strategy was successful in modulating early visual cortical activity [20], and

further evidence solidified that implicit learning mechanisms were indeed feasible [21]. The

relative roles of implicit and explicit processes in operant conditioning of neural signals is still

debated [4, 20, 22], and may be influenced by the trained neural substrate. Our anecdotal evi-

dence suggests that even though prior to training we have no conscious ability to regulate

monosynaptic reflex activity, explicit mechanisms may play a role in operant H-reflex condi-

tioning [23]. Specifically, we observed the performance of a post-stroke individual trained to

operantly condition the H-reflex of the rectus femoris (RF) remained static until the partici-

pant was consistently reminded of the instructions.

We have developed a paradigm that helps isolate explicit and implicit learning mechanisms

in neural operant conditioning. We previously developed a simulated fMRI neurofeedback

environment that separated the ability to self-regulate the neurofeedback signal from its per-

ception by using an explicit, unskilled visuomotor task [24]. We then validated this model

empirically in a fMRI neurofeedback experiment [25]. By creating artificial brain activity

based on real data and testing outside the scanner, we could vary certain parameters such as

hemodynamic delay and feedback delay to efficiently examine the effects of feedback on learn-

ing. We found that the feedback timing and hemodynamics affected strategy and performance.

These results critically emphasize the importance of understanding the characteristics of the

feedback signal that modulate explicit strategy and ultimately operant conditioning

performance.

The goal of this study was to further understand the explicit aspect of learning during the

operant H-reflex conditioning process. As in our previous simulated neurofeedback paradigm

[24], operant conditioning can be broken down into perception, decision making,
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conditioning ability, and biological variability (noise) components. Based on our data of oper-

ant H-reflex conditioning [23], we can simulate the level to which individuals can condition

the H-reflex, as well as the range of variability of the H-reflex. Assuming unimpeded percep-

tion, we can isolate the effects of simulated feedback on explicit decision-making processes

likely occurring during actual neural operant conditioning. Our hypothesis was that several

factors likely affected explicit learning: 1) Kr feedback will improve performance compared to

Kp feedback [26], 2) larger biological variability will result in worse performance, and 3) the

reward threshold modulates performance and strategy.

During this cognitive experiment, neurologically intact participants were asked to play a

simple computer game, wherein the task was to rotate a virtual rotary knob representative of

an operant strategy. The simulated H-reflex was composed of a knob-controllable canonical

form of the H-reflex with biological variability and measurement signal noise extracted from

the actual H-reflex data collected previously [23]. As the inherently variable nature of H-reflex

amplitude has been shown to be correlated with the fluctuations in motoneuronal membrane

potential [27], application of data-driven biological variability and signal noise enabled our

simulation environment to be as similar to the neurophysiological environment of operant H-

reflex conditioning as possible. The goal was to align the knob with a hidden target, of which

the proximity of the knob to the target was proportional to the feedback signal. In other words,

participants were asked to “down-condition” the virtual feedback amplitude, which was

achieved by placing the knob as close as possible to the hidden target. The task is analogous to

a tuning dial on a radio, where the participant aims to find the best signal. Thus, we are replac-

ing a skilled operant conditioning task with a simplified, unskilled tuning task that enables us

to quantify operant strategies at an unprecedented level. We then compared this model to real

operant H-reflex conditioning performance to demonstrate the similarity in learning processes

between the simulation environment and that of operant H-reflex conditioning. This experi-

ment represents a novel approach to understanding the role of feedback parameters in explicit

learning that is likely taking place during neural operant conditioning. The simulated operant

H-reflex conditioning environment provides an efficient method for analyzing and possibly

improving learning. This approach may also assist in identifying non-responders, ultimately

enhancing the robustness of operant H-reflex conditioning.

