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ABSTRACT
The kppm is a standard procedure to estimate the parameters of the
inhomogeneous Cox point process. However, the procedure cannot
handle the problem when the models involve correlated covariates.
In this study, we develop the kppmenet, the modified version of the
kppm, for the inhomogeneous Cox point process involving correlated
covariates by considering elastic net regularization. We compare the
methodology in a simulation study and apply it to model major-
shallow earthquake distribution in Sumatra, Indonesia. We conclude
that the kppmenet outperforms kppmwhen correlated covariates are
involved.
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1. Introduction

1.1. Background

Spatial point processes are stochastic processes which model point patterns distributed
in space, such as random locations of earthquake occurrences, species of trees, disease
cases, and crime events [2,4,12]. Cox point process is one of the main important point
process models to analyse point patterns which tend to be clustered or aggregated due
to its natural mechanism [8,24,25,29]. For parameter estimation, the Cox point process
however requires heavy computation using Markov chain Monte Carlo (MCMC) due to
its intractable likelihood function involving random intensity [21]. To tackle this issue, the
popular spatstatR package procedurekppm [2,19,30] developed a two-step procedure
where the parameters related to the first and second moments are estimated consecutively
in two steps. In particular, the composite likelihood [22,29] is developed in the first step
to estimate the first-order intensity. Given the estimated first-order intensity, minimum
contrast estimation, second-order composite likelihood, or palm likelihood is derived to
estimate the second-order intensity in the second step of the procedure, see [19,27,30].
Such a procedure performs well and satisfies asymptotic properties [30].
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In recent years, more data and information such as spatial covariates are often included
in the point pattern data analysis to enhance more insight and interpretation. To include
the effect of spatial covariates on a Cox point process model, the random intensity involves
parametric terms depending on spatial covariates, see Equations (2) and (6). Such an
adaptation does not affect the estimation procedure, i.e. the two-step procedure (kppm)
can still be performed for such a Cox point process, where the parameters quantifying
the effect of spatial covariates are estimated in the first step through regression analysis
[9,19,22]. However, when highly correlated covariates or a large number of covariates are
involved, the procedure kppm is not able to tackle this issue (see Section 1.2 for more
details).

In regression analysis, the regularization method has been developed to handle mul-
ticollinearity and perform variable selection. For example, elastic net regularization [16]
combines ridge and lasso methods to prevent estimates suffering from large variances and
to conduct variable selection. Recently, the regularization method has been developed for
the spatial point process tomodel its intensity depending on a number of spatial covariates.
In particular, the technique centres around the regularized first-order composite likeli-
hood, see, e.g. [5,6,32]. This technique gains much attention and development in different
contexts within the point process framework (e.g. [8,10,17,23]). However, since Cox point
processes depend on the two groups of parameters related to the first-order and second-
order characteristics of the point process, it is not clear how to employ the regularization
procedure.

In this study, we extend the two-step procedure [19,30] for the inhomogeneous Cox
point process involving correlated covariates. In particular, we modify the first step of the
procedure by introducing elastic net regularization [16] and then mimic the second step
by considering minimum contrast, composite likelihood, or palm likelihood.We term this
procedure kppmenet. The kppmenet combines the kppm function of the spatstat
package [2] and glmnet function of the glmnet package [13], which makes the proce-
dure very practical. Apart from elastic net regularization, the kppmenet also covers ridge
and lasso (and also its adaptive versions, see [5]), depending on the set-up of the tuning
parameters (see Remark 2.1). The procedure kppmenet is integrated in the spatstat
package procedure kppm by setting the option ppm.improve.type = ‘enet′.

The remainder of the paper is organized as follows. We present in Section 1.2 the
dataset motivating the study. Section 2 details the methodology, applied to the simula-
tion experiment in Section 3 and real data analysis in Section 4. Conclusion is given in
Section 5.

