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ABSTRACT
This article proposes a performance measure to evaluate the detec-
tionperformanceof a control chartwith agiven sampling strategy for
finite or small samples sequence and prove that the CUSUM control
chart with dynamic non-random control limit and a given sampling
strategy can be optimal under the measure. Numerical simulations
and real data for an earthquake are provided to illustrate that for
different sampling strategies, the CUSUM chart will have different
monitoring performance in change-point detection. Among the six
sampling strategies that take only a part of samples, the numeri-
cal comparing results illustrate that the uniform sampling strategy
(uniformly dispersed sampling strategy) has the best monitoring
effect.
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1. Introduction

One of the basic problems of quickest change-point detection is designing an optimal con-
trol chart (or sequential test, alarm time, stopping time) to detect possible changes in the
statistical behavior of a sequence of observations at some instant in time ( change point).
Optimal change-point detection or an optimal control chart for change detection is usu-
ally expected to have the smallest average detection delay of all control charts subject to
a constraint associated with the cost of false alarms. The need for the quickest detection
of change arises in a variety of applications, including quality control [8,14], biomedical
signaling and public health [3,17,19], financial markets [3], network monitoring [20], etc.

There are mainly two settings in the optimal change-point detection: one is Bayesian
change-point detection in which the distribution of the change-point time is known
[10,16,18], another is non-Bayesian or minimax change-point detection in which the
change-point time is non-random and unknown [7,9–12]. A recent review of optimal
change-point detection theory in both Bayesian and non-Bayesian settings can be found
in [6].
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Because of sampling constraints or to reduce the sampling cost, we have to consider
how to construct an optimal control chart with the best sampling strategy for change
detection, which is subject to two constraints: one is on the loss associatedwith false alarms,
another is the cost of observations or sampling restrictions. Premkumar and Kumar [13]
formulated the Bayesian change detection problem that minimizes the detection delay for
sleeping/waking scheduling in a sensor network. Banerjee and Veeravalli [1,2] investigated
the optimal detection problem in both Bayesian and non-Bayesian settings with a con-
straint on the average energy consumed by the observations. Geng et al. [4] analyzed the
Bayesian change detection problem with sampling constraints. Ren et al. [15] studied the
optimal detection problem in a non-Bayesian setting with communication rate constraints.
All the above work is based on a common assumption that the observation sequence is
infinite.

In fact, within a given limited time, people can only observe (or sample) a finite number
N of samples. Sometimes we can only obtain dozens or even fewer samples. The following
discussion shows that the sequential detection with finite samples can be used for people’s
special needs. (1) Consider a production line that produces one product per minute one
day. Let the production line works 8 hours a day, then the number of sequential observa-
tions isN = 480. If someone wants to monitor the product quality of a certain day online,
then the task is to design or construct an effect test formonitoring whether the 480 sequen-
tial observations ( product quality of 1 day) are abnormal in real time on line. (2) As we
know, the securities market trades for 4 hours a day. If we want to monitor online the
change of the trading price per minute of a stock 1 day, there areN = 240 sequential trad-
ing price data. (3) Silicosis is an occupational disease with the highest incidence rate among
workers in cement production enterprises. Usually, the cement production enterprise will
arrange physical examination for each employee every year to see if there is silicosis. If an
employee works from the age of 20 to the age of 60, there are 40 physical examination data,
that is, N = 40. (4) Diabetes is a common disease. Almost every university in Shanghai
will arrange physical examinations for teachers every year, one of exam items is to check
whether the blood sugar is normal. Usually, the average age of young teachers enteringUni-
versity is 28 and retire at the age of 60. There will be blood glucose physical examination
data of 32 years for each teacher, that is, N = 32.

Due to sampling constraints or to reduce sampling costs, people can only get a part of
the real samples (data). For example, if one has time only in the morning (or afternoon)
to observe the changes in stock prices, he or she may correspondingly adopt the following
sampling strategy: the no observed samples in the afternoon (or morning) are replaced by
a given number. Therefore, we have only a real trading price data of 2 hours of morning (or
afternoon), i.e. 120 real data. If every minute of data needs to pay a certain fee, to save costs
and not miss too much information (data), one may take the following sampling strategy:
Take a real sample every 2 minutes with replacing the samples not collected between 2
minutes with the given number. In fact, people’s different needs can correspond to different
sampling strategies. Hence, it is important for us to obtain the optimal control chart with
the best sampling strategy in change detection for finite or small samples.

In this paper, we propose a performancemeasure to evaluate the detection performance
of a control chart with a given sampling strategy for finite or small samples sequence and
prove that the CUSUM control chart with a dynamic non-random control limit is opti-
mal under this measure when the change point is unknown. Moreover, the numerical
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comparisons of six kinds of sampling strategies that take only a part of all samples are
given to illustrate which sampling strategy has a faster monitoring speed.

The remainder of this paper is organized as follows. Section 2 describes a criterion for
the optimal control chart with a given sampling strategy. Section 3 presents mainly the
optimal CUSUM control chart. Numerical simulations and a real example for comparing
several sampling strategies are given in Sections 4 and 5, respectively. Section 6 provides
the conclusion and discussion. The proofs of two theorems are given in Appendix.

