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ABSTRACT The causative agent of human tuberculosis,
Mycobacterium tuberculosis, has a complex lipid-rich diderm
envelope, which acts as a major barrier protecting the bacterium
against the hostile environment inside the host cells. For the
transfer of diverse molecules across this complex cell envelope,
M. tuberculosis has a series of general and specialized protein
secretion systems, characterized by the SecA general secretion
pathway, the twin-arginine translocation pathway, and five
specific ESX type VII secretion systems. In this review, we focus
on the latter systems, known as ESX-1 to ESX-5, which were first
discovered almost 20 years ago during the in silico analysis of the
genome sequence of M. tuberculosis H37Rv. Since then, these
systems have been the subject of highly dynamic research due
to their involvement in several key biological processes and
host-pathogen interactions of the tubercle bacilli.

INTRODUCTION
The different bacterial species within the tree of life (1)
possess a range of secretion systems, which play impor-
tant roles in the transport of proteins across the various
types of bacterial cell envelopes. Classically, Gram stain-
ing was used for differentiating Gram-positive and Gram-
negative bacteria, but classifications on cell envelope
architecture might come closer to the biological reality,
and thus, bacteria may also be differentiated according
to their cell envelopes into diderm-lipopolysaccharide
(archetypal Gram-negative), monoderm (archetypal
Gram-positive), and diderm-mycolate (archetypal acid-
fast) bacteria (2). For Gram-negative bacteria a range
of at least eight different secretion systems has been
described (types I to VI, VIII, and IX) (3–5). While in
monoderm bacteria secretion and export are synony-

mous, in diderm bacteria the secretion is completed only
upon translocation of the substrates across the outer
membrane (2). The here-reviewed mycobacterial ESAT-6
secretion (ESX) systems (6, 7), which were also named
type VII secretion (T7S) systems (8), represent a partic-
ular class of protein export and/or secretion systems, for
which at present only the inner-membrane translocation
machinery has been explored in more detail (9, 10),
whereas it remains unknown how ESX/T7S-exported
proteins get transported through the mycobacterial
outer membrane into the extracellular environment (11).
Indeed, one of the remarkable characteristics of myco-
bacteria is their complex cell envelope, which is shared
to some extent with other members of the Corynebac-
terineae, a suborder of the phylumActinobacteria (1, 12,
13). Mycobacteria are surrounded by a diderm cell en-
velope, consisting of an inner membrane, a peptidogly-
can layer, an arabinogalactan layer, an outer membrane,

Received: 21 March 2019, Accepted: 30 May 2019,
Published: 12 July 2019

Editors: Maria Sandkvist, Department of Microbiology and
Immunology, University of Michigan, Ann Arbor, Michigan;
Eric Cascales, CNRSAix-Marseille Université,Mediterranean Institute
of Microbiology, Marseille, France; Peter J. Christie, Department of
Microbiology and Molecular Genetics, McGovern Medical School,
Houston, Texas

Citation: Vaziri F, Brosch R. 2019. ESX/Type VII secretion systems—
an important way out for mycobacterial proteins. Microbiol
Spectrum 7(4):PSIB-0029-2019. doi:10.1128/microbiolspec.PSIB-
0029-2019.

Correspondence: Roland Brosch, roland.brosch@pasteur.fr

© 2019 American Society for Microbiology. All rights reserved.

ASMscience.org/MicrobiolSpectrum 1

http://dx.doi.org/10.1128/microbiolspec.PSIB-0029-2019
http://dx.doi.org/10.1128/microbiolspec.PSIB-0029-2019
mailto:roland.brosch@pasteur.fr
http://www.ASMscience.org/MicrobiolSpectrum


named mycomembrane, which is composed of cova-
lently linked mycolic acids and extractable lipids, and a
capsule (14, 15). This unusual cell envelope requires
complex secretion systems for the export/secretion of
proteins, such as those of the SecA and twin-arginine
translocation pathways, as well as the specialized ESX/
T7S systems (7, 8, 16), which were first discovered al-
most 20 years ago during in silico analyses of the genome
sequence and the proteome of Mycobacterium tubercu-
losis H37Rv (17, 18). Moreover, T7S-like systems that
share some core components of mycobacterial ESX/T7S
systems exist in various genera of the phylum Firmicutes,
representing many classical Gram-positive bacterial
species (19), which, however, are not the subject of the
current review.