Methods

Subjects

A total of 41 healthy participants were recruited with no history of vision impairment, cogni-

tive impairment, and neurological disease or injury. The participants were 24 men and 17

women aged 20–41 between April and July 2021. The study was considered exempt by the

University of Texas at Austin Institutional Review Board. While consent was not required, it

was acquired via email or verbally from all participants prior to participation. There was no

documentation collected linking participant identity to their data. To prevent variation in

one’s concentration level, sessions were performed at the same time of the day for everyone.

The experiment consisted of three sessions, Sessions 1 and 2 took approximately 1.5 hours to

complete and Session 3 took approximately 30 minutes. All sessions were performed at least a

day apart.

Experimental protocol and data collection

This experiment was conducted virtually, where the participant was asked to use their personal

computer and play a simple computer game via a web application (web app). The web app was

designed using the Matlab App Designer (MathWorks, Natick, MA), and was established at
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the University of Texas at Austin’s Matlab Web App server. Participants were emailed a link

prior to the experiment. The participant and investigator met virtually on the scheduled date,

where a webcam was used to monitor the session to ensure attention and efficient trouble-

shooting in case of any problems. The experimental protocol consisted of 4 stages: instruction,

consent, demonstration (practice run), and the experiment. The experiment was carried out

over three separate sessions at least a day apart.

During the Instruction stage, participants were briefly informed about the purpose of the

study, approximate duration, future experimental schedule, and compensation for their partic-

ipation. The virtual consent was held as a reconfirmation of the participants’ voluntary com-

mitment toward the task and individuals were free to withdraw from the experiment whenever

desired. If the participant chose to participate in the study, the participant provided their full

name and e-mail address as an electrical signature. Personal information acquired at this stage

was encrypted and data was anonymized based on this encryption.

The Demonstration stage was considered a practice run and participants were informed of

the visual layout, the keyboard control, task goal, and the experimental structure of the experi-

ment in a detailed manner. The visual layout consisted of rotary dial knob, feedback bar,

attempt number, and cumulative success rate (Fig 1). The layout was modeled after the tradi-

tional protocol in earlier work [14]. The rotation of the rotary knob was controlled by key-

board inputs, arranged based on desired hand: fast counterclockwise (A if left side desired or L

if right side desired), slow counterclockwise (S, K), fast clockwise (F, H), slow clockwise (D, J),

and select (spacebar). The task goal was to align the rotary knob with a hidden target (invisible

during experiment but shown in orange in Fig 1). The displacement of the rotary knob is a

one-dimensional reduction serving as a proxy for the decision making occurring during oper-

ant H-reflex conditioning. That is, the amount of angular displacement of the rotary knob is

reflective of the mental strategy selection or effort during real operant H-reflex conditioning.

The dial was programed to move after each keystroke and did not move continuously when

the key was pressed and held. There was no time limit for each trial, and participants were

Fig 1. Visual layout of the web application and feedback parameter. (a) A feedback screen for the participant, in which they were asked to rotate the virtual

rotary knob to find the hidden target. The feedback bar indicated the amount of error (Knowledge of Performance, Kp feedback) or success/failure information

(Knowledge of Results, Kr feedback) in finding the target via changing the bar height (Kp) or color (Kr). Participants received additional feedback of a running

score of their performance and trial number. (b) Visualization of feedback parameters: feedback type (performance, Kp, knowledge Kr, and both KpKr),
biological variability (low, LV and high, HV), and reward threshold (easy, ET, moderate, MT, and difficult, DT).

https://doi.org/10.1371/journal.pone.0300338.g001
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allowed to move the dial as much as necessary, before confirming their decision by pressing

the spacebar. Once the position was selected the web app generated a simulated H-reflex.

Simulated H-reflex

We modeled the H-reflex (Fig 2) by decomposing it into parts to investigate the role of these

subcomponents on learning in a simulation. For each trial (k), when the participant explored

the hidden target and confirmed decision by pressing spacebar, a simulated H-reflex (hsim(k))

was generated and presented as feedback bar graph (Fig 3).