1.2. Dataset

The dataset includes the pattern of earthquake coordinates in the Sumatra region, Indone-
sia, and three geological variables. In particular, Figure 1 presents the locations of 6900
major-shallow earthquakes (magnitude≥4M, depths≤60 km) during 2004-2018 in the
Sumatra (D = [104.517, 119.295] × [−6.518, 7.378] 100 km2), along with the locations of
volcano, fault, and subduction in the same region. These three variables are transformed
into pixel images bymeasuring the distance of each coordinate within the region to each of
the nearest geological variables and then treated as spatial covariates (see Figure 2). Using
the point process framework, several studies [1,4,26] prove the effect of the geological
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Figure 1. Locations of earthquake occurrences withM≥ 4 and depths≥ 60 km in Sumatra (circle) dur-
ing 2004–2018 and locations of volcano (triangle), fault (left-side line), and subduction zone (right-side
line) in the same region. Note that volcano and fault concur closely each other.

Figure 2. Spatial covariates representing the nearest distance per 100 km of each coordinate within the
Sumatra region to the geological variables: (a) volcanoes, (b) faults, and (c) subduction zones.

factors on the distribution of earthquake occurrences respectively in Kashmir (Pakistan),
Greece, and Sulawesi-Maluku region (Indonesia).
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Previously, Choiruddin et al. [9] analysed the distribution of earthquake locations in
Sumatra depicted in Figure 1 and further investigated the inhomogeneity due to three geo-
logical covariates and clustering due to main shock and aftershock activity using variants
of Neyman–Scott Cox point processes. Although the models perform well in terms of the
envelope test and intensity prediction, the model might have issue on interpretation and
estimation due to multicollinearity because all geological covariates have strong correla-
tion (see Figures 1 and 2 and Section 4). In particular, when all three geological variables
are included in the model, the volcano, which is supposed to perform a negative impact,
gives a positive effect (the closer the location to a volcano, the less risk of having a major-
shallow earthquake). To avoid such an issue, volcano was eliminated in the model and was
considered as an insignificant covariate. In this study, we propose a remedy to improve the
analysis previously conducted by Choiruddin et al. [9] by performing the kppmenet. The
results are discussed in Section 4.

2. Methodology

Let x = {x1, . . . , xm} denote a set of earthquake locations observed in a bounded regionD,
where for each i = 1, . . . ,m, xi represents the coordinate of the ith earthquake andm is the
number of earthquake events in D. Let X be a spatial point process on R2 which models
the point pattern x and has first- and second-order intensity functions λ and λ2. We refer
the readers to [2,21] for more materials of the spatial point process.

In this study, X is a class of Cox point processes involving covariates detailed in
Section 2.1. Cox point processes have been considered for the analysis of earthquake dis-
tribution, whether or not covariates are incorporated in the model (e.g. [4,9,25,28]). We
present the estimation technique used in the procedure kppmenet in Section 2.2.

2.1. Cox point processes

A Cox point process is defined in terms of a non-negative random process �, where
given� = {�(u), u ∈ D}, the conditional distribution ofX is a Poisson point process with
intensity� [21]. The first and second order intensity functions of a Cox process are

λ(u) = E�(u), λ2(u, v) = E[�(u)�(v)], u, v ∈ D, (1)

where the intensity λ(u) quantifies the probability of observing an event or object in a
coordinate u, and where the second order intensity λ2(u, v) measures the probability of
observing a pair of points at u and v.

The two popular classes of Cox point processes are the log-Gaussian Cox process and
Neyman–Scott Cox point process.

2.1.1. Log-Gaussian Cox process
LetG be a Gaussian random field and �(u) = exp(G(u)). If conditionally on �, the point
process X is a Poisson process, then X is a log-Gaussian Cox process (LGCP) driven by�
[21,22].

Choiruddin et al. [4] argue that the random intensity � obtained from the LGCP
could represent a random environment generating the aftershock events and could be
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decomposed into different sources of variation. In particular, the log-linear model

log�(u) = β�z(u) + φ(u), (2)

could represent the sources of variation due to observed geological covariates and unob-
served variables. The first term includesβ�z(u), where z(u) = {z1(u), . . . , zp(u)}� is a vec-
tor of geological variables and β = {β1, . . . ,βp}� is the corresponding regression param-
eters. When z(u) involves many and/or correlated variables, there would be some issues
in estimating β using the standard procedure. Next, the second term φ is a zero-mean
stationary Gaussian random field with covariance function c(u, v;ψ) = σ 2 exp(−‖u −
v‖/α), u, v ∈ D. Therefore, ψ = (σ 2,α)� plays a role of an interaction parameter vec-
tor, where σ 2 > 0 is the variance and α > 0 is the correlation scale parameter. By (1), the
intensity function of an LGCP with random intensity (2) is

λ(u;β) = E�(u) = exp(β�z(u) + σ 2/2) = exp(β0 + β�z(u)), (3)

where β0 = σ 2/2 [22,30].