M. tuberculosis possesses five ESX/T7S systems (ESX-
1 to ESX-5) (7, 8, 11, 16). All five ESX systems share
several common features: the presence of small secreted
proteins (of about 100 amino acids) with a conserved
Trp-X-Gly (WXG) motif (20), an FtsK-SpoIIIE ATPase,
several transmembrane proteins, and a subtilisin-like
mycosin (MycP) (11, 16) (Fig. 1). These systems, en-
coded in different sections of the mycobacterial chro-
mosome, seem to have evolved by gene duplication and
diversification from simpler systems that were shuffled
around in different actinobacterial and mycobacterial
species, often mediated by plasmids encoding ESX/T7S
elements as well as elements of type IV secretion systems
(21–23). ESX/T7S systems play an important role in
the biology of M. tuberculosis, as well as in the inter-
actions M. tuberculosis has with its host. Indeed, a
number of secreted effectors, including EsxA (ESAT-6),
EsxB (CFP-10), and ESX-1 secretion-associated proteins
(Esp), such as EspA or EspC, as well as proteins that
carry the characteristic N-terminal motifs Pro-Glu (PE)
and Pro-Pro-Glu (PPE), have been suggested to inter-
vene in host cellular and immune signaling pathways
(11, 24, 25).

Here we focus on recent updates on the ESX/T7S
systems of mycobacteria and summarize new findings on
their structure, function, and role in host-pathogen
interactions and briefly touch on their significance in
translational research.

RECENT INSIGHTS INTO THE STRUCTURAL
AND FUNCTIONAL CHARACTERISTICS OF
ESX/T7S NANOMACHINES
Five ESX systems are encoded in the genome of M. tu-
berculosis (16, 18), and this number is the highest found
in mycobacteria so far; other mycobacterial species

show fewer systems (e.g., Mycobacterium marinum
shows four systems and Mycobacterium abscessus
shows three systems) (21, 22). While ESX-4, ESX-3, and
ESX-1 are present in most fast-growing and slow-
growing mycobacteria, ESX-2 and ESX-5 systems are
found only in selected slow-growing mycobacteria and
thus represent the most recently evolved systems (21,
22). For ESX-2, currently not much is known on its
putative function. In contrast, for ESX-1, ESX-3, and
ESX-5, recent research has determined that they all
contribute to virulence of M. tuberculosis, although the
insights into the exact molecular functions often remain
vague; also, because many studies have been undertaken
with different mycobacterial species (M. tuberculosis,
M. marinum, M. abscessus, and/or Mycobacterium
smegmatis), which may show some species-specific
differences (reviewed in references 11 and 26 to 28).
ESX-3 is important for metal homeostasis, pathogenic-
ity, and immunogenicity (29–31). ESX-5 was suggested
to be crucial for nutrient uptake and for the export of
members of the PE and PPE protein families (9, 32, 33).
These two large protein families have expanded during
mycobacterial evolution (34, 35), and they include rep-
resentative proteins that are associated with ESX/T7S
systems and others with highly repetitive sequence
motifs that are exported by ESX-5 and impact virulence
and immunogenicity (32, 36–39). The ESX-5 nano-
machine, which is integrated in the inner mycobacterial
membrane, is composed of four proteins, namely, EccB5,
EccC5, EccD5, and EccE5 (9, 10), that are organized in
a hexameric complex, as recently determined by cryo-
electron microscopy and single-particle analysis (10).
This organization differs substantially from those of se-
cretion systems of Gram-negative bacteria (10) (Fig. 2).
Among the Ecc proteins (ESX conserved components),
the structural and functional roles of EccC (FtsK/SpoIIIE
ATPase) have been studied in more detail with the ther-
mophilic actinobacterium Thermomonospora curvata
(40). A certain flexibility of the cytosolic domains of
EccC in interaction with effectors was suggested (10, 40),
which is different from the cognate ATPase in type IV
secretion systems (10).