2. A criterion of optimal control chart with sampling strategy

Consider finite mutually independent observations, X1,X2, . . . ,XN . Without loss of gen-
erality, we assume N ≥ 2. Let τ (1 ≤ τ ≤ N) be the unknown change point and the
pre-change probability density of X1, . . . ,Xτ−1 is p0(x) before the change point and
after the change point the probability density of Xτ ,Xτ+1, . . .XN becomes p1(x) which
is also known. Let Pk and Ek be the probability distribution and the expectation of
{Xk,Xk+1, . . .XN} respectively if a change occurs at the change point τ = k. When τ > N,
this means that a change does not occur in the observations X1,X2, . . . ,XN and therefore,
the probability distribution and the expectation are denoted by P0 and E0 respectively for
all observations X1,X2, . . . ,XN .

Generally speaking, any control chart (or sequential test) for change-point detection can
be modeled as a stopping time or an alarm time T ≥ 1 adapted to the filtration {Fn}n≥1,
where Fn = σ {Xk, 1 ≤ k ≤ n} denotes the smallest σ -algebra with respect to which all of
the random variables (observations)X1 · · · ,Xn aremeasurable. The optimality of the stop-
ping time usually means that the detection delay (T − τ)+ measured is in some sense the
smallest of all stopping times with a probability of false alarm P∞(T < τ) no greater than
a preset level α ∈ (0, 1), or, among all stopping times with a false alarm rate no less than a
given value γ > 1, i.e. E0(T) ≥ γ .

When N = ∞, Moustakides [9] has proved that the following upper-sided CUSUM
chart TC:

TC = min

⎧⎨⎩n ≥ 1 : max
1≤j≤n

⎧⎨⎩
n∑
k=j

log�(Xk)

⎫⎬⎭ ≥ log c

⎫⎬⎭ = min{n ≥ 1 : Yn ≥ c}

for c>1, is optimal under the following Lorden’s measure [6]:

inf
T:E0(T)≥γ

JL(T),

where �(Xk) = p1(Xk)/p0(Xk), Yk = max{1,Yk−1}�(Xk) with Y0 = 0 and JL(T) is the
worst average delay, i.e.

JL(T) = sup
k≥1

ess sup{Ek((T − k + 1)+|Fk−1)}.

However, whenN < ∞, an example given in [5] has shown that the following upper-sided
CUSUM chart TC(N) := min{TC,N + 1} for N observations

TC(N) = min{1 ≤ n ≤ N + 1 : Yn ≥ cn}
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is not optimal in the Lorden’smeasureJL(min{T, N + 1}), whereYN+1 := YN , cN+1 = 0,
cn = c for 1 ≤ n ≤ N and {T = N + 1} := {T > N} = {Yn < c for all 1 ≤ n ≤ N} ∈ FN .

Note that Lorden’s measure is not easy to calculate. It is natural to ask: can we define a
measure that is easy to calculate so that a modified CUSUM chart with a given sampling
strategy for finite observations is still optimal under this measure?

Because of sampling constraints or to reduce the sampling cost, we need to choose
an appropriate sampling strategy for change-point detection. Let S = {S1, . . . , SN} denote
a sampling strategy satisfying Sk ∈ Fk−1 for 1 ≤ k ≤ N, in which, Sk = 1 or 0 denote
that we will take a sample Xk or not take a sample but replace Xk with a constant s0 at
time k, respectively, that is, we have a new series of samples, X̃k = SkXk + (1 − Sk)s0 for
1 ≤ k ≤ N.

Remark 2.1: We know that μ0 := E0(log�(X1)) < 0 for p1(.) �= p0(.). Hence, when the
substitute sample X̃k = s0 satisfies μ0 < log�(s0) < 0, it implies that the observation
sequence may have a small mean shift at time k. If log�(s0) ≥ 0 for X̃k = s0, it implies
that there is a possible medium or large change mean shift in the observation sequence at
time k.

Next, we will present a measure with a sampling strategy to evaluate the detection per-
formance of a control chart for an unknown change point. Let SN denote the set of all
sampling strategies. For a given sampling strategy S ∈ SN , letTN(S) be the set of all control
charts, T(S), with the sampling strategy S, which satisfy 1 ≤ T(S) ≤ N + 1 and {T(S) ≤
n} ∈ Fn(S) = σ {X̃k : 0 ≤ k ≤ n} for 1 ≤ n ≤ N, where {T(S) = N + 1} := {T(S) > N},
X̃k = SkXk + (1 − Sk)s0 for 1 ≤ k ≤ N and F0(S) = �, the sample space.

The upper-sided CUSUM charting statistics for a given sampling strategy S can be writ-
ten asYk(S) = max{1,Yk−1(S)}�(X̃k) for 1 ≤ k ≤ N withY0(S) = 0. As in [5], we define a
measureJN(T(S), S) for a given sampling strategy S to evaluate the detection performance
of a control chart when detecting an upper-sided change by the following:

JN(T(S), S) =
N∑
k=1

Ek[(1 − Yk−1(S))+(T(S) − k)+], (1)

which is the average total amount of the detection delay, where x+ = max{x, 0} and the
random weight, (1 − Yk−1(S))+, of the detection delay (T(S) − k)+ is determined by the
information before the change point k since (1 − Yk−1(S))+ ∈ Fk−1(S). It can be seen that
the smaller JN(T(S), S), the better T(S) performs.