The simulated H-reflex was composed of knob-controllable canonical form of the H-reflex,

decision gain, biological variability and signal noise driven from the actual H-reflex data. The

canonical form was a single period sine function. The amplitude of the sine function ac(k) was

determined by the difference (error) between the dial position (θ(k)) and the hidden target

(θtar), and multiplied by a predetermined gain, g:

acðkÞ ¼ gðyðkÞ � ytarÞ ð1Þ

The peak-to-peak value of the canonical form was a linear function set at 1 when the error

was 180˚ and 0.5 when the error was 0˚. Thus, for down-conditioning, the best possible perfor-

mance of 0.5 was extracted empirically from earlier work on operant down-conditioning of

the RF H-reflex [23]. In other words, having a peak-to-peak value closer to 0.5 implied the

Fig 2. Representation of rectus femoris (RF) H-reflex. Electromyography (EMG) activity during femoral nerve

stimulation is depicted. After the onset of electrical stimulation on the femoral nerve, a motor response (M-wave) and

monosynaptic spinal reflex (H-reflex) is elicited. The H-reflex profile was decomposed to investigate the role of these

subcomponents on learning in a simulation.

https://doi.org/10.1371/journal.pone.0300338.g002
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subject was successful in matching the hidden target, which can be translated as success in the

context of down-conditioning, whereas value closer to 1 implied failure. We modeled the natu-

ral biological variability of the H-reflex (σ2) with a normal distribution obtained from a set of

participants’ H-reflexes, also from previous work [23]. All analyses and distribution model fit-

ting was performed using MATLAB software (MATLAB 2019a, Mathworks, Natick, MA). We

used the minimum and maximum variability (LV, σ2 = 0.25 and HV, σ2 = 0.75, respectively) of

the dataset. This variability was applied in the form of normal distribution (β(k)~N(μ,σ2)) gen-

erated by Box-Muller transform [28]. Based on the same distribution, the dominant noise

power (aN) of H-reflex signals was analyzed using Fast Fourier Transform (FFT) and applied

to the simulated H-reflex. To measure performance, we acquired the simulated H-reflex,

hsim(k), using the following equation:

hsimðkÞ ¼ ðsinðtÞ∗acðkÞ∗bðkÞ þ aNÞpk� pk ð2Þ

For the Demonstration, the participant conducted 5 familiarization trials for two condi-

tions, Kp, and Kr. Both terms are commonly used in psychology [26], where Kp provides

information about how the task was achieved and Kr is knowledge about whether the goal of

the task was achieved. In this sense, Kp focused on reducing the feedback bar height and Kr
focused on maintaining the bar height below a threshold. During Kp, a blue bar was presented

(Fig 1B, top right), in which the height was peak-to-peak magnitude of the simulated H-reflex.

No bar color change was associated with Kp feedback. For Kr, the bar color changed based on

Fig 3. Simulated H-reflex. Simulated H-reflex (hsim) is generated by applying decision gain (ac), biological variability

(β), and noise (aN) on the H-reflex time-course and the peak-to-peak magnitude is provided as the visual feedback for

the participant. Participant uses information to adjust one’s strategy (Δθ) to either minimize the feedback bar height or

turn the bar green.

https://doi.org/10.1371/journal.pone.0300338.g003
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the result of the comparison between the simulated H-reflex magnitude and the pre-deter-

mined threshold levels (Fig 1B, middle right). The threshold levels were chosen as the 44th,

66th, and 77th percentile of the 1,350 evoked H-reflexes without feedback [23], designated as

easy/moderate/difficult thresholds (ET = 0.46, MT = 0.7 and DT = 0.96, respectively). If the

magnitude of the simulated H-reflex was below the threshold, the bar turned green indicating

success and the cumulative score increased. If hsim(k) was larger than the threshold, the bar

turned red, indicating failure and the score decreased. The bar height and the threshold were

kept hidden from the participants during the Kr condition and only the binary result with

fixed bar height was provided as feedback. Not introduced in the Demonstration, but used

later in the Experiment, is the combination of Kp and Kr feedback, which is the KpKr condi-

tion, but with a moving bar height as described above (Fig 1B, bottom right), reflecting cur-

rent operant H-reflex conditioning practices [14].

