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ABSTRACT
Traditional process monitoring control charts (CCs) focused on sam-
pling methods using fixed sampling intervals (FSIs). The variable
sampling intervals (VSIs) scheme is receiving increasing attention, in
which the sampling interval (SI) length varies according to the pro-
cessmonitoring statistics. A shorter SI is consideredwhen theprocess
quality indicates the possibility of an out-of-control (OOC) situation;
otherwise, a longer SI is preferred. The VSI multivariate exponen-
tially moving average for compositional data (VSI-MEWMACoDa) CC
based on a coordinate representation using isometric log-ratio (ilr)
transformation is proposed in this study. Amethodology is proposed
to obtain the optimal parameters by considering the zero-state (ZS)
average time to signal (ZATS) and the steady-state (SS) average time
to signal (SATS). The statistical performance of the proposed CC is
evaluated based on a continuous-timeMarkov chain (CTMC)method
for both cases, the ZS and the SS using a fixed value of in-control
(IC) ATS0. Simulation results demonstrate that the VSI-MEWMACoDa
CC has significantly decreased the OOC average time to signal (ATS)
than the FSIMEWMACoDa CC. Moreover, it is found that the num-
ber of variables (d) has a negative impact on the ATS of the VSI-
MEWMACoDa CC, and the subgroup size (n) has a mildly positive
impact on the ATS of the VSI-MEWMACoDa CC. At the same time,
the SATS of the VSI-MEWMACoDa CC is less than the ZATS of the
VSI-MEWMACoDa CC for all the values of n and d. The proposed VSI-
MEWMACoDa CC under steady-State performs effectively compared
to its competitors, such as the FSI-MEWMACoDa CC, the VSI-T2 CoDa
CCand theFSI-T2 CoDaCC.Anexampleof an industrial problem from
a plant in Europe is also given to study the statistical significance of
the VSI-MEWMACoDa CC.
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1. Introduction

Monitoring manufacturing processes has become increasingly difficult due to sophisti-
cated consumer demands for quality products. Statistical process monitoring (SPM) is a
commonly used statistical approach for quality control in the industrial scenario. Control
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charts (CCs) are the most widely used tool in SPM. W.A. Shewhart introduced the con-
cept of CCs in 1924. Conventional CCs are simple and sensitive to large process variations
but have poor sensitivity to small process variations. Several measurements are required to
improve the detection speed for small process shift.

Aitchison defines Compositional data (CoDa) analysis as an adequate geometry model
for the transformation of CoDa [1]. Since Karl Pearson first emphasized problems in the
analysis of CoDa in 1897. CoDa has unique numerical characteristics that have signifi-
cant implications for statistical analysis studied bymany researchers (cf. [3,11,37]). Because
CoDa represents parts of a larger whole, they have unique properties. The standard statis-
tical techniques designed for probabilistic random variables that cannot analyze CoDa in
raw form are studied (cf. [15]). In recent years, researchers have started focusing on CCs
for CoDa. The First CC for CoDa was a Chi-square CC, assuming CoDa follows the prop-
erties of Dirichlet distribution. After the d = 3-part CoDa was analyzed using Hotelling
T2 CC to interpret the out-of-control (OOC) signals [59]. The Hotelling T2 CC can also
be applied on CoDa after deleting one component from the CoDa vector or after applying
the isometric log-ratio (ilr) transformation, but the one with transformed values outper-
forms the other [58]. As thesemethods deal with d = 3-parts CoDa, amethod to deal with
high dimensional CoDa is introduced [60]. After the advancement of Hotelling T2 CC for
CoDa,multivariate exponentiallymoving average (MEWMA)CoDaCCusing ilr transfor-
mation [56] and the effect of measurement error on Hotelling T2 CC [62] and MEWMA
[63] have been evaluated. The multivariate cumulative sum (MCUSUM) CC for CoDa has
been studied with parameter estimation [17]. Recently, MEWMACC for CoDa using vari-
able sampling interval (VSI) has been studied using zero-state (ZS) average time to signal
for ilr transformed d = 3-part CoDa using n = 1 subgroup size [35].

AVSI strategy reduces the detecting time inCCs.A small sampling interval (SI) is used if
there is any signal that the process has changed; if there is no signal, a longer SI is used. The
fixed sampling interval (FSI) CC is used when the SI length stays the same through all the
samples (please see [64]). The multivariate CC to monitor the mean vector and variance-
covariancematrix with VSI was investigated by Reynolds and Cho [43]. TheMEWMAand
MEWMA-type CCs were combined to get the best performance of the CC. The variable
sampling rate (VSR) scheme has been used to study the increase and decrease in process
dispersion in inverse normal transformation [50]. Further, the VSI CC tomonitor the coef-
ficient of variation has been introduced [7]. The CCs with double warning lines are faster
at detecting small shifts in the mean vector [22]. The CC with VSI and variable sample
size (VSS) was used to monitor the variance-covariance matrix of a multivariate normally
distributed process [23].

Many researchers [4,25,41,61] examined the VSI and the FSI features for univariate
and multivariate CCs for process monitoring. Simulation is used to investigate the aver-
age run length (ARL) properties of the exponentially weighted moving average (EWMA)
CC to effectively detect the small changes in the process’s desired value [52].More recently,
the ARL performance of EWMA techniques based on the VSI for the monitoring logistic
profiles has been proposed [31]. The CUSUM CCs are found to be an effective method
for monitoring changes in aquatic toxicity [16]. The robust measures of the location
were applied to improve exponential-cum-ratio estimators [14]. The multivariate EWMA
(MEWMA) CCs using unequal sample sizes were studied [20]. Improving the multivariate
CUSUM and EWMA CCs for monitoring purposes has focused most research on quality
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control proposed by Jarrett [18]. Further, MCUSUM CCs using VSI were used to monitor
the ratio when more than two mixture components were considered [33].

The performance of the MEWMA CC was evaluated using a continuous-time Markov
chain (CTMC) method [39]. Several researchers have attempted to improve the MEWMA
CC’s efficiency in identifying shift patterns in the process mean vector through various
methods. For example, theMEWMACCusing sequential sampling [20] and theMEWMA
CC using unequal sample sizes [44]. Changing the SI value in response to process data is
a frequently used technique for increasing the efficiency of CCs [57]. The VSI scheme has
been amalgamated to study the performance of X̄ CCs [9], theCUSUMCCs formonitoring
processmean [42], double EWMACCs [49], HotellingT2 CC for exponentially distributed
random variables [12], multivariate Shewhart and MEWMA-type CCs for simultaneously
monitoring vectors of means and standard deviations matrix [13]. Further, two SIs were
used for designing the optimal process for Taguchi’s online monitor and control method
with and without misclassification errors [5]. The performance of the VSIMEWMA CC
was investigated using a proposed CTMC approach by Sabahno et al. [48]. To study the
benefits of using VSI scheme, the VSI and the FSIMEWMA CC’s performance has been
compared [34].