2.1.2. Neyman–Scott Cox point processes
A Neyman–Scott Cox process (NSCP) is defined by X = ∪c∈CXc, where C is a ‘main-
shock’ Poisson point process with intensity κ > 0. Given C, Xc, c ∈ C are ‘aftershock’
Poisson point processes with intensity λc(u,β), u ∈ D [4,21,30], where a log-linear form
is employed to incorporate geological variables

λc(u;β) = exp(β�z(u))h(u − c;ω). (4)

More precisely, β�z(u) plays the same role as the one in (2). The inclusion of a large num-
ber of and/or correlated covariates in the NSCP model would also cause a major issue.
In addition, h is a probability density function specifying the distribution of aftershock
points around the main shocks parameterized by a scaling parameter ω > 0. For example,
a bivariate Gaussian density

h(u − c;ω) = (2πω2)−1 exp(−‖u − c‖2/(2ω2)) (5)

would result in a Thomas point process [21]. See, e.g. [4,19,27] for other variants of NSCP
models. By (4), the NSCP X is a Cox point process driven by a random intensity

�(u) = exp(β�z(u))
∑
c∈C

h(u − c,ω). (6)

The interaction parameter is constituted by ψ = (κ ,ω)�, where smaller values of κ and
ω lead to a stronger correlation (points tend to be closer and more clustered). Taking the
E�(u), the intensity of an NSCP with random intensity (6) is

λ(u;β) = κ exp(β�z(u)) = exp(β0 + β�z(u)), (7)

where β0 = log κ .
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2.2. Parameter estimation

Suppose θ = (β�,ψ�)� is the parameter vector to estimate, decomposed into two vectors
consisting of β and ψ . Such parameter vectors will be estimated sequentially in a two-step
procedure. Here, we adjust the two-step estimation used in the procedure kppm [19,30] to
develop the kppmenet.

2.2.1. Step 1: estimation of first-order parameter and selection of tuning parameter
The first step is to obtainβ estimate, denoted by β̂ . To handlemulticollinearity and perform
covariate selection, we estimate β by maximizing the regularized composite likelihood

Q(β) = CL1(β) − |D|
p∑

k=1

pρ(|βk|), (8)

where

CL1(β) =
∑
u∈x

log λ(u;β) −
∫
D

λ(u;β)du (9)

is the first-order composite likelihood function for β [22], λ(u,β) is the intensity given by
either (3) or (7), |D| is the area of observation window D, and pρ(β) = ρ(γ |β| + 1

2 (1 −
γ )β2),β ∈ R, is the elastic net penalty function [16] with tuning parameters ρ ≥ 0 and
γ ∈ [0, 1]. Note that the elastic net reduces to ridge or lasso by setting γ = 0 or γ = 1. In
addition, the penalty function can be extended into more general convex or non-convex
function (see Remark 2.1). For a point process with a log-linear intensity, including the
LGCP and NSCP with intensity (3) and (7), Choiruddin et al. [5,6] derive the asymptotic
properties of β̂ . In addition, Choiruddin et al. [5,6] also demonstrate the numerical aspects
of the procedure by combining the Berman–Turner approximation and coordinate descent
algorithm.