Following the Demonstration, we introduced the Experiment phase. The experimental

structure comprised of 10 different conditions including factors of three feedback types (Kp/

Kr/KpKr), low/high biological variability (LV/HV), and three reward threshold levels (ET/

MT/DT), the latter factor during Kr feedback only (Fig 4A).

We conducted 3 sessions on different days at least one day apart: Session 1 (C1-C4), Session

2 (C5-C8), and Session 3 (C9-C10) (Fig 4B). The Experiment stage consisted of 10 runs of

each condition of 35 trials each (Fig 4B). A “trial” was defined as a single decision, where the

individual explored the hidden target using keyboard inputs, confirmed one’s decision by

pressing spacebar, and feedback bar was updated accordingly. The order of the conditions

within a run was pseudo-randomized to avoid effects of ordering [29]. Each session took

approximately 1–1.5hrs and the participant was able to take an optional short break in between

runs with a mandatory 1-minute break after the 5th run. The subject was informed of the

progress in percentage by a pop-up window after each even numbered run (i.e., 2nd, 4th, 6th,

and 8th run).

Fig 4. Experimental condition and protocol. (a) Total of ten conditions were tested, based on the different feedback types (performance, Kp, results, Kr, and

both, KpKr), biological variability (low, LV and high, HV), and reward threshold (easy, ET, moderate, MT, and difficult, DT). (b) There were three sessions in

this experiment. Each session was comprised of 10 runs. Within each run, there were 4 conditions for Session 1 and 2, and Session 3 had two conditions. For

each condition, the participant was given 35 trials.

https://doi.org/10.1371/journal.pone.0300338.g004
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Statistical analysis

Our main outcome measures consisted of the mean simulated H-reflex amplitude (perfor-

mance, hsim(k)) and the mean change in dial position between trials (operant strategy, Δθ(k)).

Operant strategy is a measure of the participant’s exploration in finding a hidden target, which

was the angular difference between the present dial position and previous trial’s dial position.

To determine the effects of each of the experimental parameters (feedback type, biological vari-

ability, and reward threshold) on the performance and operant strategy of the participants, the

average performance and operant strategy of different conditions were compared by one-way

repeated measures ANOVA with Tukey HSD post-hoc test (α< 0.05). Our main hypotheses

were: 1) Kr feedback will improve performance compared to Kp feedback, 2) larger biological

variability will result in worse performance, and 3) the difficult reward threshold (DT) will

worsen performance and make the operant strategy less aggressive (or exploratory). In addi-

tion, to test for interaction effects of experimental parameters on performance and operant

strategy (e.g., interaction between the biological variability and feedback type on perfor-

mance), two-way repeated measures ANOVA with Tukey HSD post-hoc test was used.

Similarity of learning process during simulated environment: Comparison

with real operant H-reflex conditioning

To illustrate similarities between learning in the simulated environment and actual operant H-

reflex conditioning behavior, we used a statistical model. We computed a single linear mixed

model (LMM) based on conditions C9 and C10 from all participants in the simulated environ-

ment (KpKrLVMT and KpKrHVMT). We included the performance mean across a single run

as the dependent variable with the fixed effect of biological variability and the random effect of

participant. Using this LMM driven from the simulated environment, we then input measured

(i.e., real) H-reflex variability extracted from data collected previously for five healthy and two

participants post-stroke performing operant RF H-reflex conditioning [23], to calculate the

estimated performance. Later, we normalized the estimated performance magnitude for direct

comparison with real operant H-reflex conditioning performance, using the method men-

tioned in our previous study [23]. We compared the estimated performance from the LMM

based on measured H-reflex variability with the real operant H-reflex conditioning

performance.