Remark 2.2: One reason to present the delay measure above is that the charting statis-
tic Yk−1(S) ≥ 1 can be considered as that there is a false medium or large change before
the change point k, and Yk−1(S) < 1 can denote there being no change or a small false
change before the change point k, therefore, taking the weight (1 − Yk−1)

+ for the detec-
tion delay (T(S) − k)+ means that if the charting statistic Yk−1(S) ≥ 1, we do not need to
consider the detection delay (T(S) − k)+, if Yk−1(S) < 1, we must consider the detection
delay (T(S) − k)+. Another motivation is that, by the definition of the charting statistics,
Yk(S) = max{1,Yk−1(S)}�(Xk(S)) with Y0 = 0 for k ≥ 1, we see that Yk(S) = �(Xk(S))
when Yk−1(S) < 1, that is, Yk−1(S) < 1 means that we can restart monitoring the change
from time k.
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Remark 2.3: To detect the lower-sided changes, for example, themean shift fromμ0 toμ1,
where μ1 < μ0, we can take the weight (1 + Y−

k−1(S))
+, where Y−

k−1(S) is the lower-sided
CUSUM charting statistic satisfying Y−

k (S) = min{1,Y−
k−1(S)}p1(X̃k)/p0(X̃k) for 1 ≤ k ≤

N with Y−
0 ≥ 1. The corresponding measure, J −

N (T(S), S) can be written as

J −
N (T(S), S) =

N∑
k=1

Ek[(1 + Y−
k−1(S))

+(T(S) − k)+],

which is the total average amount of the detection delay. In this paper, we only consider
upper-sided change detection since lower-sided change detection can be dealt with by
similar methods.

A criterion for an optimal control chart, T∗(S∗), with an optimal sampling strategy S∗
is defined by the following:

min
T(S)∈TN(S), S∈SN

{JN(T(S), S)} = JN(T∗(S∗), S∗) (2)

subject to E0(T(S)) ≥ γ , E0

( N∑
k=1

Sk

)
≤ β , (3)

where the two positive constants γ and β denote the lower bound of the false alarm average
time for T(S) and the upper bound of the average number of observations, respectively,
which satisfy 1 < γ ,β ≤ N. Moreover, the measure JN(T(S), S) can be regarded as the
generalized out-of-control average run length (ARL1).

3. The optimal CUSUM control chart with sampling strategy

To construct the optimal control chart, we first present a series of nonnegative CUSUM
charting statistics, Yk(S), 1 ≤ k ≤ N + 1, for a given sampling strategy S ∈ SN in the
following:

Yk(S) = max{1,Yk−1(S)}�(X̃k) = [Yk−1(S) + (1 − Yk−1(S))+]�(X̃k)

=
k∑

j=1
(1 − Yj−1(S))+

k∏
i=j

�(X̃i)

for 0 ≤ k ≤ N + 1, where Y0(S) = 0 and YN+1(S) := YN(S). It is clear that Yk(S) ∈ Fk(S)
for 1 ≤ k ≤ N.

As in [5], for a given sampling strategy S, the CUSUM control chart with a nonnegative
non-random dynamic control limit, lk(S, c), is defined by the following:

TC(S, c) = min{1 ≤ k ≤ N + 1, Yk(S) ≥ lk(S, c)}, (4)

where {lk(S, c)} is determined by the following recursive equations:

lN+1(S, c) = 0, lN(S, c) = clk(S, c) = c + E0
(
[lk+1(S, c) − Yk+1(S)]+|Fk

)



814 D. HAN ET AL.

for 0 ≤ k ≤ N − 1 and c>0, is a constant which can be regarded as an adjustment coef-
ficient for the control limits since lk(S, c) is increasing in c ≥ 0 with lk(S, 0) = 0 and
limc→∞ lk(S, c) = +∞ for 0 ≤ k ≤ N.

The following theorem shows that the CUSUM chart with the dynamic control limit
above can be optimal under the measure JN(T(S), S) for any given sampling strategy
S ∈ SN .

Theorem 3.1: Let γ be a positive number satisfying 1 < γ < N. For a given S ∈ SN, there
exists a positive number cγ such that the CUSUM chart T∗(S) := TC(S, cγ ) the dynamic
non-random control limit {lk(cγ )} and E0(T∗(S)) = γ , is optimal in the following sense:

inf
T(S)∈TN(S), E0(T(S))≥γ

{JN(T(S), S)} = JN(T∗(S), S). (5)

Remark 3.1: It can be seen that Theorem 3.1. cannot give the optimal sampling strategy
S∗ satisfying the constraint conditions E0(T(S∗)) ≥ γ and E0

(∑N
k=1 S

∗
k

)
≤ β .

Since it is difficult to prove the optimal sampling strategy in theory, we want to find a
relatively good sampling scheme by comparing two sampling strategies. To compare two
sampling strategies, we present the definition of a relative increasing strategy below. A sam-
pling strategy S′ = {S′

1, . . . , S
′
N} is called a relative increasing strategy by comparison with

the sampling strategy S = {S1, . . . , SN}, if and only if S′
k ≥ Sk for all 1 ≤ k ≤ N, which

can be denoted as S′ ≥ S. The inequality S′ ≥ S means that strategy S′ can extract more
information (samples) than strategy S.

Theorem 3.2 shows that the more samples (information), the better the performance of
the corresponding optimal CUSUM control chart.

Theorem 3.2: Let s0 satisfy

�(s0) ≥
∫ +∞

−∞
max{p0(x), p1(x)} dx (6)

and both T∗(S) and T∗(S′) be the two optimal CUSUM charts in (5) corresponding to two
sampling strategies S, S′ ∈ SN satisfying S′ ≥ S. Then

JN(T∗(S), S) ≥ JN(T∗(S′), S′) (7)

for E0(T∗(S)) ≥ E0(T∗(S′)), and the optimal CUSUM chart T∗(S′) satisfies

inf
S∈SN , T(S)∈TN(S)

{JN(T(S), S)} = JN(T∗(S′), S′)

subject to S ≤ S′, E0(T(S)) ≥ E0(T∗(S′)). (8)

Let Sa = {1, 1, . . . , 1} denote that we take all N samples. It is clear that any sampling
strategy S ∈ SN satisfies S ≤ Sa. Hence, we have the following corollary.

