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Multidimensional Analysis of a Social Behavior Identifies
Regression and Phenotypic Heterogeneity in a Female
Mouse Model for Rett Syndrome
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Regression is a key feature of neurodevelopmental disorders such as autism spectrum disorder, Fragile X syndrome, and Rett
syndrome (RTT). RTT is caused by mutations in the X-linked gene methyl-CpG–binding protein 2 (MECP2). It is characterized
by an early period of typical development with subsequent regression of previously acquired motor and speech skills in girls.
The syndromic phenotypes are individualistic and dynamic over time. Thus far, it has been difficult to capture these dynamics
and syndromic heterogeneity in the preclinical Mecp2-heterozygous female mouse model (Het). The emergence of computational
neuroethology tools allows for robust analysis of complex and dynamic behaviors to model endophenotypes in preclinical models.
Toward this first step, we utilized DeepLabCut, a marker-less pose estimation software to quantify trajectory kinematics and
multidimensional analysis to characterize behavioral heterogeneity in Het in the previously benchmarked, ethologically relevant
social cognition task of pup retrieval. We report the identification of two distinct phenotypes of adult Het: Het that display a delay in
efficiency in early days and then improve over days like wild-type mice and Het that regress and perform worse in later days.
Furthermore, regression is dependent on age and behavioral context and can be detected in the initial days of retrieval. Together, the
novel identification of two populations of Het suggests differential effects on neural circuitry, opens new avenues to investigate
the underlying molecular and cellular mechanisms of heterogeneity, and designs better studies for stratifying therapeutics.
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Significance Statement

A long-standing problem in the field of neuropsychiatric disorders is the reliable identification of heterogeneous endophe-
notypes in animal models for the disorders. This problem has clear implications for identifying the etiology and therapeutic
targets. The emergence of accessible computational neuroethology tools is a powerful solution in the systematic characteri-
zation of animal behaviors in resolving this heterogeneity. Using DeepLabCut and multidimensional analysis of an ethologi-
cally relevant social cognition task, we identify two distinct populations exhibiting delays in efficient behavior and regression
in a female mouse model for Rett syndrome. The novel identification of two populations in genotypically identical mice has
profound implications for both etiology and personalized therapeutic approaches.

Introduction
Regression is defined as a loss of previously acquired motor skills
over time and is a behavioral hallmark of neurodevelopmental
disorders (Charman et al., 2002; McVicar and Shinnar, 2004;
Goin-Kochel et al., 2014; Thurm et al., 2018). Despite decades
of clinical observations that regression is prevalent in many
neurodevelopmental disorders and that the occurrence of
regression is higher than previously reported, the underlying
cause of regression in most neurodevelopmental disorders
remains elusive (Goldberg et al., 2008; Goin-Kochel et al.,
2014; Ozonoff et al., 2018, Ozonoff and Iosif, 2019). Genetic
mutations in proteins important for transcriptional regulation
and experience-dependent synaptic plasticity in the brain are
associated with a higher risk for regression (Goin-Kochel et al.,
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2017; Tammimies, 2019). Among these targets is the X-linked
gene methyl-CpG–binding protein 2 (MECP2), the monogenic
cause for Rett syndrome (RTT), and a “hotspot” gene associated
with other disorders such as severe neonatal-onset encephalopa-
thy, PPM-X syndrome, andmicrocephaly (Rett, 1966; Amir et al.,
1999; Schüle et al., 2008; Gonzales and LaSalle, 2010; Lambert et
al., 2016).