There were 24 training sessions, wherein each session was comprised of 3 runs. Using the

model, we predicted the performance mean of each of 72 runs. To examine the prediction

accuracy, a Pearson’s correlation coefficient with (df = 70, α< 0.05) was computed to assess

the linear relationship between the actual performance and the estimated performance.

Results

Effect of biological variability and feedback type on performance

Increased biological variability worsened performance, as evidenced by higher values

(Table 1). Under both levels of biological variability, the Kp feedback type exhibited the poor-

est performance and the KpKr exhibited the best performance (Kp-KpKr = 0.037±0.008,

p< 0.0001, Tukey HSD) (F). The difference was larger during the high variability conditions

than low variability conditions. We observed a strong trend towards statistical significance of

an interaction effect between the biological variability and feedback type on performance

(F(2,216) = 2.98, p = 0.05, two-way ANOVA). A summary of comparisons is provided in Fig 5

and Table 1. Detailed values of performance and comparison are provided in S1 Table.
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Effect of biological variability and feedback type on operant strategy

Operant strategy, quantified by the change in angle of the dial (Δθ), was not significantly

different across biological variability levels. Also, no significant difference in operant strat-

egy was observed across different feedback types overall (Table 1). However, during LV,

operant strategy was more aggressive during Kr compared to Kp feedback (Kp-Kr = 4.79
±0.09, p< 0.0001, Tukey HSD) (Fig 5). This inconsistent result raised the question of

whether there was any interaction effect between the biological variability and feedback

type on operant strategy. Reduced biological variability enhanced the difference in operant

strategy between Kp and Kr feedback (F(2,216) = 4.683, p< 0.05, two-way ANOVA). Results

are summarized in Fig 5 and Table 1. Detailed values of strategy and comparison are pro-

vided in S1 Table.

Effect of biological variability and threshold level on performance

Increased biological variability worsened performance overall (Table 2). At low variability,

performance was worst at the easy threshold level compared to difficult and moderate thresh-

old levels (Table 2). However, at high variability, we did not observe any difference in perfor-

mance across different threshold levels (p>0.05). Using a two-way repeated measures

ANOVA, we observed a significant interaction effect between the biological variability and

threshold level (F(2,238) = 14.2, p<0.001, two-way ANOVA) on performance. A summary of

comparisons is found in Fig 6 and Table 2. Detailed values of performance and comparisons

are provided in S2 Table.

Effect of biological variability and threshold level on operant strategy

Threshold level had a significant effect on operant strategy (F(2,238) = 28.61, p<0.001, two-
way ANOVA), with an easier threshold resulting in a less aggressive strategy (Fig 6). We

did not observe a significant effect of biological variability on operant strategy (F(1,238) =
0.32, p = 0.5703, one-way ANOVA), but increased signal variance decreased the effect

of threshold on strategy (F(2,238) = 6.48, p<0.005, two-way ANOVA) (Fig 6). Pairwise com-

parisons also indicated increased aggressiveness in operant strategy as threshold became

more difficult (Table 2). Detailed values of strategy and comparisons are provided in

S2 Table.

Table 1. Effect of biological variability and feedback type on performance and operant strategy (moderate

threshold).

Pair-wise Comparison Performance Operant Strategy

HV$ LV 0.114±0.004 (***) -1.449±0.074˚ (ns)

Kp$ KpKr 0.037±0.008 (****) 1.168±0.080˚ (ns)

Kp$ Kr 0.015±0.005 (*) 1.512±0.061˚ (ns)

Kr$ KpKr 0.021±0.009 (***) -0.344±0.086˚ (ns)

Values represent overall mean ± SE. Tukey HSD post hoc tests conducted for pair-wise comparisons ($) between

different conditions.

Statistical significance

(* p<0.05

**p<0.01

***p<0.001

****p<0.0001)

https://doi.org/10.1371/journal.pone.0300338.t001
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Fig 5. Effect of biological variability and feedback type on performance and operant strategy (moderate

threshold). On each box, the notch indicates the median, and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers. Red

cross (‘+’) marker symbol represents outliers. Grey lines connect each participants’ value across different conditions.