In SPM literature, two different types of performance are typically considered: ZS and
steady-state (SS). The term ‘SS performance’ shows the time required for the CC to iden-
tify a process shift for control statistics to reach a static distribution. Some processes are
initially uncontrollable; the procedure is initiated under control in most realistic scenarios
and then changes randomly [40]. When the average number of samples is taken from the
start of signal monitoring in an OOC situation, then the CC’s performance is evaluated
using ZSARL (cf. [8,10]). The comparison between the zero-state average time to signal
(ZATS) symmetric and asymmetric distributions to the steady-state average time to signal
(SATS) using the CTMC showed the SATS performed better in terms of ARL [19]. The
CTMC method is also used to determine the SSARL of the CC [21]. To detect changes
in the process mean, the SS properties of synthetic CCs have been examined [10]. The
CCs give more significant results by using SSARL to create a CC with m-of-m run rules
[24]. Numerous researchers have distinguished between the SS optimal and ZS optimal VSI
schemes (cf. [53,54]). The CUSUMCC for two possible SIs and probability ratio tests were
used to study the SS-optimized VSI methods [55]. The VSI-based CC scheme is superior
to the FSI-based CC scheme in terms of average time to signal (ATS) performance [29].

As discussed earlier, many researchers are currently working on CC for CoDa, but all
the above-mentioned studies deal with the Markov chain model with ZS ATS to study the
CC performance for CoDa. Also, most of the research on CoDa deals with d = 3-part
CoDa. As far as the author knows, till now, the SS ATS performance has not been used for
monitoring CoDa. The literature shows the SS ATS performs better than the ZS ATS (cf.
[6,30,51]). Hence to fill this gap, this paper makes an attempt to take SS ATS performance
into account. The VSI-MEWMA CoDa CC has been proposed using ilr transformation to
investigate the ATS using the different number of variables p (i.e. d = 3, 5), subgroup sizes
n (i.e. n = 1, 3) and the VSI h (i.e. h1, h2). The ZS ATS has also been computed to study
the difference between ZS and SS ATS performances.

The rest of this paper is as follows: Section 2 discusses brief details about how to model
and manipulate the CoDa. In Section 3, the model for VSI-MEWMA CC for CoDa has
been presented. Section 4 presents the CTMC for both ZS and SS for the VSI and the



916 M. IMRAN ET AL.

FSI. Section 5 gives the CCs performance and compares the VSI-MEWMACoDa and the
FSI-MEWMACoDa CC. Finally, an illustrative example and conclusions are presented in
Sections 6 and 7.

2. Compositional data

A row vector is defined as a CoDa vector if it belongs to simplex space Sd,

Sd =
{
y = (y1, y2, . . . , yd)|yi > 0, i = 1, 2, . . . , d such that

d∑
i=1

yi = κ

}
, (1)

where κ is a constant sum of the CoDa vector. Because of the constraint of constant sum,
Euclidean geometry is unsuitable for CoDa. To overcome this problem, J. Aitchison pro-
posed a specific geometry known asAitchison’s geometry [2]. Inwhich advanced operators
for sum and multiplications have been defined,

• the perturbation operator for the sum of CoDa vectors,

y ⊕ z = C(y1z1, y2z2, . . . , ypzd), (2)

• the powering operator for multiplication of CoDa vector with a constant,

c � y = C(yc1, y
c
2, . . . , y

c
d). (3)

To overcome the constant sum constraints, CoDa can be transformed from simplex sample
space Sd to real space R

d−1 using the predefined transformations,

• Centered log-ratio transformation,

clr(y) =
(
ln

y1
ȳG

, ln
y2
ȳG

, . . . , ln
yd
ȳG

)
, (4)

where ȳG is the component-wise geometric mean of y, i.e.

ȳG =
( p∏
i=1

yi

) 1
d

= exp

(
1
d

d∑
i=1

ln yi

)
. (5)

• Isometric log-ratio

ilr(y) = y∗ = clr(y)Bᵀ, (6)

where

Bi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
1

(d − i)(d − i + 1)
j ≤ d − i

−
√

d − i
d − i + 1

j = d − i + 1

0 j > d − i + 1

.
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To transform the vector from real space to simplex space, we use inverse isometric log-
ratio,

ilr−1(y∗) = y = C(exp(y∗B)). (7)

There are two ways to deal with CoDa, one is to use CoDa as it is by using powering and
perturbation operator, and the second way is to transform CoDa into real space by using
the above-mentioned log-ratio transformations so that the classicalmethods can be applied
to CoDa after making some important amendments. For more details about CoDa, the
readers can refer to [17].

3. The VSI-MEWMA CoDa chart

Let us assume that there are have n measures xi,1, . . . , xi,n of the quality characteristic yi
at the time i = 1, 2, . . .. yi ∼ MNORSd(μ0,�) when the process is IC, where μ0 is the
IC mean vector and yi ∼ MNORSd(μ1,�) when the process is OOC, where μ1 is the
OOC mean vector and � remain unchanged in both cases. Let x̄∗

i = ilr(x̄i) and y∗
i ∼

MNOR
Rd−1(μ∗

0,�
∗), where μ∗

0 = ilr(μ0) and �∗ = ilr(�). According to [36], x follows
a multivariate normal distribution on Sd if the vector of random orthonormal coordinates,
x∗ = ilr(x), follows a multivariate normal distribution on R

D−1. This paper is an exten-
sion of [35] VSI − MEWMACoDa CC, considering the SSATS performance analysis. The
VSI-MEWMACoDa CC statistic is,

Qi = wi�
−1
wi w

ᵀ
i , (8)

with

wi = r(x̄∗
i − μ∗

0) + (1 − r)wi−1, (9)

where w0 = 0 and r ∈ (0, 1] are smoothing parameters. The VSI-MEWMACoDa CC
shows a signal when

Qi = wi�
−1
wi w

ᵀ
i > H, (10)

where H is the upper control limit (UCL), and �wi is the variance-covariance matrix of
wi. Here the author used the asymptotic variance-covariance matrix proposed by Lowry
et al. [27], i.e.