Most surviving RTT patients are girls and women who are
heterozygous for MECP2 mutations (Kirby et al., 2010). Female
patients typically survive into middle age and exhibit impair-
ments in sensory processing, cognitive function, and motor skills
throughout life (Nomura, 2005; Neul et al., 2010; Djukic and
Valicenti McDermott, 2012; Djukic et al., 2012; LeBlanc et al.,
2015; Peters et al., 2015; Buchanan et al., 2019; Key et al., 2019;
Stallworth et al., 2019; Symons et al., 2019; Merbler et al.,
2020). In these females, random X-chromosome inactivation
leads to mosaic wild-type MECP2 expression and consequently,
a syndromic phenotype. Broadly, RTT is diagnosed from two
types of clinical presentations: (1) girls present with a short
period of typical development, followed by regression and
expression of stereotypic sensory, motor, speech, and cognitive
impairments or (2) developmental delay and expression of
stereotypic sensory, motor, speech, and cognitive impairments
(Hagberg et al., 1983; Charman et al., 2002; Neul et al., 2010,
2023; Djukic and Valicenti McDermott, 2012; Han et al., 2012;
Cosentino et al., 2019; Einspieler and Marschik, 2019; Symons
et al., 2019). Preregression developmental delays or other abnor-
malities were noted in a large majority of patients (Kerr, 1987,
1995; Nomura and Segawa, 1990; Leonard and Bower, 1998;
Charman et al., 2002). Regression typically occurs between 6
and 18 months of age and as late as 4–8 years from individual
case studies (Han et al., 2012; Buchanan et al., 2019). These pro-
longed timelines of vulnerability suggest that the increased cog-
nitive load required during early development while mastering
motor control through exploration and interactions within the
social context might reveal specific features over ages. Though
RTT is diagnosed in early development, regression in specific
skills or learning is also observed throughout life. Currently,
the underlying neural pathways that manifest in developmental
delay or regression after typical development and throughout
different phases of life in patients with RTT are unknown.

Preclinical Mecp2 rodent models recapitulate many of the
phenotypic features of RTT such as sensory processing, social
communication, and motor deficits (Durand et al., 2012; Goffin
et al., 2012; Ito-Ishida et al., 2015; Krishnan et al., 2015, 2017;
Su et al., 2015; Lo et al., 2016; Orefice et al., 2016;
Veeraragavan et al., 2016; Lee et al., 2017; Lau et al., 2020a;
Stevenson et al., 2021; Xu et al., 2022; Mykins et al., 2023).
Thus far, three other published papers have shown possible
regression phenotypes for breathing abnormalities in a mouse
conditional knock-out model, learned forepaw skill involving
seed opening in a female rat model, and skilled motor learning
in female mice (Huang et al., 2016; Veeraragavan et al., 2016;
Achilly et al., 2021). In these models, deterioration in learned
skills was noted over multiple weeks. However, reliably identify-
ing regression within a social behavioral task in apt preclinical
models, with shorter time resolution in order to measure the
impact of therapeutics, has remained a challenge.

Toward this end, we have established an ethologically relevant
social behavioral assay called pup retrieval task as a model to
study cellular and neural circuitry basis for social cognition, com-
plex sensorimotor integration, and experience-dependent plas-
ticity (Krishnan et al., 2015, 2017; Lau et al., 2020a, b;

Stevenson et al., 2021; Dvorkin and Shea, 2022; Mykins et al.,
2023). During this task, female mice integrate sensory cues to
execute goal-directed motor sequences to retrieve scattered
pups back to their home nest (Beach and Jaynes, 1956; Hemel,
1973; Stern and Mackinnon, 1978; Koch and Ehret, 1989; Stern,
1996; Champagne et al., 2007; Alsina-Llanes et al., 2015; Lonstein
et al., 2015; Marlin et al., 2015; Champagne and Curley, 2016;
Dunlap et al., 2020). Using end-point metrics such as latency index
and errors during retrieval, we found that 6-week-old adolescent
Mecp2-heterozygous female mice (Het) were as efficient at pup
retrieval as wild-type littermate controls (WT), and 12-week-old
adult Het were inefficient at retrieval (Krishnan et al., 2017;
Stevenson et al., 2021; Mykins et al., 2023). However, movements
during social behaviors are dynamic over time, with distinct
behavioral sequences that are often ignored due to their inherent
complexity (Stevenson et al., 2021).

The emergence of computational neuroethology tools allows for
fast, reliable, and systematic detection of recorded movement over
time to extract multiple metrics in different contexts. This extrac-
tion is critical for identifying unique subpopulations and assessing
the therapeutic value for preclinical animal studies for psychiatric
disorders (Yamamoto et al., 2018; Popovitz et al., 2021; Tanas et
al., 2022; Luxem et al., 2023; Shemesh and Chen, 2023). Thus, we
used DeepLabCut, a marker-less pose estimation software, to cap-
ture the complexity of individual variations in a mosaic
Mecp2-heterozygous population overmultiple days of pup retrieval
behavior (Mathis et al., 2018; Nath et al., 2019). From the derived
animal trajectories, we performed a multidimensional analysis of
trajectory kinematics in adolescent and adult female WT and
Het. The goal of this study was to determine if DeepLabCut can
provide better behavioral characterization and aid in identifying
regression in this heterogeneous population of Het.