Corollary 3.3: Let the conditions in Theorem 3.2 hold. Then

inf
S∈SN , T(S)∈TN(S), E0(T(S))≥E0(T∗(Sa))

{JN(T(S), S)} = JN(T∗(Sa), Sa). (9)
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It can be seen that the optimal CUSUMchartT∗(Sa) has the best detection performance
of all sampling strategies and all control charts subject to a constraint on the false alarm
average run length (ARL0).

Remark 3.2: When the condition (6) does not hold and the two sampling strategies do
not meet the relative increase condition, no general theoretical results for the sampling
strategies have been obtained, but we will provide numerical simulation results for these
cases in the next section.

4. Numerical simulations

By numerical comparisons of the detection performance of the optimal CUSUM chart for
seven kinds of sampling strategies in this section, we have two main purposes. One is to
see how much the monitoring speed is different between the sampling of all samples and
the sampling of missing some samples; the other is see which sampling strategy has a faster
monitoring speed among six sampling strategies of missing some samples. The seven sam-
pling strategies Sa, Sfir, Slas, Suni, Srand, SDE, S̃DE compared in this section are as follows, β is
the number of observations,

• Sa denotes that the observation samples are taken at all times (1 ≤ k ≤ 60) (full
sampling strategy);

• Sfir represents that we take the observation samples only during the first period;
• Slas represents that we take the observation samples only during the last period;
• Suni denotes that the observation samples are taken evenly and dispersedly (uniformly

dispersed sampling strategy);
• Srand denotes the sampling each time with probability of β/N;
• SDE represents the DE-Shiryaev sampling strategy given in [2] (e.g. take a positive con-

stant A which can be called the warning line, it is lower than the constant control line.
If the monitoring statistic is lower than the warning line, next sampling is not required
but replacing by a given number. If it is higher than the warning line but lower than the
control line, next sampling is required). S̃DE = {̃SDE,k, 1 ≤ k ≤ N} satisfies

E0

⎛⎝T∗(SDE)∑
k=1

SDE,k

⎞⎠ ≈ β .

• S̃DE denotes that if the monitoring statistic is lower than the warning line (a positive
constant A), next sampling is not required but replacing by a given number, if it is higher
than the warning line, next sampling is required. SDE = {SDE,k, 1 ≤ k ≤ N} satisfies

E0

( N∑
k=1

S̃DE,k

)
≈ β .

Let X0 ∼ N(0, 1) and, after the change point τ = 1, Xk ∼ N(1, 1), 1 ≤ k ≤ 60, are
mutually independent. It follows that p1(Xk)/p0(Xk) = eXk−1/2 for 1 ≤ k ≤ 60. We give
numerical simulations to compare the detection performance of four non-random sam-
pling strategies Sa, Sfir, Slas, Suni and three random sampling strategies Srand, SDE, S̃DE for
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N = 60. The substitute s0 for an observation value will be taken as 0, 0.25 and 0.5,
respectively.

Consider the three cases for the number of observations β = 12, 20, 30. As for Suni,
if β = 30, we take observations at 1, 3, 5, 2k − 1, . . .. If β = 20, we take observations at
2, 5, 8, 11, . . . And if β = 12, we take observations at 3, 8, 13, 18, . . .

Let ARL0 = E0(TC(S, cγ )) = 20, 30, 40 for the CUSUM control charts TC(S, cγ ) with
the dynamic control limit {lk(S, cγ )} and the sampling strategy S considered here. Let the
numbers of observations be β = 12, β = 20, and β = 30, respectively. The simulation
results of the adjustment coefficient cγ , ARL0, the warning line A and the measure JN are
listed in Tables 1–9 respectively for s0 = 0, 0.25, and 0.5. Note that the sampling strategy
SDE is invalid when ARL0 ≤ β .

By comparing the measure JN of the CUSUM charts with the dynamic control limit
{lk(S, cγ )} for seven sampling strategies Sa, Sfir, Slas, Suni, Srand, S̃DE and SDE in Tables 1–9,
we can make the following five conclusions:

(1) For all cases, the full sampling strategy Sa is optimal amongst all seven sampling strate-
gies since its correspondingmeasureJN(T∗(Sa)) is the least among allmeasuresJN(.)
for the seven sampling strategies.

Table 1. Comparison ofJN for β = 12, s0 = 0 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 0.938 0.4619 0.735 0.715 0.65 1.171
ARL0 20.0032 19.9971 20.3822 19.9809 20.0154 20.0674 20.2969
A – – – – – 0.192 0.066
JN 0.4577 6.9661 3.4816 2.3157 2.6917 10.1051 3.4187

30 cγ 1.73 1.032 0.4620 0.868 0.861 0.88 1.25
ARL0 29.9902 30.0134 30.1969 30.1281 30.1413 30.1861 30.2598
A – – – – – 0.192 0.093
JN 0.5426 7.6702 5.4208 2.8846 3.2068 10.4783 5.3638

40 cγ 2.3 1.145 0.4621 0.982 0.985 1.05 1.365
ARL0 40.1787 39.9446 40.2532 40.0312 40.1859 40.1211 40.1091
A – – – – – 0.192 0.12
JN 0.6734 7.9904 7.3986 3.4693 3.7255 10.7379 7.375

