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ABSTRACT In bacteria, the Sec translocase mediates the
translocation of proteins into and across the cytoplasmic
membrane. It consists of a protein conducting channel SecYEG,
the ATP-dependent motor SecA, and the accessory SecDF
complex. Here we discuss the function and structure of the
Sec translocase.

INTRODUCTION
Protein transport occurs in all domains of life (1).
Proteins that function outside the cytosol are trans-
located across membranes. The general system for pro-
tein translocation is formed by the Sec translocase at its
core the translocon: SecYEG in bacteria (2), SecYEβ in
archaea (3), and Sec61αβγ in the endoplasmic reticulum
of eukaryotes (4, 5). The translocon forms a protein
conducting channel in the membrane for unfolded pre-
proteins (6) but also mediates cotranslational insertion of
nascent membrane proteins into the membrane (Fig. 1).

During posttranslational translocation, preproteins
are synthesized at the ribosome with a cleavable N-
terminal signal sequence and bound by the molecular
chaperone SecB, which stabilizes the preprotein in an
unfolded state (7). SecB targets preproteins to the
SecYEG-bound SecA (8–10). SecA is an ATPase (11, 12)
that directs preproteins in a stepwise manner into the
pore (2). The SecDF complex (13) aids this process by
facilitating proton motive force (PMF)-dependent trans-
location (14). In the cotranslational pathway, nascent
membrane proteins are guided to the translocon by signal
recognition particle (SRP) to the SRP receptor, FtsY, at
the membrane. Subsequently, GTP binding to the SRP-
FtsY heterodimer results in release of the nascent chain

from SRP to the translocon. Eukaryotes may use this
pathway for both translocation and membrane insertion,
whereas in bacteria, it is mostly used for insertion (15).
This review focuses on bacterial protein translocation.

SecYEG, THE PROTEIN CONDUCTING
CHANNEL
Structural analysis of SecYEG provides strong sup-
port for its role as a protein conducting channel. SecY,
the major subunit, consists of two halves formed by
transmembrane segments (TMS) 1 to 5 and 6 to 10 (16)
(Fig. 2A). The two halves are connected by a loop of
TMS 5/6, resulting in a clamshell-like structure of the
translocon (17). SecY is shaped like an hourglass with
a funnel-like entrance and a subcentral constriction
(Fig. 2D). At the front of SecY, a lateral gate between
TMS 2 and 7 can open to the lipid bilayer (16). The exit

Received: 14 March 2019, Accepted: 14 June 2019,
Published: 2 August 2019

Editors: Maria Sandkvist, Department of Microbiology and
Immunology, University of Michigan, Ann Arbor, Michigan; Eric
Cascales, CNRS Aix-Marseille Université, Mediterranean Institute of
Microbiology, Marseille, France; Peter J. Christie, Department of
Microbiology and Molecular Genetics, McGovern Medical School,
Houston, Texas

Citation: Komarudin AG, Driessen AJM. 2019. SecA-mediated
protein translocation through the SecYEG channel. Microbiol
Spectrum 7(4):PSIB-0028-2019. doi:10.1128/microbiolspec.PSIB-
0028-2019.

Correspondence: Arnold J. M. Driessen, a.j.m.driessen@rug.nl

© 2019 American Society for Microbiology. All rights reserved.

ASMscience.org/MicrobiolSpectrum 1

http://dx.doi.org/10.1128/microbiolspec.PSIB-0028-2019
http://dx.doi.org/10.1128/microbiolspec.PSIB-0028-2019
mailto:a.j.m.driessen@rug.nl
http://www.ASMscience.org/MicrobiolSpectrum