Through this approach, we report the identification of robust
phenotypic variation and regression in genotypic adult Het.
Particularly, we identified genotypic Het that had milder pheno-
types (Het-nonregressors, Het-NR), similar to adult WT in many
features, and another distinct group of genotypic adult Het that
exhibited severe inefficiency in consolidating the pup retrieval
movements over days (Het-regressors, Het-R). Interestingly,
regression was dependent on context as we observed that WT,
Het-NR, and Het-R clustered together in Principal Component
(PC) space during habituation and isolation phases, suggesting
that Het-R have specific issues likely in integrating sensory and
motor sequences during the decision/execution phase of retrieval.
Additionally, this inefficiency in consolidation was specific to
adulthood as adolescent Het behaved similarly to adolescent WT,
indicating that genotypic Het are able to perform this complex
pup retrieval task at an earlier time point in life and are not able
to maintain goal-directed movement skills as they age. The novel
identification of two populations, Het-NR and Het-R, suggests
differential effects on neural circuitry and opens new directions
of exploration on cellular mechanisms for compensation and mal-
adaptive plasticity. Together, these results emphasize the need to
analyze the dynamics of individual variations and context-
dependency while considering therapeutic and treatment options.

Materials and Methods
Animals
We used the following mouse strains: CBA/CaJ (JAX:000654) and
Mecp2-heterozygous (Het; C57BL/6J, B6.129P2©-Mecp2tm1.1Bird/J,
JAX:003890) and WT littermate controls (Guy et al., 2001). All animals
were group-housed by sex after weaning, raised on a 12/12 h light/dark
cycle (lights on at 7 A.M.), and received food and water ad libitum.
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Behavioral experiments were performed using 6-week-old (adolescent) and
10- to 12-week-old (adult) Het andWT between the hours of 9 A.M. and 6
P.M. (during the light cycle). All procedures were conducted in accordance
with the National Institutes of Health’s Guide for the Care and Use of
Laboratory Animals and approved by the Institutional Animal Care and
Use Committee at the University of Tennessee–Knoxville.

Pup retrieval task
Behavioral paradigm
The pup retrieval task was performed as previously described (Stevenson et
al., 2021; Mykins et al., 2023). Two 6-week-old or 10- to 12-week-old naïve
female littermates (one WT and one Het) with no prior experience of pup
retrieval were cohoused with a pregnant CBA/CaJ female (10–12 weeks of
age) 3–5 d before birth. Once the pups were born (Postnatal Day 0; D0), we
performed the pup retrieval task once a day for 6 consecutive days in the
home cage that was placed inside a sound- and light-proof box. The beha-
vioral task was performed as follows (Fig. 1a.): one mouse was placed in the
home cage with 3–5 pups (habituation, 5 min), the pups were removed
from the nest (isolation, 2 min), and the pups were scattered by placing
them in the corners and center, allowing the mouse to retrieve pups back
to the nest (retrieval, 5 min at max). The nest was left empty if there
were fewer than five pups. The assay was performed in the dark and
recorded using an infrared camera (Foscam Wired IP Camera) during all
phases of each trial. If all pups were not retrieved to the nest within
5 min, we removed themouse and placed the pups back in the nest in prep-
aration for the next mouse. While one of the females was performing the
pup retrieval task, the mother, her pups, and the other adult were housed
in a separate new cage. The adult females were chosen in a random order,
by cage and by day. After the task was completed, all mice and pups were
returned to the home cage.

Behavior analysis
All recorded videos were coded so the analyzers were blind to the identity
of the mice. Each video was manually scored using a latency index (the
amount of time to retrieve all pups back to the nest out of 5 min) and

the number of errors that represent adult–pup interactions that did
not result in a successful retrieval.

Latency index was calculated as follows: latency index = [(t1–t0) +
(t2–t0) +…+ (tn–t0)]/(n× L),

where n= number of pups outside the nest, t0 = start time of trial (s),
tn= time of the nth pup’s successful retrieval to the nest (s), and L = total
trial length (300 s). Statistical analyses and figures were generated using
R studio.