Table 2. Comparison ofJN for β = 20, s0 = 0 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 1.052 0.4619 0.86 0.862 0.82 –
ARL0 20.0032 20.0813 19.9731 20.0655 19.9622 20.1297 –
A – – – – – 0.140 –
JN 0.4577 4.6915 3.4111 1.6235 1.9111 8.4980 –

30 cγ 1.73 1.171 0.4620 0.982 0.995 1.005 1.475
ARL0 29.9902 29.9951 30.0538 30.0158 30.0262 29.9522 29.9889
A – – – – – 0.140 0.066
JN 0.5426 5.2447 5.4253 1.9208 2.1475 9.1951 3.7056

40 cγ 2.3 1.355 0.465 1.104 1.135 1.225 1.7
ARL0 40.1787 39.9391 40.1248 40.0953 40.1222 40.0960 40.0162
A – – – – – 0.140 0.088
JN 0.6734 5.6734 7.4042 2.3050 2.4641 9.6218 5.1029
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Table 3. Comparison ofJN for β = 30, s0 = 0 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 1.165 0.4619 0.985 0.987 0.95 –
ARL0 20.0032 19.9244 20.0507 20.1278 20.1491 20.0527 –
A – – – – – 0.1065 –
JN 0.4577 2.4671 3.4133 1.1217 1.2599 6.5860 –

30 cγ 1.73 1.34 0.465 1.12 1.14 1.155 –
ARL0 29.9902 30.0128 30.1108 30.0102 30.0168 30.0487 –
A – – – – – 0.1065 –
JN 0.5426 2.9467 5.4373 1.2505 1.3937 7.4611 –

40 cγ 2.3 1.625 1.115 1.28 1.33 1.485 2.01
ARL0 40.1787 40.0563 40.0474 39.9918 40.0423 39.9682 39.9913
A – – – – – 0.1065 0.062
JN 0.6734 3.3345 5.4259 1.4577 1.6134 8.2570 2.8311

Table 4. Comparison ofJN for β = 12, s0 = 0.25 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 0.942 0.53916 0.74 0.715 0.66 1.17
ARL0 20.0032 20.027 20.0789 20.0286 19.9733 20.1358 20.0195
A – – – – – 0.192 0.065
JN 0.4577 4.2757 2.2781 1.6848 1.8808 6.0869 2.2641

30 cγ 1.73 1.038 0.53918 0.89 0.88 0.878 1.24
ARL0 29.9902 30.0239 30.0195 29.9002 29.9605 30.0684 29.9109
A – – – – – 0.192 0.093
JN 0.5426 4.6707 3.4101 1.9928 2.1702 6.3001 3.3299

40 cγ 2.3 1.16 0.53926 1.035 1.028 1.048 1.363
ARL0 40.1787 40.0412 40.0162 40.1175 40.1207 40.0229 40.0414
A – – – – – 0.192 0.12
JN 0.6734 4.8850 4.5296 2.3426 2.4499 6.3192 4.4681

Table 5. Comparison ofJN for β = 20, s0 = 0.25 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 1.055 0.53918 0.885 0.88 0.822 –
ARL0 20.0032 19.9324 20.1048 19.9853 20.0289 20.1873 –
A – – – – – 0.14 –
JN 0.4577 2.9422 2.2650 1.2554 1.4164 5.1551 –

30 cγ 1.73 1.18 0.53919 1.045 1.04 1.006 1.48
ARL0 29.9902 30.0336 30.0466 30.1060 30.2288 29.9920 29.9486
A – – – – – 0.14 0.065
JN 0.5426 3.2835 3.3946 1.4230 1.5462 5.5541 2.3093

40 cγ 2.3 1.377 0.545 1.21 1.215 1.223 1.69
ARL0 40.1787 40.0162 40.0079 40.0509 39.9874 40.0353 40.0655
A – – – – – 0.14 0.089
JN 0.6734 3.5665 4.4235 1.6069 1.7289 5.7974 3.2478

(2) Excepting the case s0 = 0.5 in Tables 7–9 and the case s0 = 0.25 in Table 6 forARL0 =
40, the detection performance of the uniformly dispersed sampling strategy Suni is
better than the sampling strategy Srand, the sampling strategy Srand is better than the
sampling strategy SDE, the sampling strategy SDE is better than Sfir and Slas, Sfir and
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Table 6. Comparison ofJN for β = 30, s0 = 0.25 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 1.17 0.53919 1.035 1.02 0.952 –
ARL0 20.0032 19.9407 20.0439 20.0977 20.1199 20.1410 –
A – – – – – 0.1065 –
JN 0.4577 1.6404 2.2613 0.9064 1.0074 4.0474 –

30 cγ 1.73 1.35 0.545 1.212 1.205 1.156 –
ARL0 29.9902 30.0331 30.0019 29.9861 30.0344 30.1053 –
A – – – – – 0.1065 –
JN 0.5426 1.9422 3.3056 0.9929 1.0905 4.5446 –

40 cγ 2.3 1.65 1.115 1.445 1.45 1.488 2.01
ARL0 40.1787 40.1433 40.0474 40.0477 39.9851 40.0353 40.1093
A – – – – – 0.1065 0.0618
JN 0.6734 2.2098 3.4268 1.1389 1.2404 5.0067 1.8873

Table 7. Comparison ofJN for β = 12, s0 = 0.5 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 0.97 0.61707 0.815 0.76 0.675 1.172
ARL0 20.0032 19.9630 19.9372 20.1206 19.9615 20.1102 20.0484
A – – – – – 0.192 0.0648
JN 0.4577 0.8079 0.8169 0.8617 0.8239 0.9049 0.8033