FIGURE 1 The Sec pathway. (A) Posttranslational pathway: after complete synthesis at the ribosome, the unfolded preprotein is
recognized by the molecular chaperone SecB (blue) and targeted to SecA (green). SecA guides the preprotein through the
SecYEG pore (lime), employing the energy from ATP binding and hydrolysis. The signal peptide is cleaved by the signal peptidase
(SPase [yellow]). SecDF (pink) pulls the preprotein across the membrane at the expense of the PMF. (B) Cotranslational pathway:
once a hydrophobic transmembrane domain of a nascent membrane protein emerges from the ribosomes, signal recognition
particle (SRP) (brown) binds to the ribosome nascent chain (RNC) and guides the complex to the SR receptor FtsY (dark brown) at
the membrane. Upon the binding of GTP to the SRP:FtsY heterodimer, the RNC is released from SRP and transferred to the
SecYEG channel, where chain elongation at the ribosome is directly coupled to membrane insertion of the nascent membrane
protein.
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site of the pore is closed by an α-helical plug (TMS2a)
that folds back into the channel (18, 19). The Metha-
nococcus jannaschii SecYEβ structure concerns a resting
state with a sealed pore where six hydrophobic residues
close the constriction ring and the plug closes the exit
funnel (16).

SecE surrounds SecY at its back and embraces the
SecY clamshell structure with a long transmembrane
helix that via a hinge is connected to a surface-exposed
amphipathic helix that contacts loops of SecY (Fig. 2A).
The third subunit SecG is peripherally bound to SecY.
This subunit is not essential for cell viability (20, 21) but
stabilizes the closed channel (22) whereby the cytosolic
loop of SecG folds back into the channel at the cis-side of
the membrane (23).

SecYEG Channel Opening
The lateral gate creates a pathway for the insertion of
membrane proteins (24) and provides a binding site for
the signal sequence of preproteins (25–27). The signal
sequence intercalates into the lateral gate, causing a
conformational change in the pore region (26). Three of
the six pore ring residues are located on TMS 2 and 7 of
the lateral gate, and thus, intercalation of the signal se-
quence between these TMS is directly coupled to channel
opening (26). SecE presumably stabilizes the two halves
of SecY when the channel opens and when the plug is
displaced from its subcentral position (16, 19). Channel
opening is also influenced by SecA, as shown in the
Thermotoga maritima SecA-SecYEG complex structure
(Fig. 2B and E) (28), where a partial opening of lateral

FIGURE 2 Structural stages of the translocation channel. (A to C) The SecYEG/β crystal
structures viewed from the membrane: SecY TMS 1 to 5 (blue), TMS 6 to 10 (green), plug
domain (red), SecE (yellow), and SecG/β (orange). (D to F) Cartoon illustration of SecYEG/
β. The illustrations depict the opening of the constriction and movement of the plug
domain depending on the state of the translocon. (A and D) Methanococcus jannaschii
SecYEβ (PDB entry 1RH5), known as the closed or resting conformation. (B and E)
Thermotoga maritima SecYEG cocrystallized with SecA (not shown) in an Mg-ADP-BeFx-
bound transition state (PDB entry 3DIN) as a preopen conformation. (C and F) Geobacillus
thermodenitrificans SecYEG cocrystallized with SecA (not shown) and a signal sequence
(magenta) latched into the lateral gate (PDB entry 5EUL), resembling an actively engaged
translocation channel.

ASMscience.org/MicrobiolSpectrum 3

SecA-Mediated Protein Translocation through the SecYEG Channel

http://www.ASMscience.org/MicrobiolSpectrum


gate by∼5 Å provides a gap that may allow an inserting
signal sequence to sample the phospholipid bilayer. For
translocation, the lateral gate needs to open up to 10 to
12 Å (25, 29).

The structure of Geobacillus thermodenitrificans
SecYE-SecA complex with a covalently linked signal
sequence in the channel further shows large conforma-
tional changes in the lateral gate region (30) (Fig. 2C).
Now also the plug has shifted to the back of the channel
in close proximity to the TMS of SecE, in line with cross-
linking studies (19, 31) (Fig. 2C and F). Compared to the
T. maritima SecA-SecYEG structure (Fig. 2B), TMS 7 of
the G. thermodenitrificans SecY is tilted 10° relative to
the membrane and the periplasmic ends of TMS 3 and 7
are now in close proximity (Fig. 2C). This results in a
large opening in the lateral gate that allows for signal
sequence intercalation (30). The plug of G. thermo-
denitrificans SecY adopted a β-strand structure, which
differs from the resting α-helical structure (16, 32, 33).
The plug domain is poorly conserved (16), and its de-
letion only reduces the efficiency of translocation (34,
35). It is important for signal sequence recognition (34,
36, 37) and appears to sample the hydrophobicity of the
incoming polypeptide (38) to coordinate channel open-
ing. A very large movement of the plug, by ∼20 to 27 Å,
creates an unobstructed path for protein translocation
(19, 31), but this large displacement is not critical for
translocation per se (39). The plug stabilizes the closed
state of SecY (34) and acts as a periplasmic seal to pre-
vent ion leakage.