�wi = r
n(2 − r)

�∗. (11)

Due to the directional invariant property, the MEWMA CC’s ATS depend on the non-
centrality parameter δ [26]. Where the value of δ is,

δ = (μ∗
1 − μ∗

0)(�
∗)−1(μ∗

1 − μ∗
0)

ᵀ. (12)

When the SI is fixed, the SI of FSI-MEWMACoDa CC is denoted by h0. But for VSI-
MEWMACoDa CC, the selection of SI is based on the charting statistics Qi. The time
interval between the sample xi and xi + 1 can vary. Using two sampling intervals is reason-
able to limit the VSI-MEWMACoDa CC’s complexity and achieve the proposed chart’s
efficacy [46]. Hence following [46], two SIs are used in this paper, h1 and h2, where h2
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denotes the small SI and h1 denotes the long one. For the VSI-MEWMACoDa CC, the
UCL = H is the same as that of FSI-MEWMACoDa CC. A warning limit (L) is intro-
duced such that 0<L<H and h2 < h0 < h1. The switch between the small and the long
SI depends on the value of the CC parameterQi. If the CC parameterQi lies within the L,
a long SI h1 will be used, and if the value ofQi lies between the L and theH, then the small
SI h2 should be used.

4. The average time to signal

Prabhu and Runger [47] suggested calculating the statistics qi =‖ Yi ‖2 as the standardized
form of Qi = a ‖ Yi ‖22 with a = 2−r

r to determine the IC and OOC ATS of the MEWMA
CC using CTMC models. For the IC case, one-dimensional CTMC (i.e. [0, UCL′]) is
used to approximate the ATS of qi, where UCL′ = (H/a)1/2 havem+ 1 sub-interval with
the length of the first sub-interval g/2 and others g and the width of sub-interval g =
2UCL/2m + 1. Concerning the VSI-MEWMACoDa CCsWL = (L/a)1/2 is also added to
the one-dimensional CTMC (i.e. [0,WL,UCL′]). The IC one-dimensional CTMC is also
shown in Figure 1.

The probability of transition for i to j state is,

P1(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pr
(

χ2(d − 1, c) <
( g
2r

)2)
for j = 0

Pr

((
(j − 0.5)g

r

)2
< χ2(d − 1, c) <

(
(j + 0.5)g

r

)2
)

for j = 1, 2, . . . ,m

(13)

where P1(i, j) follows a non-central chi-square distribution χ2(d − 1, c) with a non-
centrality parameter c = (

(1−r)ig
r )2 having d−1 degree of freedom.

The ATS of the VSI-MEWMACoDa CCs for IC case is as follows,

ATS = sᵀ(Im+1 − P1)−1hm+1, (14)

with Im+1 is the identity matrix of size m+ 1 and s = (1, 0, 0, . . . , 0)ᵀ is the initial proba-
bility vector and hm+1 is vector of SI. The SI average for the proposed CC can be written
as

h̄ = sᵀ(Im+1 − P1)−1hm+1

sᵀ(Im+1 − P1)−11m+1
. (15)

For the OOC case, two-dimensional CTMC is used to approximate the ATS of qi with
the partition of Y i ∈ R

d−1 into Yi1 ∈ R and Y i2 ∈ R
d−2 with δ and zero mean, respec-

tively and ||Y i||2 = (Y2
i1 + Yᵀ

i2Y i2)
1
2 . A two-dimensional CTMC can also be used for

the MEWMACoDa CC. The approach used to approximate the component Y2
i1, and for

||Y i2||2 is given in [28]; the same method for IC CTMC is used where d−1 is replaced
by d−2. For Yi1, the OOC component is analyzed using the transition probability u(i1, j1)
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Figure 1. IC CTMC Distribution for the VSI MEWMA CoDa CC.

from state i1 to state j1 with 2m1 + 1 states,i.e.

u(i1, j1) = �

(−UCL′ + j1g1 − (1 − r)ci
r

− δ

)

− �

(−UCL′ + (j1 − 1)g1 − (1 − r)ci
r

− δ

)
, (16)

where� is the cumulative standard normal distribution function with ci = −UCL′ + (i −
0.5)g1 being themidpoint of the state i and g1 = 2UCL′

2m1+1 be thewidth of each state. TheOOC
two-dimensional CTMC is also shown in Figure 2.
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Figure 2. OOC CTMC Distribution for the VSI MEWMA CoDa CC.

ForY i2, the IC component is analyzed using the transition probability v(i2, j2) from state
i2 to state j2 withm2 + 1 states. i.e.

v(i2, j2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr
(

χ2(d − 2, c) <
( g2
2r

)2)
for j2 = 0

Pr

((
(j2 − 0.5)g2

r

)2
< χ2(d − 2, c) <

(
(j2 + 0.5)g2

r

)2
)

for j2 = 1, 2, . . . ,m2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (17)

where c = (
(1−r)ig2

r )2 with width of states g2 = 2UCL′
2m2+1 . All the transient states of CTMC

can be summarized in a transition probability matrix Pr. Then,

Pr = T(i1, i2) � P2, (18)
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where the symbol� is used for element-wisematricesmultiplication,T is the (2m1 + 1) ×
(m2 + 1) dimensional matrix defined as

T(i1, i2) =
{
1 if state (α,β) is a transient state
0 otherwise (19)

and P2 denotes the transition probability matrix of two-dimensional CTMC, P2 = U ⊗ V ,
whereU andV are the transitional probability matrices of Yi1 and ||Y i2||2 respectively and
⊗ is the Kronecker’s matrices product. The ZS OOC ATS of the VSI-MEWMACoDa CC
is defined as,

ZATS = sᵀ(Im+1 − Pr)−1hm+1. (20)

with Im+1 is the identity matrix of size m+ 1, and s is the initial probability vector with
all components equal to zero except the component corresponding to the state (α,β) =
(m1 + 1, 0) which is equal to one and hm+1 is the vector of SI.

The SS OOC ATS of the VSI-MEWMACoDa CC is defined as,

SATS = wᵀ(I − Pr)−1s. (21)

where w is a (2m + 1,m + 1) SS vector with wi = sibi
sb and s is (2m + 1,m + 1)

vector of SI with elements h1 if
√
i1 − (m + 1))2 ∗ g2 + i22g2 < WL, h2 if WL <√

i1 − (m + 1))2 ∗ g2 + i22g2 < UCL and zero when the process is OOC. Where b is a SS
probability vector obtained by solving the following equation: b = Pᵀ

1b subject to 1
ᵀb = 1.