30 cγ 1.73 1.105 0.61709 1.075 1.01 0.885 1.245
ARL0 29.9902 30.1056 30.1513 30.0324 30.1414 30.0291 30.0813
A – – – – – 0.192 0.093
JN 0.5426 0.8612 0.8837 0.8906 0.8656 0.9221 0.8632

40 cγ 2.3 1.375 0.61780 1.425 1.325 1.051 1.36
ARL0 40.1787 40.0447 40.1382 40.2172 39.8161 40.1768 39.9597
A – – – – – 0.192 0.12
JN 0.6734 0.9303 0.9328 0.9501 0.9259 0.9260 0.9269

Table 8. Comparison ofJN for β = 20, s0 = 0.5 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 1.09 0.61708 0.995 0.965 0.825 –
ARL0 20.0032 20.0708 20.0183 20.0169 20.1259 20.0182 –
A – – – – – 0.14 –
JN 0.4577 0.7132 0.8083 0.7746 0.7863 0.8555 –

30 cγ 1.73 1.28 0.6174 1.25 1.22 1.008 1.481
ARL0 29.9902 30.2001 30.1761 29.9333 30.1165 30.1203 29.9841
A – – – – – 0.14 0.065
JN 0.5426 0.7857 0.8699 0.8060 0.8174 0.8736 0.7512

40 cγ 2.3 1.63 0.628 1.625 1.61 1.22 1.692
ARL0 40.1787 40.0782 40.0313 39.8233 40.0579 39.9564 40.092
A – – – – – 0.14 0.089
JN 0.6734 0.8831 0.8919 0.8889 0.8984 0.8756 0.8599

Slas are better than S̃DE. and SDE, since the measure JN(T∗(Suni)) of Suni is small-
est. Meanwhile, the detection performance of Srand and SDE is better than that of Sfir
and Slas.

(3) For the case s0 = 0.5 in Tables 7–9, the detection performance of the six sampling
strategies Sfir, Slas, Suni, Srand, S̃DE and SDE is not too different.
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Table 9. Comparison ofJN for β = 30, s0 = 0.5 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Slas) T∗(Suni) T∗(Srand) T∗ (̃SDE) T∗(SDE)

20 cγ 1.375 1.205 0.6174 1.14 1.11 0.955 –
ARL0 20.0032 20.06 29.1920 19.9856 20.0145 20.0150 –
A – – – – – 0.1065 –
JN 0.4577 0.5859 0.8052 0.6780 0.6937 0.7948 –

30 cγ 1.73 1.44 0.628 1.425 1.39 1.155 –
ARL0 29.9902 30.1226 30.0324 30.0104 29.9585 30.0487 –
A – – – – – 0.1065 –
JN 0.5426 0.6768 0.8562 0.7345 0.7379 0.8096 –

40 cγ 2.3 1.85 1.115 1.852 1.85 1.49 2.008
ARL0 40.1787 40.0221 40.0474 40.0151 40.1107 40.0735 40.0913
A – – – – – 0.1065 0.0618
JN 0.6734 0.7949 0.8599 0.8288 0.8485 0.8322 0.8014

Figure 1. A diagram of the control limits of different sampling methods.

(4) The adjustment coefficient cγ of the dynamic control limit for the sampling strategy
Sa is greatest of all adjustment coefficients cγ for the six sampling strategies Sa, Sfir,
Slas, Suni, S̃DE and SDE in all cases.

As a whole, among the six sampling strategies that take only a part of samples, the numer-
ical comparing results illustrate that the uniform sampling strategy Suni has the best
monitoring effect.

Figure 1 is a diagram of the control limits of four sampling strategies Sa, Sfir, Slas and
Suni for s0 = 0,β = 30 and ARL0 ≈ 40. It can be seen that the four dynamic control limits
all decrease monotonically.

5. Real data

According to the Chinese earthquake network, on 7 January 2015, in Yilan County, an
earthquake measuring 5.2 Richter scale occurred. The data measurements (acceleration in
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Figure 2. The value of accelerations collected by the sensor in the earthquake.

a specific direction) from a sensor are recorded from 12:43:32 to 12:53:32 before and after
an earthquake. Since the data are at a relatively high frequency (about 500 Hz), we collect
data every 2 microseconds. A simple plot of the measurements against time is shown as
follows. There is a significant signal in the middle of Figure 2, which should correspond
to the earthquake at 12:48:32. In fact, there is a delay of approximately 0.8 seconds in this
data.

We know that every seismic sensor has a battery inside. Assuming that the sensor col-
lects one sample every microseconds, the service life of the battery is 1 year. To extend
the service life of the battery, at the same time, do not lose too much information (data),
we can adjust the sensor so that it collects a sample (data) every 2 microseconds. Based
on this consideration, we compare the detection performance of the six sampling strate-
gies Sa, Sfir, Sboth, Suni, Srand and S̃DE forN = 60 (60 observations) of seismic sensors to see
how much the monitoring speed is different between the sampling of all samples and the
sampling of missing some samples. Here, Sboth means that we take observations in both
the first and last periods. That is, we take observations at 1, 2, . . . , β

2 ,N − β
2 + 1,N − β

2 +
2, . . . ,N.