Each color represents different feedback types (Blue: Kp, Green: Kr, and Turquoise: KpKr). Results for performance

and operant strategy under low and high biological variability conditions are shown. Tukey HSD pair-wise

comparisons between different feedback type during each biological variability are added. Statistical significance (*
p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

https://doi.org/10.1371/journal.pone.0300338.g005

Table 2. Effect of biological variability and threshold level on performance and operant strategy.

Pair-wise comparison Performance Operant strategy

HV$ LV 0.105±0.004 (***) -0.562±0.037 (ns)

DT$ ET -0.040±0.001 (****) 8.772±0.071 (****)
DT$MT 0.001±0.001 (ns) 5.281±0.086 (****)
MT$ ET -0.041±0.001 (****) 3.485±0.092 (**)

Values represent overall mean ± SE. Tukey HSD was used for pair-wise comparisons between conditions of high and

low variability (HV, LV) and difficult, moderate, and easy threshold (DT, MT, ET).

Statistical significance

(* p<0.05

**p<0.01

***p<0.001

****p<0.0001)

https://doi.org/10.1371/journal.pone.0300338.t002
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Similarity in learning during simulation: Comparison with operant H-

reflex conditioning result (run-by-run analysis)

Our simulated results demonstrated fair to strong positive correlations with real operant H-

reflex conditioning results [30]. Real performance of 7 participants from previous work (5

healthy and 2 post-stroke) [23] was compared to simulated performance estimated by the

LMM (Table 3). All participants’ data were significantly correlated to the simulated data. The

strength of the correlations was strong in one healthy individual, moderate in three healthy

individuals, and fair in one healthy individual and two post-stroke individuals. A representa-

tive example of a strong correlation between real and simulated data is shown in Fig 7. Real

data (solid line) consisted of the mean performance of each run of operant H-reflex condition-

ing training (72 runs = 24 sessions x 3 run/session). Estimated performance based on the

LMM using the measured H-reflex variability extracted from each specific run is shown as a

dashed line (Fig 7).

Discussion

The goal of the present study was to investigate the effect of feedback type, biological variabil-

ity, and reward threshold on individuals’ feedback performances and operant strategies in a

Fig 6. Effect of biological variability and threshold level on performance and operant strategy. On each box, the

notch indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points not considered outliers. Red cross (‘+’) marker

symbol represents outliers. Grey lines connect each participants’ value across different conditions. Each color

represents different reward thresholds (Black: Difficult, Dark gray: Moderate, and Light gray: Easy). Results under low

and high biological variability conditions are exhibited. Tukey HSD was used for pair-wise comparisons between

conditions. Statistical significance (* p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

https://doi.org/10.1371/journal.pone.0300338.g006
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simulated operant H-reflex conditioning environment. We used a novel simulation environ-

ment based on real operant H-reflex conditioning parameters to isolate the effect of feedback

parameters on explicit learning. Our main findings, consistent with our hypotheses, were that

1) Kr feedback resulted in better performance than Kp feedback alone, 2) larger biological vari-

ability worsened feedback performance, 3) biological variability modulated the effect of feed-

back type on operant strategy, 4) biological variability modulated the effect of reward

threshold on strategy, and 5) a difficult reward threshold resulted in better performance and

more aggressive operant strategies. Performance in the simulated environment, albeit gov-

erned entirely by explicit learning processes, was found to be similar to actual operant H-reflex

conditioning performance. This study is a new approach to understanding the learning

Table 3. Comparison of the simulated environment to real operant H-reflex conditioning.

Pearson’s Correlation

Subject R p-value

H1 0.832 < 0.0001

H2 0.676 < 0.0001

H3 0.500 < 0.0001

H4 0.598 < 0.0001

H5 0.491 0.0059

S1 0.308 0.0195

S2 0.411 0.0003

Comparison between two environments comprised of testing a correlation between the performance during real

operant H-reflex conditioning for 5 healthy participants (H1-5) and 2 participants with stroke (S1-2) and that of

simulated environment.