Pore Constriction and Width
Protein localization (Prl) mutations in sec genes allow
the translocation of preproteins with a defective or even
missing signal sequence. The most dominant prl variants
are found in SecY (40–43), and these destabilize the
closed state of the channel (22, 36, 40), possibly mim-
icking the function of the signal sequence, SecA, or the
ribosome (16). The PrlA4 mutant (44) exhibits a tighter
binding of SecA (45), allowing more efficient translo-
cation (45–47) and a lower PMF dependence (48).
Overall, this can be understood as a reduced proof-
reading activity (49–52), as signal sequence recognition
is less stringent in PrlA mutants, likely because the
channel is already in a partially opened state.

Many of the PrlA mutants cluster around the pore
constriction and cause increased ion leakage (53). The
hydrophobic constriction ring functions as a gasket
around the translocating preprotein to seal the pore (16,
18). The pore exhibits a high plasticity and even supports
translocation of preproteins with an internal disulfide

bridge, a stable fold induced by chemical cross-linking
(54, 55) or bulky fluorophores (56). Structures with a
cross section of up to ∼22 Å can be translocated (57).

Oligomeric State of SecYEG
The oligomeric state of the SecYEG translocon remains a
topic of debate. SecYEG can be purified as a monomer
(16, 28) but may also form dimers and higher oligomers
(58–60). Crystallography and cross-linking experiments
have suggested that SecYEG is dimeric (58, 59, 61–63),
but the functional role of the dimer has remained ob-
scure, as only one channel is used to translocate proteins
(58, 64). Single SecYEG complexes reconstituted into
nanodiscs show that the monomer is sufficient for
translocation, as well as for ribosome nascent chain
(RNC) binding (47, 64, 65). Further, the cryo-electron
microscopic structure of the RNC-SecYEG complex (28,
30) defines the monomer as the minimal functional unit.

SecA, AN ATP-DEPENDENT MOTOR
PROTEIN
SecA is a molecular motor that drives protein translo-
cation at the expense of ATP hydrolysis (66). SecA
associates with SecYEG but also binds to the phospho-
lipid bilayer and to ribosomes (67, 68).

SecA Structure
SecA is a relatively large protein with a subunit mass of
about 102 kDa. It consists of functional and structural
subdomains (Fig. 3). The nucleotide binding domain
(NBD), comprising NBD1 and NBD2 (also termed in-
tramolecular regulator of ATPase 2 [IRA2]), is essential
for ATP binding and hydrolysis (69). The ATPase
activity occurs at the interface of NBD1 and NBD2 (70).
These NBDs form the so-called DEAD motor, which is
also found in DNA/RNA helicases, and contain the
highly conserved Walker A and B motifs (71).

Preprotein can cross-link to the PPXD domain (72),
which plays an important role in the activation of the
ATPase activity (73, 74). The C-terminal domain of
SecA can be divided into four subdomains: the α-helical
scaffold domain (HSD), which interconnects all other
SecA domains (75); the α-helical wing domain (HWD);
the two-helix finger (2HF), which is part of the intra-
molecular regulator of ATP hydrolysis 1 (IRA1) (76);
and the C-terminal linker domain (CTL). In Escherichia
coli, the CTL harbors a zinc finger, which plays a role in
the interaction with SecB (7, 9) and phospholipids (77).
SecA exhibits a low basal ATPase activity (78), which is
allosterically stimulated by binding of SecB, SecYEG,
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and preprotein and by anionic phospholipids (79–84).
The ATPase activity of cytosolic SecA is inhibited by
IRA1, or 2HF, which forms a helix-loop-helix structure
of the HSD that contacts both NBD2 and PPXD (85).