The first step of the kppmenet relies on the selection of a proper tuning parameter ρ

to avoid large bias or variance due to respectively the choice of too small or too large ρ.
To specify ρ ≥ 0, we define [ρmax, ρmin] and select the one which minimizes the Bayesian
information criteria [7] defined by

BIC(ρ) = −2CL1(β̂(ρ)) + q(ρ) log(|D|), (10)

where CL1(β̂(ρ)) is the maximum of (9) given ρ, q(ρ) represents the number of non-zero
elements of β̂(ρ), and |D| is the area of observation window. We refer the reader to [5]
for the details of defining [ρmax, ρmin]. Although two-dimensional BIC can be considered
for the optimum search of both ρ and γ , ρ takes a more important role to control bias
and variance of estimates [16,18]. Therefore, we treat γ as a fixed parameter to avoid more
complex computation.
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2.2.2. Step 2: estimation of second-order parameter
Given β̂ obtained in the first step, we maximize the second-order composite likelihood
with respect to ψ [2],

CL2(β̂ ,ψ) =
	=∑

u,v∈x
w(u, v) log λ2(u, v; β̂ ,ψ)

−
⎛
⎝ 	=∑

u,v∈x
w(u, v)

⎞
⎠ log

∫
D

∫
D
w(u, v)λ2(u, v; β̂ ,ψ)dudv, (11)

where 	= over the summation sign indicates that the sum goes over all pairwise distinct
points u, v ∈ x, w(u, v) = 1{‖u − v‖ < R}, R>0 is an upper bound on the correlation
distance model and λ2(u, v; β̂ ,ψ) is the second-order intensity function of the specified
Cox point processes described in Section 2.1 (see also [4,19,27]). The resulting estima-
tor is denoted by ψ̂ . The alternatives are to replace (11) by minimum contrast or palm
likelihood (see Remark 2.1). Using the two-step estimation (kppm), Waagepetersen and
Guan [30] derive the joint-asymptotic properties of (β̂

�
, ψ̂

�
), where β̂ is obtained from

unregularized composite likelihood (9) and ψ̂ is obtained from minimum contrast esti-
mation. Combined with the asymptotic results of β̂ obtained by Choiruddin et al. [5], the
results of [30] might be adapted in our problem, see Remark 2.2. We end this section by
the following remarks.

Remark 2.1: We highlight that our procedure can be extended into more general cases
with no additional difficulty. First, the penalty term in (8) can be defined as a general
convex or non-convex penalty function pρ(β), see [5]. Second, the second step of the pro-
cedure (11) can be replaced by a palm likelihood or minimum contrast, see [27,30]. Our
procedure kppmenet covers this generality. The kppmenet also covers the kppm by
letting ρ = 0.

Remark 2.2: One may concern about the asymptotic properties of θ̂ = (β̂
�
, ψ̂

�
)�

obtained from (8) and (11). A detailed study of asymptotic properties is outside the scope
of this article and here we only sketch out the key arguments. To verify the joint properties
of θ̂ , onemay extend the technique derived byWaagepetrsen andGuan [30] and combined
with the one studied by Choiruddin et al. [5,6].

Wemay view θ̂ as a solution of u(θ) = 0where u(θ) = (u�
1 (β),u�

2 (ψ))� is constructed
by concatenating the gradients of respectively (8) and (11). Within increasing domain
framework, one can prove under some conditions that |D|1/2�−1/2(θ̂ − θ) is asymptoti-
cally distributed as Var−1/2[u(θ)]u(θ) and Var−1/2[u(θ)]u(θ) is asymptotically standard
normal. Therefore, |D|1/2(θ̂ − θ) is asymptotically zero-mean normal with the asymp-
totic covariance matrix � = |D|A−1Var[u(θ)]A−1, where A = −Edu(θ)/dθ . Note that
for a square matrix M, M−1 means the inverse of M and M−1/2 is defined such that
M−1/2(M−1/2)� = M−1.
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3. Simulation study

To study the performance of the kppmenet estimates and compare it with the kppm esti-
mates in a finite sample setting, we conduct a simulation study whose set-up is described
in Section 3.1. The results are discussed in Section 3.2.

3.1. Simulation set-up

We set the Sumatra region (Section 1.2) to be the spatial domain D. In domain D, we
generate spatial point patterns from a Neyman–Scott Cox point process with density (5),
resulting in a Thomas point process model, see Section 2.1.2. We generate 500 point pat-
terns with an average number of points equal to 750 using the rThomas function of the
spatstat package. The cluster parameters ψ = (κ ,ω)� are κ = 25 or 5 (×0.072) and
ω = 0.122. We consider different values of ψ to observe the behaviour of the estimates for
different cluster tightness. We do not present the results for different values of ω since we
obtain similar results.