Statistical significance

(* p<0.05

**p<0.01

***p<0.001

****p<0.0001)

https://doi.org/10.1371/journal.pone.0300338.t003

Fig 7. Representative comparison of real and simulated performance. Normalized performance (%) of H-reflex for

simulated environment, real operant H-reflex conditioning environment, and random environment are presented. A

simulated environment driven LMM was used to predict real operant H-reflex performance in a single individual (H1)

given the biological variability for each run. The real consisted of the mean performance in each of 72 training runs.

https://doi.org/10.1371/journal.pone.0300338.g007
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mechanisms of operant H-reflex conditioning. Our results suggest that explicit processes play

a role in operant H-reflex conditioning, and this process is modulated by feedback parameters.

This paradigm can be used to quickly examine different feedback parameters on operant learn-

ing and potentially identify non-responders, ultimately improving the procedural robustness

of self-modulation of H-reflex activity.

Neural operant conditioning incorporates both explicit and implicit learning processes that

are difficult to delineate. In our earlier work, we used a novel simulated operant conditioning

environment approach to separate implicit and explicit processes based on real fMRI data [24]

and then validated this model experimentally [25]. One of the novelties of this work is the

adaptation of this paradigm for operant H-reflex conditioning, a significant development

because it allows investigation of basic skill learning principles. Motor skill learning paradigms

have different levels of variability, such as the efferent command and variability of the environ-

mental dynamics [31, 32]. Operant H-reflex conditioning has been classified as a simple motor

learning task [33]. In this study, we use an unskilled motor task as a proxy for operant strategy

and then simulated the natural variability of the H-reflex [34], thereby transferring efferent

variability to environmental variability. This innovation allows investigation into two factors:

operant strategy unaffected by efferent noise due to the use of an unskilled task as a proxy, and

the controlled analysis of the effect of biological variability.

Thus, this approach enables an understanding of the operant strategies one uses. This per-

spective into operant strategies is unique compared to tasks such as neurofeedback, where

operant strategies can only be reported anecdotally, or motor skill learning, where the explicit

strategies can be measured, but are filtered by kinematics and muscle activity.

Biological variability played a multifaceted role on performance and strategy. We expected

the performance to be worse with higher biological variability. Signal noise affects motor learn-

ing [35, 36], and more specifically, has been shown to reduce operant H-reflex conditioning in

animal models [19]. The results from the simulated environment aligned with this expectation.

Additionally, we expected one’s strategy to be less exploratory or aggressive in case of larger

variability given lower reliability on feedback, which was confirmed by our data. We observed

that during low variability, Kp feedback resulted in more aggressive operant strategies than Kr
feedback, but we did not observe a difference under high variability. Thus, feedback type

affects operant strategy only when the variability is low. This observation is novel because we

have focused on the interaction effect of biological variability and feedback type on operant

strategy, while other studies have only focused on either the biological variability [32, 37] or

feedback type [38].

We have also explored the effect of reward threshold level on performance and operant

strategy. Previous work in visuomotor learning [39] has emphasized the effect of negative feed-

back (e.g., failure) on increased variability of subject’s motor strategy during reward-based

learning. Also, work in motor learning has indicated that reward threshold affects motor learn-

ing [32], and as such, we hypothesized that making the reward threshold more difficult than

what is typically provided in operant H-reflex conditioning testing [14] would worsen perfor-

mance. We observed that performance was affected by threshold level, biological variability,

and the interaction between the two. Specifically, at low variability, the easy threshold level

worsened performance, however, at high variability, we did not observe a change in perfor-

mance. Such an interaction is expected as the environment (noise) is known to modulate the

effect of task difficulty on motor learning [40]. Given the specific parameters of this task, it