Where P1 is the transition probability matrix when the process is IC, i.e. δ = 0.
The average of SI for the VSI-MEWMACoDa CC can be written as,

h̄ = p1h1 + (1 − p1)h2. (22)

where p1 is the proportion of time to signal. If h0 = h1 = h2 the CC will be the standard
MEWMACoDa CC. The number of states greatly impacts the ATS of the CC. (see [32]),
but due to limited resources and time, the author cannot use a large number ofm. Following
literature reviews, hencem1 = m2 = 30 will be used. (see [32] or [56]).

5. Comparative analysis of the VSI-MEWMA CoDa chart

This section presents an optimization approach for statistical designing the VSI-
MEWMACoDa CC. An optimal VSI CC can be achieved using two different SIs, with
the small SI h2 taken as small as possible and the long SI h1 dependent on δ and h2, where
the CC is best for tracking shifts δ. Similar to [38,45], the practitioners need to set the h2
fixed for the minimum interval hmin. The VSI-MEWMACoDa CC is designed by deter-
mining the CC parameters (i.e. r, h1,W, andH) that minimize the OOCATS aspect to the
target value specified for constraints h, h2 = hmin, and ATS0, for the provided values of n,
d, and δ. The value ofH will be the same for the FSI and the VSI-MEWMA-CoDa CCs for
given values of r, n, h, and ATS0. The following is the optimized statistical layout process
for the VSI-MEWMACoDa CC:

• Specify n, ATS0, d, h2, h̄ and δ.
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Table 1. ZS optimum charting parameters for VSI-MEWMACoDa and FSI-MEWMACoDa CC.

n = 1 n = 3

VSI-MEWMACoDa FSI-MEWMACoDa VSI-MEWMACoDa FSI-MEWMACoDa

δ p (r,H,W , h1, h2) (r,H) (r,H,W , h1, h2) (r,H)

0.25 3 (0.05, 7.35, 1.74, 1.62, 0.10) (0.05, 7.35) (0.05, 7.35, 0.82, 2.70, 0.10) (0.05, 7.35)
5 (0.05, 9.46, 2.27, 2.10, 0.10) (0.05, 9.46) (0.05, 9.46, 2.30, 2.10, 0.10) (0.05, 9.46)

0.50 3 (0.05, 7.50, 1.72, 1.65, 0.10) (0.06, 7.50) (0.05, 7.50, 1.24, 2.50, 0.10) (0.06, 7.50)
5 (0.05, 9.50, 1.73, 2.28, 0.10) (0.06, 9.50) (0.05, 9.50, 1.78, 2.28, 0.10) (0.06, 9.50)

0.75 3 (0.09, 8.51, 1.64, 1.73, 0.10) (0.09, 8.51) (0.10, 8.51, 1.48, 2.20, 0.10) (0.10, 8.51)
5 (0.08, 10.27, 1.69, 2.09, 0.10) (0.08, 10.27) (0.09, 10.27, 1.76, 2.08, 0.10) (0.08, 10.27)

1.00 3 (0.14, 9.19, 2.90, 1.32, 0.10) (0.14, 9.19) (0.15, 9.41, 1.88, 1.89, 0.10) (0.15, 9.41)
5 (0.13, 10.71, 1.95, 1.83, 0.10) (0.13, 10.71) (0.14, 10.93, 2.05, 1.82, 0.10) (0.13, 10.93)

1.25 3 (0.19, 9.61, 1.65, 1.82, 0.10) (0.20, 9.61) (0.21, 9.77, 2.45, 1.69, 0.10) (0.20, 9.77)
5 (0.18, 10.97, 2.45, 1.65, 0.10) (0.19, 10.97) (0.20, 11.13, 2.58, 1.64, 0.10) (0.19, 11.13)

1.50 3 (0.25, 9.91, 3.51, 1.22, 0.10) (0.25, 9.91) (0.27, 10.05, 2.86, 1.49, 0.10) (0.25, 10.05)
5 (0.24, 11.11, 2.81, 1.46, 0.10) (0.25, 11.11) (0.26, 11.25, 2.96, 1.45, 0.10) (0.25, 11.25)

1.75 3 (0.31, 10.12, 3.72, 1.24, 0.10) (0.31, 10.12) (0.34, 10.23, 4.01, 1.28, 0.10) (0.31, 10.23)
5 (0.31, 11.16, 3.92, 1.26, 0.10) (0.31, 11.16) (0.33, 11.27, 4.09, 1.25, 0.10) (0.31, 11.27)

2.00 3 (0.37, 10.26, 3.62, 1.25, 0.10) (0.38, 10.26) (0.41, 10.36, 4.70, 1.10, 0.10) (0.38, 10.36)
5 (0.37, 11.14, 4.57, 1.10, 0.10) (0.37, 11.14) (0.40, 11.24, 4.77, 1.10, 0.10) (0.37, 11.24)

• Initialize r as 0.05.
• Initialize h1 as h̄ + 0.1. Set h2 = 0.1, then find the value of H for the fixed value of IC

ATS0, where h2 < h̄ < h1. Given δ is calculated, the OOC ZATS and SATS. Increasing
r with a step size of 0.005, iterate Steps 3 to 5.

• The r, h1,W, and H values are used to determine the minimum OOC ZATS and SATS
for the optimal VSI-MEWMACoDa CC parameters.

For comparison of theVSI with the FSI CC, the average SI h̄ of theVSI-MEWMACoDaCC
is assumed to be the same as the h0 of the FSI-MEWMACoDa CC, i.e. when the process is
ICwhen h̄ = 1. In other words, SI for theVSI-MEWMACoDaCC is chosen to have a simi-
lar ICATS as the FSI-MEWMACoDaCC; in the specific context, the VSI-MEWMACoDa
CC’s false alarm rate (i.e. ATS0 ≈ 200) is the same as the FSI-MEWMACoDa CC.

5.1. ZATS of the VSI-MEWMACoDa control chart

The values of optimal couples of the VSI and the FSIMEWMACoDa CCs under ZS are
presented in Table 1. The OOCATS values of the VSI and the FSIMEWMACoDa CCs for
ZSATS are given in Table 2 when d ∈ {3, 5} and n ∈ {1, 3}. The OOC ATS values of the
VSI and the FSIT2 CoDa CCs for the ZS are also given in Table 2.