To consider a more realistic setting, we use three geological covariates from the real
dataset depicted in Figure 2. The correlations among covariates are presented in Table 2.
Following (7), the intensity function is

λ(u,β) = exp (β0 + β1z1(u) + β2z2(u) + β3z3(u)) ,

where β1 = −0.25 represents the effect of distance to volcano (z1), β2 = β3 = −1 repre-
sents the effect of distance to fault (z2) or subduction (z3), and β0 is designed such that
we obtain 750 points in average. The β1 is set to have different magnitude to test how the
procedure could handle the issue since the covariates are highly correlated.

All the parameters θ = (β�,ψ�)� = (β0,β1,β2,β3, κ ,ω)� are estimated using the two
step procedure through the kppm and kppmenet. For the kppmenet, ridge, lasso,
and elastic-net regularizations are considered by setting respectively γ = 0, γ = 1 or
γ = 0.5. To compare the kppm and kppmenet, we consider the modified version of
bias, standard deviation (SD), and root of mean squared errors (RMSE) of β̂ and ψ̂
defined by

Bias =
[ p∑
k=1

{
Ê

(
θ̂k

)
− θk

}2] 1
2

, SD =
[ p∑
k=1

σ̂ 2
θ ,k

] 1
2

, RMSE =
[ p∑
k=1

Ê
(
θ̂k − θk

)2] 1
2

,

where θk and θ̂k represent the true value and estimate of the kth element of either β or
ψ of dimension p, and where Ê

(
θ̂
)
and σ̂ 2

θ are the empirical mean and variance of θ̂ . In

addition, we also compare the 10% and 90% quantiles of β̂ and the maximum value of
the second-order composite likelihood (11). We seek the method yielding higher value of
maximum second-order composite likelihood and smaller values ofmodified bias, SD, and
RMSE.We do not compare the maximum first-order composite likelihood since the kppm
and kppmenet use different optimization, see (8)–(9).
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Table 1. The 10% and 90% quantiles of β̂ , along with the modified bias, standard deviation (SD), and
RMSE of β̂ and ψ̂ , maximum composite likelihood CL2(β̂ , ψ̂)(×105), and the empirical mean and vari-
anceof selected tuningparameterρ obtainedby thekppm andkppmenet (ridge, lasso, andelastic-net).
The κ is scaled by 0.072.

[q10, q90] β̂ ψ̂ CL2 Êρ (V̂arρ)

κ = 25 kppm β̂1 [−1.74,−0.32] BIAS 0.04 0.08
β̂2 [−0.93, 0.57] SD 0.79 0.78 3.60 0 (0)
β̂3 [−1.17,−0.79] RMSE 0.79 0.79

ridge β̂1 [−0.43,−0.35] BIAS 0.83 0.75
β̂2 [−0.37,−0.28] SD 0.06 0.51 4.59 8.21 (4.54)
β̂3 [−0.49,−0.38] RMSE 0.84 0.91

enet β̂1 [−1.52,−0.38] BIAS 0.07 0.05
β̂2 [−0.84, 0.47] SD 0.68 0.77 3.63 0.10 (0.002)
β̂3 [−1.16,−0.79] RMSE 0.68 0.77

lasso β̂1 [−1.54,−0.34] BIAS 0.04 0.04
β̂2 [−0.88, 0.46] SD 0.69 0.76 3.64 0.24 (0.04)
β̂3 [−1.15,−0.78] RMSE 0.70 0.76

κ = 5 kppm β̂1 [−2.32, 0.70] BIAS 0.22 0.17
β̂2 [−2.01, 1.10] SD 1.72 0.21 5.37 0 (0)
β̂3 [−1.41,−0.64] RMSE 1.73 0.16

ridge β̂1 [−0.46,−0.28] BIAS 0.85 0.17
β̂2 [−0.40,−0.24] SD 0.12 0.13 7.14 8.91 (25.53)
β̂3 [−0.52,−0.33] RMSE 0.85 0.12

enet β̂1 [−2.20, 0.59] BIAS 0.24 0.17
β̂2 [−1.85, 0.98] SD 1.57 0.20 5.41 0.09(0.005)
β̂3 [−1.37,−0.62] RMSE 1.58 0.15

lasso β̂1 [−2.20, 0.60] BIAS 0.23 0.17
β̂2 [−1.86, 0.98] SD 1.58 0.20 5.41 0.20 (0.04)
β̂3 [−1.38,−0.61] RMSE 1.59 0.15

Table 2. Pixel correlation among geological variables.