Oligomeric State of SecA
The functional oligomeric state of SecA is a major topic
of controversy. SecA purified from cells is mainly di-
meric (86). Although SecA appears to function as a di-
mer (87–90), the monomer-dimer equilibrium is affected
by ligands of SecA (91, 92). SecA is highly thermolabile
in the presence of phospholipids, but inactivation is
prevented by preproteins (93).

Only a few studies have addressed the oligomeric
state of SecA while bound to SecYEG. SecA remains
dimeric during translocation (90, 94) and is active as a
dimer (88, 89, 94, 95), likely as a discrete anti-parallel
dimer (96). Dimeric SecA binds the SecYEG with high
affinity, where one of the protomers binds tightly to
SecYEG and the other protomer is bound to the
SecYEG-bound SecA (88). Mutation-induced mono-
merization abolishes SecA activity (97), but this defect
can be overcome by high concentrations of SecA that
restore the dimer (88, 98). SecB interacts with the
SecYEG-bound dimeric SecA (99).

Binding Partners of SecA
The N-terminal signal sequence of preproteins functions
as a targeting signal (100, 101) and induces channel
opening; also, the targeting function of signal sequences
has been challenged (102–104). Prior to translocation,

the preprotein is stabilized in an unfolded state by SecB.
SecYEG-bound SecA binds SecB, and this interaction
results in a transfer of the preprotein from SecB to SecA
(7). SecB is a homotetramer arranged as a dimer of dimers
(105). SecB contains two peptide binding grooves that
run along either side of the tetramer (106, 107), where
preproteins are bound in their folding core (108). During
the ATP-dependent initiation of translocation, SecB is
released into the cytosol to bind another preprotein.

SecA binds to SecYEG via a phospholipid-bound in-
termediate (93, 109–111) that involves its amphipathic
positively charged N terminus (93). This region serves to
tether SecA to the membrane (109), but the membrane
interaction also enforces a conformational change which
primes SecA for high-affinity SecYEG binding (93).
Phospholipid-bound SecA likely functions as a mem-
brane queue of SecA-preprotein complexes before they
are delivered to SecYEG for translocation.

Structural Mechanism of SecA Function
SecA undergoes a multitude of ATP-dependent confor-
mation changes during translocation (28, 70, 112)
(Fig. 3). In the T. maritima SecA-SecYEG structure,
where SecA is in an open transition state stabilized by
ADP beryllium fluoride, the PPXD domain has moved
towards the NBD2 and away from the HWD (28, 113),
while the NBDs are in close proximity with the PPXD
domain (Fig. 3B). In contrast, the Bacillus subtilis SecA
structure (Fig. 3A) represents a closed state in which the
PPXD domain is located near the HWD (70). The for-
mation of the nucleotide-binding pocket between NBD1

FIGURE 3 Conformational states of SecA. Structures of SecA from Bacillus subtilis (PDB
entry 1M6N) (A), Mg-ADP-BeFx-bound SecA cocrystallized with SecYEG (not shown) from
T. maritima (PDB 3DIN) (B), and Mg-ADP-BeFx-bound SecA from B. subtilis engaged with
the G. thermodenitrificans SecYEG and a signal sequence (not shown) (PDB entry 5EUL)
(C). The locations of the PPXD domain (yellow), NBD1 (red), NBD2 (blue), HWD (green),
HSD (purple), and 2HF (cyan) are indicated. A large movement of the PPXD domain
(yellow) suggests a closed (A) or open (B and C) conformation of SecA.
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and NBD2 allows the preprotein to bind in a groove
between NBD2 and PPXD. This opening stabilizes the
preprotein-SecA interaction, which allows for an in-
creased rate of nucleotide exchange, resulting in activa-
tion of the ATPase activity (114, 115). The structure of
the G. thermodenitrificans SecYE engaged with B.
subtilis SecA (30) and a signal peptide suggests that SecA
does not undergo further dramatic conformational
changes compared to the T. maritima SecA-SecYEG
complex (Fig. 3C). It has been proposed that SecA in its
ATP-bound state prevents the two halves of SecY from
moving further apart.