would be difficult to compare other work in relation to these findings. However, from an

explicit learning perspective, an easier threshold is advised against, when signal noise is suffi-

ciently low.
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We observed that at low variability Kr feedback was more effective in improving perfor-

mance than during Kp feedback. Kr feedback has typically been associated with skilled motor

learning processes, in short term and long-term learning [41]. In this study, we show the value

of Kr in an unskilled task, independent of any long-term learning. Interestingly, when biologi-

cal variability was high adding Kp to Kr resulted in further improvement in performance how-

ever not when variability was low. Since Kp provides feedback of the distance to target, given

low variability, and thus high confidence in the accuracy of the feedback, we would expect Kp
to outperform Kr. Within the application of operant reflex conditioning, Kr feedback is suffi-

cient for explicit learning of the task. Given the association of Kr feedback with long-term

learning [41, 42] it likely also suffices for implicit processes. However, across biological vari-

ability, KpKr feedback showed the best performance. Thus, our results support the continued

use of KpKr feedback in operant reflex conditioning.

We found fair to strong correlations between performance in our explicit task and real

operant H-reflex conditioning. The amount of variance explained for real operant H-reflex

conditioning performance by this purely explicit model suggests that explicit learning likely

plays a role in operant H-reflex conditioning. Previous studies [33, 43] have suggested that the

process of learning or skill acquisition, such as operant conditioning, involves both explicit

and implicit mechanisms. Our simulated environment, however, focused only on the explicit

mechanisms (i.e., virtual rotary knob control). Given the growing evidence for the primary

role of implicit mechanisms in neural operant conditioning [20, 44, 45], this finding that

explicit processes explain so much variance in the data was surprising. Although inconclusive,

we observed that the biological variability explained by our model was lowest in the two post-

stroke individuals. Despite the difference in correlations with our model, the performance of

the two post-stroke individuals during real operant H-reflex conditioning was equal or better

than the healthy individuals, perhaps suggesting different learning processes occurring post-

stroke.

Our simulation paradigm possesses two major limitations that preclude drawing a direct

inference of how learning from simulation may be transferred to real operant H-reflex condi-

tioning capability. First, our simulation model was designed as a one-dimensional study,

which solely focused on the angle of the rotary knob with a single global maxima and minima.

In the real operant H-reflex conditioning environment, however, reported operant strategy is

multi-dimensional and varies within and across participants, which could lead to strategic

local maxima and minima [14, 46]. The current paradigm should not show run-by-run learn-

ing (Fig 7) because there was no strategy or information in this unskilled task to carry over to

the following runs. However, future investigations could examine learning on a trial-by-trial

basis [47, 48]. Other approaches could adapt this paradigm to incorporate multi-dimensional

strategies. Second, our feedback parameters (e.g., biological variability, reward threshold) were

chosen based on a limited pool of 7 subjects’ data from our prior work [23]. As H-reflex is

known for its large biological variability originating from various reasons [49], our two-level

variability analysis can be expanded to further investigate the effect of multi-level biological

variability.

Conclusions

We developed a simulated environment of operant H-reflex conditioning to investigate the

effects of feedback parameters on explicit learning. The model explained a large portion of the

variance of the real H-reflex conditioning despite lacking any implicit learning process. This

simulated paradigm may potentially allow the investigation of parameters beyond the capabil-

ity of real operant H-reflex conditioning and far more efficiently. Our model suggests that the
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conditions for best operant H-reflex conditioning performance is to provide both reward and

error feedback with at least a moderate (66th percentile success rate) threshold, particularly

with low biological variability of the H-reflex. Operant strategy is most aggressive at low vari-

ability with error feedback (knowledge of performance) and with a more difficult reward

threshold. As variance increases, the effects of feedback type and reward threshold are not as

strong. The future of this simulation paradigm may provide a better understanding of learning

strategies and ability to identify non-responders, ultimately enhancing the robustness of oper-

ant H-reflex conditioning.
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