5.1.1. Impact of sampling interval h
Based on Table 2, it can be seen that the ZATS of the VSI CC is less than the ZATS of
the FSI CC. When δ = 1, n = 1, d = 3, h1 = 1.90, h2 = 0.1 and W = 1.78, the ZATS
for the FSI-T2 CoDa CC is ZATS = 41.916, while for the VSI-T2 CoDa CC is ZATS =
22.986. Similarly, when δ = 1, n = 1, d = 3, h1 = 1.90, h2 = 0.1, r = 0.14,H = 9.19 and
W = 1.78, the ZATS for the FSI-MEWMACoDa CC is ZATS = 6.98, while for the VSI-
MEWMACoDa CC is ZATS = 9.90. Hence it is summarized that the VSI CCs have a
greater degree of efficacy than the FSI CCs for CoDa.
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Table 2. OOC ZATS of the VSI-MEWMACoDa CC.

n = 1 n = 3

MEWMACoDa T2 CoDa MEWMACoDa T2 CoDa

δ p VSI FSI VSI FSI VSI FSI VSI FSI

0.25 3 56.842 64.6 115.528 88.553 48.346 53.980 112.877 85.902
5 64.362 70.27 120.928 99.909 53.746 59.654 118.277 97.258

0.50 3 19.935 26.4 76.86 51.885 17.731 22.440 75.900 50.925
5 26.695 31.65 81.86 59.076 22.731 27.686 80.900 58.116

0.75 3 10.441 15.1 55.323 33.367 9.095 12.900 54.784 32.828
5 15.69 19.72 59.723 38.901 13.495 17.525 59.184 38.362

1.00 3 6.913 9.9 41.916 22.986 5.489 8.440 41.559 22.629
5 10.748 13.89 45.716 27.482 9.289 12.431 45.359 27.125

1.25 3 4.934 7.1 32.942 16.039 3.885 6.050 32.687 15.784
5 8.333 10.67 36.342 19.932 7.285 9.623 36.087 19.677

1.50 3 3.728 5.4 26.618 11.744 3.185 4.610 26.425 11.551
5 6.978 8.55 29.618 15.142 6.185 7.757 29.425 14.948

1.75 3 3.008 4.3 21.984 9.14 2.852 3.680 21.832 8.989
5 6.075 7.03 24.584 12.088 5.452 6.407 24.432 11.936

2.00 3 2.419 3.5 18.484 7.484 2.246 3.000 18.362 7.362
5 4.95 5.81 20.684 9.684 4.446 5.306 20.562 9.562

Figure 3. ZATS Curves for n = 3 and d ∈ {3, 5}.

5.1.2. Impact of number of the variables d
Based on Table 2 and Figure 3, it can be seen that d has a negative effect on the ZSATS of
the CC for CoDa; that is, the OOC ZATS values increase with an increase in the value of
d.

When δ = 1, n = 1, d = 3, h1 = 1.90, h2 = 0.1 and W = 1.78, the ZATS for the FSI-
T2 CoDa CC is ZATS = 41.916 and for the VSI-T2 CoDa CC is ZATS = 22.986. But when
the value of d increases to d = 5, the ZATS for the FSI-T2 CoDa CC increases to ZATS =
45.716 and the VSI-T2 CoDa CC increases to ZATS = 27.482.

Similarly, when δ = 1, n = 1, d = 3, h1 = 1.90, h2 = 0.1, r = 0.14, H = 9.19 and
W = 1.78, the ZATS for the FSI-MEWMACoDa CC is ZATS = 6.98, and for the VSI-
MEWMACoDaCC is ZATS = 9.90. But, when the value of d increases to d = 5, the ZATS
for the FSI-MEWMACoDa CC increases to ZATS = 10.748 and the VSI-MEWMACoDa
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Figure 4. ZATS Curves for d = 3 and n ∈ {1, 3}.

CC increases to ZATS = 13.89. Figure 3 also shows the impact of the number of vari-
ables d on ZATS of the T2 CoDa and the MEWMACoDa CC for both the VSI and the FSI
situations.

Where a solid black line shows the ZATS of the VSI-MEWMACoDa CC, the ZATS
of the FSI-MEWMACoDa CC is shown by the dotted line, and the dashed line shows the
ZATS of the VSI-T2 CoDaCC, the dashed-dotted line shows the ZATS of the FSI-T2 CoDa
CC. From Figure 3, it is also clearly visible that d has a negative effect on the ATS of the
VSI and the FSI CC for CoDa.

5.1.3. Impact of subgroup size n
Based on Table 2, it can be seen that n has a mild positive effect on the ATS of the CC for
CoDa; that is, the OOC ZATS values decrease with an increase in the value of n.

When δ = 1, n = 1, d = 3, h1 = 1.90, h2 = 0.1 and W = 1.78, the ZATS for the FSI-
T2 CoDaCC is ZATS = 41.916, and for theVSI-T2 CoDaCC is ZATS = 22.986. But when
the value of n increases to n = 3, the ZATS for the FSI-T2 CoDa CC decreases to ZATS =
41.559, and the VSI-T2 CoDa CC decreases to ZATS = 22.629.

Similarly, when δ = 1, n = 1, d = 3, h1 = 1.90, h2 = 0.1, r = 0.14, H = 9.19 and
W = 1.78, the ZATS for the FSI-MEWMACoDa CC is ZATS = 6.98 and for the VSI-
MEWMACoDaCC is ZATS = 9.90. But when the value of n increases to n = 3, the ZATS
for the FSI-MEWMACoDa CC decreases to ZATS = 5.489, and the VSI-MEWMACoDa
CC decreases to ZATS = 8.44. Figure 4 also shows the impact of the subgroup size n on
ZATS of the Hotelling T2 CoDa and the MEWMACoDa CC for both the VSI and the FSI
situations. From Figure 4, it is also clearly visible that n has a positive effect on the ATS of
the VSI and the FSI CC for CoDa.