The 2HF of SecA is inserted into the cytoplasmic
opening of the SecY channel (Fig. 4), where it is in close
proximity to the translocating preprotein (28). The 2HF
makes contact with C4 loop of SecY, and the insertion
may result in the opening of lateral gate by a rigid body
movement of the two halves of SecY (29). The tip of the
loop of the 2HF contains a highly conserved tyrosine
residue which is crucial for translocation (76). It has
been suggested that the 2HF associates with the un-
folded preprotein through hydrophobic side chain
interactions, but this model does not explain how SecA
can mediate the translocation of stretches of glycine
residues (116), which would only allow for main chain
interactions. Alternatively, the 2HF acts by opening the
channel through its interaction with the SecY C4 loop.
Strikingly, chemical cross-linking of the 2HF with the
C4 loop did not interfere with translocation (117),

suggesting that the 2HF does not function as an ATP-
dependent lever to push preproteins through the channel
but rather serves to push the two halves of SecY apart.
Additionally, the 2HF of SecA may act as a template by
inserting the hairpin formed by the signal peptide and
the early mature region of the preprotein (118).

TRANSLOCATION MODELS
Various models for SecA-mediated translocation have
been proposed as outlined below (Fig. 5).

Power Stroke Model
A large class of ATPases contains a RecA-like structural
domain and uses the energy of ATP binding and hy-
drolysis to move proteins or nucleic acids (71). SecA has
a DEAD box typically found in helicase, and therefore a
DNA helicase molecular mechanism has been proposed
(119). In this power stoke mechanism, SecA acts as a
mechanical device that pushes preproteins into the pore
(82). The 2HF may function as an ATP-dependent lever
to support such a power stroke mechanism causing
stepwise translocation (120). To apply the DNA helicase
principle, SecA is required to multimerize in order to
have multiple substrate binding sites since monomeric
SecA appears to have only one substrate binding site (81,
121). One SecA protomer may act as a clamp and move
the preprotein into the channel, while the other SecA
protomer traps the chains to prevent retrograde trans-

FIGURE 4 Structure of T. maritima SecA-SecYEG complex. SecA penetrates into the
SecYEG channel (red) via the so-called two-helix finger (2HF [light blue]). The SecA PPXD
domain (yellow) also binds to TMS6/7 loop of SecYEG. The conserved tyrosine 794 is
depicted in green.
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port, as SecYEG is not able to make a stable anchor for
preproteins (122). This implies that a high degree of
cooperativity is needed between the two protomers of
SecA to ensure that the preprotein is bound to one of the
protomers at any given time. Currently, it is unclear how
a small movement of the 2HF can drive translocation of
polypeptide segments ∼20 amino acids long.

Brownian Ratchet Model
In the Brownian ratchet model, SecA acts as the regu-
lator for channel opening of SecYEG (123), while
translocation occurs by Brownian movement of the un-
folded preprotein through the channel. Because of the
contact of the 2HF of SecA with SecYEG (28), move-
ment of the 2HF could potentially result in an opening of
the channel. Backsliding of the preprotein would be
prevented by the SecA association and provide direc-
tionality to the process, which might be further facili-
tated by folding of the polypeptide at the cis-side of the
membrane and/or binding by SecDF (124). This model
explains the promiscuity of the system for diverse
preprotein substrates (125) but does not explain step-
wise translocation (11, 82, 122).

Push-and-Slide Model
The “push-and-slide” mechanism (109) combines the
power stroke and Brownian ratchet models and explains
earlier observations that SecA-mediated translocation
occurs stepwise, whereas in the absence of SecA associ-
ation, the preprotein may slide within the pore (122).
Again, this model depends on the 2HF for the power
stroke (76, 109). Once ATP is hydrolyzed, the 2HF
would return to its pretranslocation position and dis-
sociate from the preprotein to allow passive sliding of
the protein into the channel. This model, however, does
not explain that a complex of SecA-SecYEG wherein the
SecA 2HF is cross-linked to the C4 loop of SecY is

functional in translocation (117). Alternatively, stepwise
translocation may arise from binding and release of
SecA to and from SecYEG (122, 126).