We first normalize the data by the pre-change mean and variance. Then the pre-
change distribution can be approximated as N(0, 1) and the post-change distribution as
N(0.4, 42). Accordingly, the likelihood ratio is approximated. The substitute for observa-
tion value is s0 = 0.2. Consider the three cases with numbers of observations β = 12, 20
and 30. For Suni, we take observations at 1, 3, 5, 2k − 1, . . ., 2, 5, 8, 11, . . . and 3, 8, 13, 18, . . .,
respectively for β = 30, 20 and 12.

Let ARL0 = E0(T(S, cγ ))) = 20, 30, 40 for the CUSUM control chart T(S, cγ )) with
the dynamic control limit {lk(S, cγ )} and the sampling strategy S considered here. The
simulation results are listed in Tables 10–12 for β = 12, β = 20 and β = 30, respectively.

It can be seen from Tables 10–12 that the full sampling strategy, Sa, is best, and the
uniformly dispersed sampling strategy, Suni, is also good, being better than the sampling
strategies Sfir, Sboth, Srand and S̃DE.
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Table 10. Comparisons ofJN for β = 12 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Sboth) T∗(Suni) T∗(Srand) T∗ (̃SDE)

20 cγ 0.492 0.4 0.358 0.35 0.341 0.3575
ARL0 20.1 19.9667 20.3461 19.9128 20.1344 20.9090
A – – – – – 0.975
JN 0.2131 12.0601 14.0645 2.5005 3.4470 17.7804

30 cγ 0.57 0.436 0.3937 0.3933 0.39299 0.3936
ARL0 29.9636 30.0716 30.1626 30.0058 29.6563 29.9852
A – – – – – 0.975
JN 0.2452 13.3404 14.2171 2.6707 3.8024 18.0551

40 cγ 0.705 0.4892 0.4358 0.436 0.4363 0.45
ARL0 40.2044 40.0470 39.9516 40.0173 40.0552 40.057
A – – – – – 0.975
JN 0.2666 13.9110 14.7122 2.9020 3.8802 18.2491

Table 11. Comparisons ofJN for β = 20 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Sboth) T∗(Suni) T∗(Srand) T∗ (̃SDE)

20 cγ 0.492 0.436 0.3937 0.385 0.38 0.409
ARL0 20.1 19.9847 20.0314 20.0119 20.0978 19.9267
A – – – – – 0.9662
JN 0.2131 7.3484 8.8998 1.4004 2.0166 13.7606

30 cγ 0.57 0.486 0.4358 0.4357 0.4356 0.44
ARL0 29.9636 29.9018 30.2007 30.1277 30.1620 29.9118
A – – – – – 0.9662
JN 0.2452 8.7327 9.5817 1.5448 2.1545 14.2786

40 cγ 0.705 0.535 0.489 0.49 0.491 0.505
ARL0 40.2044 40.2213 39.7759 39.9962 40.1309 40.0014
A – – – – – 0.9662
JN 0.2666 9.4934 10.3945 1.5842 2.1596 14.4995

Table 12. Comparisons ofJN for β = 30 with ARL0 ≈ 20, 30, 40.

Sampling strategies

ARL0 T∗(Sa) T∗(Sfir) T∗(Sboth) T∗(Suni) T∗(Srand) T∗ (̃SDE)

20 cγ 0.492 0.4633 0.4353 0.414 0.4135 0.4354
ARL0 20.1 19.9520 20.1454 20.0048 20.1483 19.9642
A – – – – – 0.959
JN 0.2131 3.4562 5.3101 0.7657 1.1008 9.7635

30 cγ 0.57 0.515 0.468 0.468 0.467 0.487
ARL0 29.9636 30.0518 30.0045 29.8777 29.9630 30.0837
A – – – – – 0.959
JN 0.2452 4.54054 5.7852 0.8118 1.1475 10.3039

40 cγ 0.705 0.6 0.535 0.537 0.54 0.555
ARL0 40.2044 40.1145 40.1159 39.9882 39.9543 40.062
A – – – – – 0.959
JN 0.2666 5.2234 5.9845 0.8637 1.1861 10.8010

6. Conclusion and discussion

In this paper, for finite or small samples N(N ≥ 2) we obtain two theoretical results:
one is that for a given sampling strategy S, the CUSUM chart T∗(S) with the dynamic
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non-randomcontrol limit {lk(cγ )} is optimal under themeasureJN(T(S), S), and the other
is that if S′ ≥ S and condition (10) holds, the optimal CUSUM chart T∗(S′) is better than
the optimal CUSUM chart T∗(S), therefore, the optimal CUSUM chart T∗(Sa) has the
best detection performance of all sampling strategies and all control charts subject to a
constraint on the false alarm average run length (ARL0).

The numerical simulations in Tables 1–9 illustrate that when s0 = 0, 0.25, 0.5 substitutes
for the observation value, which does not satisfy condition (10), the optimal CUSUM chart
T∗(Sa) still has the best detection performance for the number of observations β = 12,
β = 20 and β = 30. This leads to the following problem: can the result of Theorem 3.2
still hold for log�(s0) ≥ μ0?Here,μ0 = E0(log�(X1)) < 0 but the condition (10) implies
that log�(s0) > 0. In other words, the condition log�(s0) ≥ μ0 ismore general than (10).

When the number of samples is restricted, or the number of samples is limited to reduce
the cost of sampling, we see from Tables 1–12 that the uniformly dispersed sampling strat-
egy Suni is better than the sampling strategies Sfir, Slas, Sboth, Srand, S̃DE and SDE except
in the case where s0 = 0.5. Therefore, we prefer to recommend the use of a uniformly
dispersed sampling strategy when the number of samples is less than the total number
of samples. Further, this leads to another problem: is the uniformly dispersed sampling
strategy Suni best among all sampling strategies with the same number of samples when
μ0 ≤ log�(s0) < 0?