5.2. SATS of the VSI-MEWMACoDa control chart

The values of optimal couples of the VSI and the FSIMEWMACoDa CCs under SS are
presented in Table 3. The OOC ATS values of the VSI and the FSIMEWMACoDa CCs
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Table 3. SS optimum charting parameters for VSI-MEWMACoDa and FSI-MEWMACoDa CC.

n = 1 n = 3

VSI-MEWMACoDa FSI-MEWMACoDa VSI-MEWMACoDa FSI-MEWMACoDa

δ p (r,H,W , h1, h2) (r,H) (r,H,W , h1, h2) (r,H)

0.25 3 (0.05, 7.38, 0.80, 2.50, 0.10) (0.05, 7.38) (0.05, 7.38, 0.83, 2.50, 0.10) (0.05, 7.38)
5 (0.05, 9.33, 2.25, 1.92, 0.10) (0.05, 9.33) (0.05, 9.33, 2.30, 1.91, 0.10) (0.05, 9.33)

0.50 3 (0.05, 7.53, 1.19, 2.30, 0.10) (0.05, 7.53) (0.05, 7.53, 1.24, 2.30, 0.10) (0.05, 7.53)
5 (0.05, 9.37, 1.71, 2.09, 0.10) (0.05, 9.37) (0.05, 9.37, 1.78, 2.09, 0.10) (0.05, 9.37)

0.75 3 (0.09, 8.54, 1.42, 2.00, 0.10) (0.10, 8.54) (0.10, 8.54, 1.49, 2.00, 0.10) (0.10, 8.54)
5 (0.08, 10.14, 1.68, 1.89, 0.10) (0.09, 10.14) (0.09, 10.14, 1.77, 1.89, 0.10) (0.08, 10.14)

1.00 3 (0.14, 9.22, 1.80, 1.70, 0.10) (0.15, 9.22) (0.15, 9.44, 1.90, 1.69, 0.10) (0.15, 9.44)
5 (0.13, 10.58, 1.95, 1.64, 0.10) (0.14, 10.58) (0.14, 10.80, 2.07, 1.63, 0.10) (0.14, 10.80)

1.25 3 (0.19, 9.64, 2.35, 1.50, 0.10) (0.20, 9.64) (0.21, 9.80, 2.47, 1.49, 0.10) (0.20, 9.80)
5 (0.19, 10.84, 2.45, 1.46, 0.10) (0.19, 10.84) (0.20, 11.00, 2.59, 1.45, 0.10) (0.19, 11.00)

1.50 3 (0.25, 9.94, 2.74, 1.30, 0.10) (0.26, 9.94) (0.27, 10.08, 2.89, 1.29, 0.10) (0.26, 10.08)
5 (0.25, 10.98, 2.82, 1.27, 0.10) (0.25, 10.98) (0.27, 11.12, 2.99, 1.25, 0.10) (0.25, 11.12)

1.75 3 (0.31, 10.15, 3.86, 1.10, 0.10) (0.32, 10.15) (0.34, 10.26, 4.04, 1.10, 0.10) (0.32, 10.26)
5 (0.31, 11.03, 3.94, 1.07, 0.10) (0.31, 11.03) (0.33, 11.14, 4.12, 1.10, 0.10) (0.31, 11.14)

2.00 3 (0.38, 10.29, 4.54, 1.10, 0.10) (0.38, 10.29) (0.41, 10.39, 4.74, 1.10, 0.10) (0.38, 10.39)
5 (0.37, 11.17, 4.60, 1.08, 0.10) (0.37, 11.17) (0.40, 11.27, 4.81, 1.10, 0.10) (0.37, 11.27)

Table 4. OOC SATS of the VSI-MEWMACoDa CC.

n = 1 n = 3

MEWMACoDa T2 CoDa MEWMACoDa T2 CoDa

δ p VSI FSI VSI FSI VSI FSI VSI FSI

0.25 3 57.882 63.350 114.028 87.804 47.267 52.740 111.378 85.155
5 62.882 68.600 119.028 99.900 52.905 58.698 117.129 97.044

0.50 3 20.695 25.250 75.480 51.356 16.732 21.290 74.521 50.398
5 25.295 30.080 80.080 59.195 21.819 26.642 79.647 57.718

0.75 3 10.410 14.100 54.123 33.169 8.216 11.910 53.586 32.633
5 14.410 18.300 58.123 39.213 12.662 16.579 58.049 38.194

1.00 3 6.188 9.050 40.896 23.119 4.732 7.590 40.543 22.766
5 9.588 12.620 44.296 27.986 8.560 11.616 44.380 27.255

1.25 3 4.253 6.350 32.042 16.394 3.209 5.310 31.792 16.144
5 7.253 9.500 35.042 20.564 6.629 8.899 35.218 20.016

1.50 3 3.378 4.750 25.838 12.320 2.590 3.960 25.652 12.135
5 5.978 7.480 28.438 15.901 5.606 7.131 28.672 15.509

1.75 3 2.955 3.750 21.324 9.774 2.338 3.130 21.172 9.622
5 5.155 6.060 23.524 12.524 4.952 5.857 23.772 12.222

2.00 3 2.310 2.950 17.824 6.274 1.806 2.450 17.702 6.152
5 4.510 5.260 20.024 9.024 4.006 4.756 19.902 8.352

for SSATS are given in Table 4 when d ∈ {3, 5} and n ∈ {1, 3}. The OOC ATS values of the
VSI and the FSIT2 CoDa CCs for the SS are also given in Table 4.

5.2.1. Impact of sampling interval h
Based on Table 4, it can be seen that the SATS of the VSI CC is less than the SATS of
the FSI CC. When δ = 1, n = 1, d = 3, h1 = 1.70, h2 = 0.1 and W = 1.80, the SATS
for the FSI-T2 CoDa CC is SATS = 40.896, while for the VSI-T2 CoDa CC is SATS =
23.119. Similarly, when δ = 1, n = 1, d = 3, h1 = 1.70, h2 = 0.1, r = 0.14,H = 9.22 and
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Figure 5. SATS Curves for n = 3 and d ∈ {3, 5}.

W = 1.80, the SATS for the FSIMEWMACoDa CC is SATS = 9.05, while for the VSI-
MEWMACoDa CC is SATS = 6.188. Hence it is summarized that the VSI CCs have a
greater degree of efficacy than the FSI CCs for CoDa.

5.2.2. Impact of number of the variables d
Based on Table 4, it can be seen that d has a negative effect on the ATS of the CC for CoDa;
that is, the OOC SATS values increase with an increase in the value of d.

When δ = 1, n = 1, d = 3, h1 = 1.70, h2 = 0.1 and W = 1.80, the SATS for the FSI-
T2 CoDa CC is SATS = 40.896 and for the VSI-T2 CoDa CC is SATS = 23.119. But when
the value of d increases to d = 5, the SATS for the FSI-T2 CoDa CC increases to SATS =
44.296 and the VSI-T2 CoDa CC increases to SATS = 27.986.