Another conserved ESX component in mycobacterial
ESX systems is the serine protease MycP, although this
protein is not directly integrated in the EccBCDE complex
(10, 41–43). Moreover, different proteins, such as EspA,
EspC, EspD, and EccA1, may be essential to contributing
to secretion and stabilizing the core ESX/T7S complex in
the case of ESX-1 (44–47). How these related effectors
are explicitly recognized and targeted towards the specific
system in a single mycobacterial species with different
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FIGURE 1 Genetic organization of the ESX loci. Shown is a schematic representation of the approximative genomic sites
of the ESX-1 to ESX-5 clusters in the M. tuberculosis H37Rv genome. Gene nomenclature and gene color scheme were
adapted from reference 16.
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ESX/T7S systems can be a matter of debate. Recently,
it has become clear that some of the conserved ESX
components could potentially exhibit chaperone-like
activity (e.g., EspG or EccA) (48). It was suggested that
besides their chaperone activity, these proteins are also
involved in determining the secretion system specificity.
Indeed, by substituting the binding domain of EspG, the
ESX-1-dependent substrate can be rerouted to the ESX-5
system (49). In addition, it was suggested that EspL can
have a role as a chaperone and is essential for ESX-1-
dependent virulence (50). Therefore, scrutinizing the role
of chaperones will certainly help to provide a better un-
derstanding of the ESX/T7S functions and mechanisms.

It is also intriguing that certain ESX/T7S systems may
have a dual function. For example, the ESX-1 system,
which is present in fast- and slow-growing mycobacte-
rial species, is required for distributive conjugal transfer
(DCT) of chromosomal DNA from donor into recipient
strains of M. smegmatis (51, 52). This procedure ap-
parently also involves the ESX-4 system ofM. smegmatis
(53). Moreover, it was shown that SigM, an extracyto-
plasmic function σ factor, is an activator of ESX-4
expression and necessary for DCT in the recipient strain
of M. smegmatis (54). Intriguingly, experimental strain-
to-strain transfer of chromosomal DNA was also ob-
served in selected Mycobacterium canettii strains (55),

representing a group of rare tubercle bacilli that are
thought to resemble the ancestor of M. tuberculosis and
have been isolated mainly from tuberculosis patients in
the region of the Horn of Africa (East Africa) (56, 57). In
contrast to M. canettii strains, DNA transfer between
M. tuberculosis strains was not observed despite nu-
merous trials (55), emphasizing the clonal population
structure of M. tuberculosis strains (58, 59). While it is
predicted that the interstrain DNA transfer between
M. canettii strains might also involve an ESX-1 system
in the recipient strain, in analogy to the situation in
M. smegmatis, experimental confirmation for this hypo-
thesis has not yet been reported.

ESX SYSTEMS IN HOST-PATHOGEN
INTERACTIONS
The potential dual function of the ESX-1 system is best
visible by the fact that in slow-growing mycobacteria, in
contrast to fast-growing mycobacteria, the ESX-1 system
is also involved in the pathogenic potential of the strains.
It has been speculated that this phenotype might be
associated with horizontal gene transfer of a putative
genomic island harboring the ESX-1-associated espACD
locus (60). M. tuberculosis and M. marinum mutants
with deletion of ESX-1 are attenuated in their respective

FIGURE 2 Representation of top and side views of the ESX/T7S system based on recent
structural data generated by cryo-electron microscopy and single-particle analysis on an
ESX-5 system from Mycobacterium xenopi, in comparison to selected examples of se-
cretion systems from Gram-negative bacteria. The positions of the inner membrane (IM),
outer membrane (OM), and mycomembrane (MM) are indicated. Adapted from reference
10, with permission.
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hosts (61–64), which is in line with the attenuation of
“natural” ESX-1 deletion mutants, such as the Myco-
bacterium bovis BCG (bacillus Calmette-Guérin) vac-
cine, which has lost ESX-1 functions due to the deletion
of the region of difference RD1 (65). The ESX-1 system
was shown to be involved in bacterial phagosome-to-
cytosol transition of M. tuberculosis and host cell death
(66–68), an important cell biological process that has
numerous consequences for the host cell, such as induc-

tion of the cGAS/STING/TBK1/IRF-3/type I interferon
signalling axis and NLRP3 inflammasome activation
(69–75). However, ESX-1 is not the only factor involved
in the process; it has been shown that besides ESX-1,
the mycobacterial virulence lipids phthiocerol dimyco-
cerosates also contribute to phagosomal rupture (76–
78). Moreover, recent studies have also demonstrated
that the endosomal sorting complex required for the
transport III (ESCRT-III) system promotes the repair of