The above two problems are worthy of further study.
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Appendix: Proofs of Theorems

Proof of Theorem 3.1: Let Yk := Yk(S) and T := T(S). We first prove the following equality:

JN(T, S) = E0

( T∑
k=1

Yk−1

)
=

N∑
k=1

E0(YkI(T ≥ k + 1)), (A1)

where I(.) is the indicator function. Since

(T − k)+ =
N+1∑

m=k+1

(m − k)[I(T ≥ m) − I(T ≥ m + 1)] =
N+1∑

m=k+1

I(T ≥ m)

and T ≥ m ∈ Fm−1(S), it follows that

Ek((1 − Yk−1)
+(T − k)+) =

N+1∑
m=k

Ek((1 − Yk−1)
+I(T ≥ m))

=
N+1∑

m=k+1

Ek

⎛⎝(1 − Yk−1)
+I(T ≥ m)

k−1∏
j=1

p0(X̃j)

m−1∏
j=k

p1(X̃j)

⎞⎠
=

N+1∑
m=k+1

E0

⎛⎝(1 − Yk−1)
+I(T ≥ m)

∏k−1
j=1 p0(X̃j)

∏m−1
j=k p1(X̃j)∏m−1

j=1 p0(X̃j)

⎞⎠
=

N+1∑
m=k+1

E0

⎛⎝(1 − Yk−1)
+I(T ≥ m)

m−1∏
j=k

�(X̃j)

⎞⎠ .
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Thus

JN(T, S) = E0

⎛⎝ N∑
k=1

N+1∑
m=k+1

(1 − Yk−1)
+I(T ≥ m)

m−1∏
j=k

�(X̃j)

⎞⎠
= E0

⎛⎝ N∑
k=1

T∑
m=k+1

(1 − Yk−1)
+

m−1∏
j=k

�(X̃j)

⎞⎠
= E0

⎛⎝ T∑
m=2

m∑
k=1

(1 − Yk−1)
+

m−1∏
j=k

�(X̃j)

⎞⎠ = E0

( T∑
m=1

Ym−1

)
,

since Ym = ∑m
k=1(1 − Yk−1)

+∏m
j=k �(X̃j) and Y0 = 0. Note that P0(T ≥ k + 1) = 0 for k ≥ N +

1, we further have

E0

( T∑
m=1

Ym−1

)
= E0

(N+1∑
k=1

I(T = k)

( k∑
m=1

Ym−1

))
=

N∑
k=1

E0(YkI(T ≥ k + 1)).

This is (A1). Let

ξn =
n∑

k=1

Yk−1 − an (A2)

for n ≥ 1, be a series of random variables, where a> 0 is a constant. It follows from (A1) and (A2)
that

E0(ξT) = JN(T, S) − aE0(T). (A3)

Let T(c) := TC(S, c). By a similar method of proof to Theorems 1 and 3 in [5] we can prove that

E0(ξT) ≥ E0(ξT(c)) (A4)

for every T ∈ TN(S), and that there is a positive constant cγ and a dynamic non-random control
limit {lk(cγ )} such that E0(T(cγ )) = γ .

Note that T∗(S) = T(cγ ). By (A3) and (A4) we have JN(T, S) ≥ JN(T∗(S), S) for T ∈ TN(S) as
long as E0(T) ≥ E0(T(cγ )), which means (5). This completes the proof. �

Proof of Theorem 3.2: It follows from Theorem 3.1 that

JN(T∗(S), S′) ≥ JN(T∗(S′), S′) (A5)

for E0(T∗(S)) = E0(T∗(S′)). Hence, to prove (7), it is only necessary to show

JN(T∗(S), S) =
N∑
k=1

E0(Yk(S)I(T∗(S) ≥ k + 1))

≥
N∑
k=1

E0(Yk(S′)I(T∗(S) ≥ k + 1)) = JN(T∗(S), S′). (A6)

Note that Sk, S′
k ∈ Fm−1, P0(Sk = 1) ≤ P0(S′

k = 1), P0(Sk = 0) ≥ P0(S′
k = 0), I(T∗(S) ≥ 2) =

I(Y1(S) < l1(cγ )), Y1(S) = S1�(X1) + (1 − S1)�(s0), Y1(S′) = S′
1�(X1) + (1 − S′

1)�(s0) and
�(s0) ≥ 1. It follows that

E0(Y1(S)I(T∗(S) ≥ 2)) − E0(Y1(S′)I(T∗(S) ≥ 2))

= [P0(S′
1 = 1) − P0(S1 = 1)]E0

(
[�(s0) − 1]I(�(s0) ≤ l1(cγ ))

) ≥ 0
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and furthermore

E0
(
[max{1, Y1(S)} − max{1, Y1(S′)}]I(Y1(S) ≤ l1(cγ ))

)
= [P0(S1 = 0) − P0(S′

1 = 0)][�(s0) −
∫ +∞

−∞
max{p0(x), p1(x)} dx]I(�(s0) ≤ l1(cγ )) ≥ 0.

By using Yk = max{1,Yk−1}�(X̃k) and mathematical induction, we find that

E0(Yk(S)I(T∗(S) ≥ k + 1)) ≥ E0(Yk(S′)I(T∗(S) ≥ k + 1))

for 1 ≤ k ≤ N, and therefore, (A6) holds. Thus (7) follows from (A5) and (A6), and (7) implies (8).
This completes the proof. �
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