Similarly, when δ = 1, n = 1, d = 3, h1 = 1.70, h2 = 0.1, r = 0.14, H = 9.22 and
W = 1.80, the SATS for the FSI-MEWMACoDa CC is SATS = 9.05 and for the VSI-
MEWMACoDaCC is SATS = 6.188. But when the value of d increases to d = 5, the SATS
for the FSI-MEWMACoDa CC increases to SATS = 12.62, and the VSI-MEWMACoDa
CC increases to SATS = 9.58. Figure 5 also shows the impact of the number of variables
d on SATS of the MEWMACoDa CC. From Figure 5, it is also clearly visible that d has a
negative effect on the ATS of the VSI and the FSI CC for CoDa.

5.2.3. Impact of subgroup size n
Based on Table 4, it can be seen that n has a mild positive effect on the ATS of the CC for
CoDa; that is, the OOC SATS values decrease with an increase in the value of n.

When δ = 1, n = 1, d = 3, h1 = 1.70, h2 = 0.1 and W = 1.80, the SATS for the FSI-
T2 CoDa CC is SATS = 40.896 and for the VSI-T2 CoDa CC is SATS = 23.119. But when
the value of n increases to n = 3, the SATS for the FSI-T2 CoDa CC decreases to SATS =
40.543, and the VSI-T2 CoDa CC decreases to SATS = 22.766.

Similarly, when δ = 1, n = 1, d = 3, h1 = 1.70, h2 = 0.1, r = 0.14, H = 9.22 and
W = 1.80, the SATS for the FSI-MEWMACoDa CC is SATS = 9.05 and for the VSI-
MEWMACoDaCC is SATS = 6.188. But when the value of n increases to n = 3, the SATS
for the FSI-MEWMACoDa CC decreases to SATS = 7.59, and the VSI-MEWMACoDa
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Figure 6. SATS Curves for d = 3 and n ∈ {1, 3}.

Table 5. OOC ZATS and SATS of the FSI and VSI-MEWMACoDa CC.

d = 3 d = 5

n = 1 n = 3 n = 1 n = 3

δ VSI FSI VSI FSI VSI FSI VSI FSI

ZATS
0.25 56.842 64.6 48.346 53.98 64.362 70.27 53.746 59.654
0.5 19.935 26.4 17.731 22.44 26.695 31.65 22.731 27.686
0.75 10.441 15.1 9.095 12.9 15.69 19.72 13.495 17.525
1 6.913 9.9 5.489 8.44 10.748 13.89 9.289 12.431
1.25 4.934 7.1 3.885 6.05 8.333 10.67 7.285 9.623
1.5 3.728 5.4 3.185 4.61 6.978 8.55 6.185 7.757
1.75 3.008 4.3 2.852 3.68 6.075 7.03 5.452 6.407
2 2.419 3.5 2.246 3 4.95 5.81 4.446 5.306

SATS
0.25 55.762 63.35 47.267 52.74 62.882 68.6 52.905 58.698
0.5 18.935 25.25 16.732 21.29 25.295 30.08 21.819 26.642
0.75 9.561 14.1 8.216 11.91 14.41 18.3 12.662 16.579
1 6.153 9.05 4.732 7.59 9.588 12.62 8.56 11.616
1.25 4.254 6.35 3.209 5.31 7.253 9.5 6.629 8.899
1.5 3.128 4.75 2.59 3.96 5.978 7.48 5.606 7.131
1.75 2.488 3.75 2.338 3.13 5.155 6.06 4.952 5.857
2 1.979 2.95 1.806 2.45 4.51 5.26 4.006 4.756

CC decreases to SATS = 4.732. Figure 5 also shows the impact of the subgroup size n on
the SATS of the MEWMACoDa CC. From Figure 6, it is also clearly visible that n has a
positive effect on the ATS of the VSI and FSI CC for CoDa.

5.3. Comparison of ZATS and SATS of the VSI-MEWMACoDa control chart

To compare the ZS and the SS performance of the VSI-MEWMA CoDa CC, all
the ZATS and the SATS values for different combinations of the involved variables
are given in Table 5. It can be seen from Table 5 that the SATS for both the FSI
and the VSIMEWMACoDa CC are less than the ZATS of both the FSI and the
VSIMEWMACoDa CC.
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Figure 7. SATS and ZATS Curves.

When δ = 1, n = 1, d = 3, the ZATS for the FSI and the VSIMEWMACoDa CC
are ZATS = 9.90 and ZATS = 6.948 respectively. While the SATS for the FSI and the
VSIMEWMACoDa CC are SATS = 9.05 and SATS = 6.188, respectively, are less than
ZATS for both the FSI and the VSIMEWMACoDa CC.

Figure 7 also shows the ZATS and the SATS curves for both the FSI and the
VSIMEWMACoDa CCs. A solid line shows the SATS of VSI in all the figures, the SATS of
the FSI is shown by a dotted line in all the figures, the ZATS of the VSI is shown by a dashed
line in all the figures, while a dashed-dotted line shows the ZATS of the FSI in all the fig-
ures. From Figure 7, we can see that the SATS for both the FSI and the VSIMEWMACoDa
CC are less than the ZATS of both the FSI and the VSIMEWMACoDa CC.

Also the out-of-control performances of VSIMEWMACoDa CC under ZS and SS can
be compared using percentage improvement indicator as,

� = 100(ATSZS − ATSSS)
ATSZS

Table 6 presents the percentage improvement in terms of out-of-control ATSs under
the ZS and SS of the VSI-MEWMACoDa CC for n = 1 and p = 3. The SATS of VSI-
MEWMACoDa CC is always smaller than the ZATS of the VSI-MEWMACoDa CC.
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Table 6. Comparison in terms of out-of-
control ATSs under the ZS and SS of the VSI-
MEWMACoDa CC for n = 1 and p = 3.

δ ZATS SATS �

0.25 56.842 55.762 1.90
0.50 19.935 18.935 5.02
0.75 10.441 9.561 8.43
1.00 6.913 6.153 10.99
1.25 4.934 4.254 13.78
1.50 3.728 3.128 16.09
1.75 3.008 2.488 17.29
2.00 2.419 1.979 18.19

In terms of their percentage improvement indicators it can be seen that, depending on
the level of shift δ, when n = 1 and p = 3, the VSI-MEWMACoDaCC under SS proposed
in this paper is between 2% to 18%more efficient than the VSI-MEWMACoDa CC under
ZS presented in [35].