Volcano Fault Subduction

Volcano 1.00 – –
Fault 0.99 1.00 –
Subduction 0.70 0.72 1.00

3.2. Simulation results

The modified bias, SD, and RMSE of β and ψ estimates are resumed in Table 1, along
with the 10% and 90% quantiles of β̂ , the average of maximum values of the second-
order composite likelihood, and the selection of tuning parameter ρ. The mean and
variance of the selected ρ are slightly higher when the point pattern shows stronger
clustering structure (smaller κ). The kppmenet with ridge tends to apply greater penal-
ization than the one with elastic net and lasso by selecting higher values of ρ. This results
in smaller SD. For the maximum composite likelihood CL2, the kppmenet with any
regularization shows improvement over the kppm. In particular, the kppmenet with
ridge regularization reaches the highest value of CL2. The value of CL2 increases when κ

gets smaller.
Regarding the parameter estimated results, we observe that the kppmenet outper-

forms the kppm by producing smaller RMSE. For the kppmenet with lasso or the elastic
net, the procedure retains similar bias to the one produced by the kppm, but gains smaller
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Table 3. The clustering estimates ψ̂ = (κ̂ , ω̂), the maximum com-
posite likelihoodCL2 andAIC for eachof fittedmodel to the Sumatra
earthquake data using the kppm and kppmenet with ridge (γ =
0), elastic net (γ = 0.5), and lasso (γ = 1) regularizations.

kppm Ridge Elastic Net Lasso

κ̂ 0.3696 0.2281 0.3661 0.3663
ω̂ 0.1554 0.1766 0.1557 0.1558
CL2(×107) 3.9388 4.7675 3.9516 3.9495
AIC(×107) −7.8176 −9.4749 −7.8432 −7.8389

SD, resulting in producing smaller RMSE. For thekppmenetwith ridge, the bias increases
but the SD gets much smaller, leading to smaller RMSE.

When the point pattern gets more clustered (smaller κ), the overall metrics (bias, SD,
RMSE) increase for β̂ but decrease for ψ̂ . For a point pattern with a weaker clustering
structure, the kppmenet with lasso or the elastic net is more preferable by producing the
smallest RMSE, while the kppmenet with ridge performs best for a point pattern with
strong clustering. Note that by employing kppm or kppmenet with lasso or the elastic
net, the resulting β estimates may contradict the reality since these methods sometimes
produce positive value of β̂1 and β̂2 (see 90% quantile of the estimator) while the true value
is negative. This could be dangerous and affects model interpretation. Therefore, together
with the comparison based on the maximum CL2, we would recommend employing the
kppmenet with ridge regularization to model a point pattern which exhibits clustering
and involves correlated covariates.

4. Application to earthquake data

To improve the analysis previously conducted by Choiruddin et al. [9], we first perform
the pixel correlation among geological covariates depicted in Table 2. There exists a strong
correlation between all pairs of geological variables (correlation is above 0.7). The fault and
volcano are even almost perfectly correlated (0.99). Together with the issue presented in
Section 1.2, it clearly indicates the multicollinearity problem.

We follow Choiruddin et al. [4,9] to model the earthquake occurrences in Sumatra by
using the Cauchy cluster process since this model outperforms the other Cox models. The
parameters are estimated using the kppm and kppmenet with ridge (γ = 0), elastic net
(γ = 0.5), and lasso (γ = 1) regularizations, see Section 2.2.1. Table 3 presents the cluster
parameter estimates,maximumcomposite likelihood values CL2, andAIC values. TheAIC
is defined by

AIC(β̂ , ψ̂) = −2CL2(β̂ , ψ̂) + 2t,

where t is the dimension of θ̂ = (β̂
�
, ψ̂

�
)�. The kppmenetwith any regularization pro-

vides an advantage over the kppm by generating higher maximum CL2 and lower AIC
values. In particular, the kppmenetwith ridge outperforms the other methods. The ridge
regularization obtains different cluster parameters from the other methods by estimating
the lowest main shock intensity (smallest κ̂) but the highest scaling parameters (high-
est ω̂). By ridge regularization, there are 45 estimated main shocks (or 45 clusters). In
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Table 4. The geological variables and their corresponding
regression β estimates by the kppmenet with ridge regular-
ization (α = 0).