FIGURE 3 Interplay of ESX-1 and ESX-3 in host-pathogen interactions. ESX-1 is essential
for the bacterial phagosome-to-cytosol transition by involving a cGAS/STING/TBK1/IRF-
3/type I interferon signalling axis and AIM2 and NLRP3 inflammasome activities. In an
ESX-1-dependent manner, the ESCRTmachinery is recruited to phagosomes, while ESX-3
effectors (EsxG-EsxH) antagonize the host damage response by blocking the recruitment
of HRS, ESCRT-III, and GAL3. The scheme is adapted from reference 11, with some
additions from reference 81, with permission.
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small perforations in the endolysosomal membrane (79).
Intriguingly, certain ESX-3-secreted effectors can block
ESCRT-dependent receptor trafficking to the lysosome
(80). It was shown that effectors of ESX systems differ-
entially respond to the ESCRT endomembrane damage
response. In an ESX-1-dependent manner, the ESCRT
machinery is recruited to phagosomes, while ESX-3
effectors (EsxG-EsxH) antagonize the host damage re-
sponse by blocking the recruitment of HRS, ESCRT-III,
and GAL3 (81) (Fig. 3).

ESX-4 is one of the least well-characterized ESX
systems, although it is considered the most ancestral esx
locus in mycobacteria (21, 82). The ESX-4 loci usually
lack pe/ppe and espG genes, which may be involved in
host-pathogen interactions (34), as well as the eccE gene.
However, the ESX-4 locus of M. abscessus is different
from that of other species, as it does contain EccE4 (21).
In a recent study, by using anM. abscessus genome-scale
Himar mariner transposon library, it was shown that an
intact ESX-4 system is needed for full virulence in this
fast-growing mycobacterium and emerging human
pathogen, whereby the ESX-4 function in infection was
associated with phagosomal rupture and transition of
bacteria to the cytosol of amoebae and human macro-
phages (83). As M. abscessus does not possess an ESX-1
system, in this particular case, ESX-4 might be considered
a surrogate of ESX-1.

Because of extensive sequence similarities and immune
cross-reactions among Esx and PE/PPE proteins secreted
by the ESX/T7S systems, investigation of the secretion
and regulation of these effectors is challenging. Recently,
a technology termed multiplexed analysis of substrate
secretion by transduced T cell hybridomas (MASSTT)
was developed to explore the intra-host cell secretion
profiles of various mycobacterial strains via fluorescence-
mediated detection of specific M. tuberculosis major
histocompatibility complex class II (MHC-II) epitopes
by highly discriminative T cell hybridomas (84). This
method thus allows investigators to follow the intracel-
lular secretion profiles of selected mycobacterial ESX
proteins, such as EsxA or EspC, as well as other secreted
proteins, such as the members of the Ag85 complex. The
secretion of the latter proteins (e.g., Ag85B) is regulated
by the PhoP/PhoR two-component regulatory system and
the small RNA Mcr7 (85). Interestingly, strains of dif-
ferent phylogenetic lineages showed distinct secretion
levels of Ag85B proteins in a preliminary set of M. tu-
berculosis strains by theMASSTT assay (84), information
that needs to be confirmed with a larger strain collection.

It is clear from the few examples mentioned here that
ESX systems have a strong impact onmycobacterial host-

pathogen interaction, although more work is needed to
elucidate the various molecular mechanisms by which the
effects are generated. New insights into these phenomena
are also of interest for translational implications, as is
shown by the example of attenuated whole-cell vaccines
against tuberculosis. Loss of ESX-1 is one of the main
reasons for the attenuation of the BCG vaccine (65),
while ESX-1 effectors are important antigens in immune
responses (6). Due to the absence of ESX-1, BCG does
not gain access to the host cell cytosol and thus lacks the
induction of certain immune signaling pathways (74, 86).
Several recombinant BCG vaccine candidates have been
constructed to overcome these limitations of BCG (75,
87–90). Alternatively, rationally attenuated M. tubercu-
losis vaccine candidates may also secrete particular ESX
antigens that are absent from BCG (36, 91–93) and
thereby may induce improved protection.

CONCLUDING COMMENTS
AND PERSPECTIVES
In summary, we have presented here a few examples
showing that mycobacterial ESX/T7S systems represent
dynamic molecular machines which play important roles
in various aspects of the biology of mycobacteria and the
interaction with their hosts. Advances in structural bi-
ology together with the use of new approaches (e.g.,
MASSTT) will be very helpful for better understanding
the functional details that are linked to their biological
activities and for exploiting this knowledge for improved
intervention strategies against tuberculosis.
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