6. Illustrative example

Similar to [56,58], the example of the particle-size distribution for a plant in Europe
is used in this study. According to [58], there were four OOC points in the data (i.e.
(#1, #26, #45, #52)). Following [56], the author removed all the four OOC points described
by Vives et al. [58] to get the IC phase I data set. Assume that the author would like to use
the VSI-MEWMACoDa CC with r = 0.05 and H = 7.35 to control a process of d = 3-
part CoDa. After removing the OOC point, the IC phase-I dataset is given in Table 7. The
estimates for the parameters of the multivariate normal distribution of the ilr transformed
mean vector and variance-covariance matrix are given by

μ∗
0 =

(
1.962
1.184

)
,

and

�∗ =
(

0.099 −0.022
−0.022 0.088

)
.

while the mean of original CoDa can be written as

μ0 =
⎛
⎝0.892
0.056
0.052

⎞
⎠ ,

For the phase II dataset, using simulation, 20 samples of size n = 3 have been generated
usingμ∗

0. The process is ICup to sample 10, after sample 10, a shift with the assignable cause
in the mean vector has been introduced, and the next 10 samples are generated using μ∗

1.
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Table 7. The Phase I dataset from [56].

i M L S i M L S i M L S i M L S

1 92.6 3.2 4.2 14 94.5 2.6 2.9 27 83.6 7.4 9 40 84.5 6.9 8.6
2 91.7 5.2 3.1 15 94.5 2.7 2.8 28 84.8 6.8 8.4 41 84.4 7.4 8.2
3 86.9 3.5 9.6 16 88.7 7.9 3.4 29 87.1 6.3 6.6 42 84.3 8.9 6.8
4 90.4 2.9 6.7 17 84.6 6.6 8.8 30 87.2 6.1 6.7 43 89.8 8.2 2
5 92.1 4.6 3.3 18 90.7 4 5.3 31 87.3 6.6 6.1 44 90.4 6.7 2.9
6 91.5 4.4 4.1 19 90.2 2.5 7.3 32 84.8 6.2 9 45 90.1 5.9 4
7 90.3 5 4.7 20 92.7 3.8 3.5 33 87.4 6.5 6.1 46 83.6 8.7 7.7
8 85.1 8.4 6.5 21 91.5 2.8 5.7 34 86.8 6 7.2 47 88 6.4 5.6
9 89.7 4.2 6.1 22 91.8 2.9 5.3 35 88.8 4.8 6.4 48 84.7 8.4 6.9
10 92.5 3.8 3.7 23 90.6 3.3 6.1 36 89.8 4.9 5.3 49 93 5.1 1.9
11 91.8 4.3 3.9 24 87.3 7.2 5.5 37 86.9 5.8 7.3 50 91.4 5 3.6
12 91.7 3.7 4.6 25 82.6 7 10.4 38 83.8 7.2 9 51 86.2 5 8.8
13 90.3 3.8 5.9 26 83.5 6 10.5 39 89.2 5.6 5.2 52 87.2 5.9 6.9

Hence the mean vector shifted from

μ∗
0 =

(
1.962
1.184

)
,

to

μ∗
1 =

(
2.070
1.15

)
,

or it can be written in original CoDa as

μ1 =
⎛
⎝0.901
0.048
0.051

⎞
⎠ .

Where the shift from μ∗
0 to μ∗

1 equals δ = 0.34. But here, the author has used a shift of
size δ = 0.25 in the mean vector. δ = 0.25 is considered enough to detect the shift in μ∗
quickly, as it is interpreted as a signal that something is not right in the process. For this
reason, δ = 0.25 is used to implement the VSI-MEWMACoDa CC. For n = 1 and δ =
0.25, the optimal parameters for the VSI-MEWMACoDa CC are r = 0.05 and H = 7.35
(see Table 2).

Here the author has taken the subgroup of size n = 3 and the IC ATS0 = 200. Using
h2 = 0.1 and h1 = 2.5, the author gets a WL of the VSI-MEWMACoDa CC W = 0.8
with the SS OOC SATS = 57.882. The next SI depends on the position of the VSI-
MEWMACoDa CC; if the CC lies below W, the SI will be h1, while if the CC lies
between W and H, the SI will be h2. The VSI-MEWMACoDa CC has a greater degree
of efficacy than the FSI-MEWMACoDa CC; as for the same values of r, H, d and n, the
FSI-MEWMACoDa CC have the SSOOC SATS = 63.35. For the sake of comparison, the
author has used a percentage improvement indicator,

� = 100(ATSFSI − ATSVSI)
ATSFSI

.

The percentage improvement indicator shows that theVSI-MEWMACoDaCChas almost
8.63% greater degree of efficacy than the FSI-MEWMACoDa CC in terms of SS OOC
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SATS. The same is the case with ZS OOC ZATS, and the VSI-MEWMACoDa CC have
an almost 8.73% greater degree of efficacy than the FSI-MEWMACoDa CC in terms of
ZATS.

7. Conclusions

This article has investigated the performance of the VSI function in the MEWMACoDa
CCs using a normal random vector described as the inverse log-ratio of a d-part CoDa to
monitor the mean vector. This article focuses on the VSIs instead of using the FSI-based
charting schemes tomonitor the shift in the process mean vector. In the VSI CC, the length
of the SI depends on the charting statistic. A WL was introduced, and the SI length was
divided into two values, h1 for the large SI and h2 for the small SI. By fixing the small
SI to 0.1, the author can find the values of optimal parameters considering a fixed value
of the IC ATS0 for a wide range of shifts in the process mean. If the monitored statistics
lie below the WL, then a large SI has been used. But, when the monitored statistics lie
between the warning and the UCL, the small SI has been used. The proposed study has
investigated the VSIMEWMACoDa CC’s performance under zero-state and steady-state
properties of the run length using the CTMCmethod. The process mean and the variance-
covariancematrix is supposed to be known for the ATS comparative study. Different values
of the number of variables d and subgroup size n have been used to investigate the OOC
ATS using a fixed value of IC ATS. The main conclusions of this article are (i). The ZATS
and the SATS of the FSI-MEWMACoDa CC are greater than the ZATS and the SATS
of the VSI-MEWMACoDa CC; (ii). The ATS of the VSI-MEWMACoDa CC increases
with an increase in the d; (iii). The ATS of the VSI-MEWMACoDa CC decreases with
an increase in the n; (iv). The SATS of the proposed CC is less than the ZATS for all the
different combinations of n and d. A comparison of the VSI-MEWMACoDa CC with the
FSI-MEWMACoDaCC, the VSI and the FSIHotellingT2 CoDaCChas also beenmade to
study the statistical sensitivity of the proposed CC. For future research, MCUSUM-CoDa,
Hotelling T2 CoDa, for the location mean vector and dispersion matrix, can be designed
using VSI.
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