Parameter Estimate (β̂) exp(β̂) 1/ exp(β̂)

Intercept
(
β̂0

)
5.4348 229.2563

Volcano
(
β̂1

)
−0.0894 0.9145 1.0935

Fault
(
β̂2

)
−0.1733 0.8409 1.1893

Subduction
(
β̂3

)
−0.5569 0.5730 1.7452

addition, the aftershocks are scattered around each main shock with a scale of approxi-
mately 18 km (Table 3). The β estimates using the kppmenet with ridge are reported in
Table 4. Except for β̂0, all other β estimates are negative, meaning that the closer a location
to any of these three geological variables, the more likely great-shallow earthquakes will
tend to occur. This is an indication that the kppmenet with ridge does the job to handle

Figure 3. (a) The K-function envelope for the earthquake data in Sumatra based on kppm with ridge
regularization, (b) predicted intensity map based on the Cauchy model fitted to the earthquake risk in
Sumatra, and (c) distribution of the locations of earthquakes in Sumatra.
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multicollinearity issues (see the previous problem in Section 1.2 where, e.g. the volcano
produces a positive regression estimate). In particular, in an area with a distance of 100 km
closer to a volcano, fault, or subduction, the risk of amajor-shallow earthquake occurrence
increases respectively by 1.09, 1.19, and 1.75 times. The subduction contributes the high-
est effect to the major-shallow earthquake occurrence in Sumatra by 75% since most of the
great-shallow earthquakes in Sumatra are triggered by subduction movement, see [11,14].
Earthquake occurrence due to volcano activity is relatively rare in Sumatra, indicating the
risk increases only by 9% when the distance of a location to the volcano gets closer by 100
km, see [20,31].

The plot of inhomogeneous K-function envelope and predicted intensity map are
depicted in Figure 3. In general, the model fits the earthquake distribution well although
theK-function envelope plot seems to be slightly underestimated within 150–200 km. The
predicted intensity map is similar to the distribution of the major-shallow earthquakes in
Sumatra, where threemain areas have the highest risk of earthquake occurrences: (1) Aceh,
(2) Simuelue, Nias, and Mentawai, and (3) Bengkulu. The results are inline with the pre-
vious finding [9]. However, in this study, we enrich the previous results by allowing the
contribution of a volcano to the earthquake distribution using the kppm considering ridge
regularization.

5. Conclusion

In this study, we introduce the kppmenet, the modified version of the kppm, for inho-
mogeneous Cox point process involving correlated covariates by considering elastic net
regularization. The proposed method performs better than the standard kppm in sim-
ulated data and in application to the earthquake dataset when correlated covariates are
involved. The kppmenet is integrated in the spatstat R package procedure kppm by
setting the option ppm.improve.type = ‘enet′.

In general, the kppmenet improves the kppm by producing more efficient estimates
and higher values of maximum composite likelihood. However, the kppmenet tends
to obtain more biased estimates, especially when ridge regularization is considered. To
improve the estimates, onemay consider approximating (9) by the logistic regression based
technique [2,3]. Baddeley et al. [3] prove to obtain less biased estimates using such an
approach in the unregularized estimation and Choiruddin et al. [5] further extend to the
regularized setting. However, the logistic-based method is not yet covered in kppm. The
development of kppm and kppmenet with such an approach could be a direction for
future study.

The tuning parameter selection within the kppmenet is an important task. We have
an empirical finding that the choice of ρ for the kppmenet with ridge is more varied
(Section 3.2) might be due to improper way to define the degree of freedom. One may
investigate the theoretical justification in future and consider, e.g. the composite version of
the BIC (10) [7]. The variable selection procedure can also be derived from the Bayesian
technique. The study by Giudici et al. [15] could serve as a basis for an extension to the
spatial point process.
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