Reciprocating Piston Model
SecA exists as a dimer during translocation (89, 90, 94,
127), but monomeric states have also been reported
(28, 97, 127, 128). The reciprocating piston model
combines the power stroke model with the SecA
monomer-dimer transition (29). Translocation is initi-
ated by binding of dimeric SecA to SecYEG. Next,
ATP hydrolysis induces SecA monomerization where
one of the SecA monomers remains anchored to SecYEG
to prevent backsliding of the partially translocated
preprotein, while the other monomer is released from
the membrane. Rebinding of another SecA monomer to
SecYEG-SecA-preprotein complex then promotes ATP-
independent translocation of a preprotein segment,
while subsequent binding of ATP drives the transloca-
tion by a power stroke. These steps are repeated until the
preprotein is fully translocated. This model explains the
two consecutive translocation stages observed bio-
chemically, i.e., translocation driven by SecA binding to
the preprotein and by ATP binding (82, 122). Complete
dissociation of SecA from SecYEG may allow translo-
cation by Brownian diffusion and enable PMF-driven
translocation.

ROLE OF THE SECDF COMPLEX
The aforementioned models do not take the role of the
PMF into account. Although ATP suffices for translo-
cation in vitro, in vivo it strongly depends on the
PMF. SecA may mainly serve to initiate and direct
translocation by releasing a looped structure of the sig-
nal sequence and early mature protein domain into the
pore, whereupon translocation is further driven by the

FIGURE 5 Proposed models of SecA-mediated protein translocation. (A) Power stroke:
ATP binding and hydrolysis induce conformational changes of SecA that result in a me-
chanical force on the preprotein, pushing it through the SecYEG channel. In this model,
oligomerization of SecA is required to prevent backsliding of the preprotein. (B) Brownian
ratchet: SecA regulates the SecYEG channel opening via the 2HF of SecA, allowing the
protein translocation via diffusion. Trapping and release of the translocating preprotein at
the cis-side result in translocation, while SecA may fulfill an additional function by opening
the translocation channel. The oligomeric state of SecA is not explicitly shown in thismodel.
(C) Push and slide: this model uses both SecA-dependent pushing and Brownian motion.
The oligomeric state of SecA is not explicitly shown in this model. (D) Reciprocating piston:
this model is a combination of a power stroke mechanism with the conversion of dimeric-
monomeric SecA. Repeated cycles of SecA monomerization-rebinding and ATP binding-
hydrolysis yield a stepwise translocation process. In none of these models is the exact role
of the PMF and SecDF included, but they contribute to efficient translocation.
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PMF (14). Indeed, in vitro translocation at low SecA
concentrations is highly PMF dependent (129, 130).
Late stages of translocation allow large unfolded regions
of the preprotein to be translocated without ATP and are
SecDF and PMF dependent (131).

SecDF is a subcomplex that associates with the
translocon to form the holo-translocon complex (124).
The crystal structure of SecDF shows a single polypep-
tide with 12 TMS, 6 TMS each in both SecD and SecF
(132, 133). SecDF also contains 6 periplasmic domains
(P1 to P6); P1 and P4 form a periplasmic protruding
structure. P1 has been proposed to interact with the
polypeptide substrate, and movement of P1 may result
in a PMF-dependent pulling action by SecDF at the
periplasmic side of the membrane (133, 134).

CONCLUDING REMARKS
Integrating biochemical, biophysical, and structural
studies has led to a basic understanding of the molecular
mechanism of protein translocation. However, still many
mechanistic questions remain unresolved. Although
translocation exhibits power stroke- and Brownian dif-
fusion-like mechanistic features, it remains unclear how
translocation is linked to the SecA dimer. To unify po-
tentially conflicting results, the process needs to be ex-
amined at the single-molecule level to reveal the dynamic
interplay between the components and identify their
roles at the different stages of the process.
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