Pose estimation generated from DeepLabCut. For body part tracking,
we used DeepLabCut (version 2.2.0.3; Fig. 1b; Mathis et al., 2018; Nath et
al., 2019). We defined features of interest as the mouse’s nose, left ear,
right ear, shoulder, spine 1, spine 2, left hindlimb, right hindlimb, and
tail base. We labeled 200 frames of features of interest taken from 25 vid-
eos of adult WT and Het during the pup retrieval phase, and then 95%
was used for training. We used a ResNet-50–based neural network
with default parameters and trained for 720,000 iterations on Google
Colab (Insafutdinov et al., 2016). We performed outlier correction to
correct inaccurate predictions from the DeepLabCut model. In the
Graphical User Interface, we refined 50 frames of predicted labels by
moving the predicted label’s location to the actual position of the body
part of interest (Fig. 1b). We then retrained, validated with 1 number
of shuffles, and found a test error of 1.67 pixels and a train error of
1.66 pixels (image size was 640 × 480 pixels). We then used a p-cutoff
of 0.9 to condition the X and Y coordinates for future analysis. This
model network was then used to analyze novel behavioral videos of adult
animals. We then repeated this process for 6-week-old adolescent pup
retrieval behavior. We labeled 200 frames taken from 20 videos of
6-week-old pup retrieval behavior, trained for 800,000 iterations, refined
75 frames of predicted labels, retrained for 550,000 iterations, validated
with 1 number of shuffles, and repeated this process to achieve a test
error of 1.89 pixels and a train error of 1.82 pixels.

Pose estimation–derived trajectory analysis. To quantify behavioral
trajectories during habituation, isolation, and retrieval, we used the

Figure 1. DLC-derived pipeline for multidimensional analysis of trajectories. a, Schema depicting pup retrieval behavior setup. We performed and recorded habituation, isolation, and pup
retrieval in 6-week-old (WO) adolescent and 10–12 WO adult female WT and Mecp2-heterozygous (Het) mice for 6 consecutive days (see Materials and Methods for details). b, c, We trained
videos of behavior in single animal DeepLabCut (DLC; b, top) to predict the pose of the animal, and features of interest were labeled and trained in DLC to build pose models that were then
refined with more training to correct for errors (b, bottom). From our models, we generate pose estimation and extract features of interest, such as the nose, to analyze trajectories of mice in R
using the Traj package (McLean and Skowron Volponi 2018; c) and perform multidimensional behavioral analysis, adapted from Tanas et al. (2022).
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Traj R package (McLean and Skowron Volponi, 2018; Fig. 1c). We filtered
the X and Y coordinates of the nose from the DeepLabCut pose and quan-
tified 13 trajectory metrics (10 metrics were used for habituation and isola-
tion as they did not have latency index, duration, and error; Table 1). For
the habituation and isolation phases, we analyzed trajectories during the
entire 5 min and 2 min trial phases, respectively. For the pup retrieval
phase, we analyzed trajectories during the act of retrieval; we stopped ana-
lyzing trajectories after all pups had been retrieved.

Multidimensional analysis of trajectories
For the multidimensional analysis of behavior profiles, we performed
data selection, standardization, principal component analysis (PCA),
k-means clustering, and validation (Fig. 1b; Popovitz et al., 2021;
Tanas et al., 2022). We utilized PUMBAA (phenotyping using a multidi-
mensional behavioral analysis algorithm, https://github.com/sidorovlab/
PUMBAA) for all multidimensional analyses (Tanas et al., 2022).

Data selection for retrieval
For individual and combined-days analyses of retrieval, 13 × the number
of days of metrics were included in multidimensional analysis or PCA
analysis.

Data selection for habituation and isolation
For all days’ analysis, a total of 60 metrics (10 metrics across 6 days) were
included in the multidimensional analysis (Fig. 5b,e). For combined D1
and D5 analysis, 20 metrics were included in the multidimensional anal-
ysis (Fig. 5c–f).

Standardization
All measures were standardized using z-score normalization [z= (data
point− group mean) / standard deviation]. This accounts for different
unit magnitudes across metrics similar to previous studies (Popovitz et
al., 2021; Tanas et al., 2022).

Principal component analysis and k-means clustering
We performed PCA using PUMBAA and extracted the amount of vari-
ance explained by each PC (Fig. 4b). We performed k-means clustering
in the PC space using PUMBAA with k= 2 clusters in 2 Principal
Component (2PC) space. To verify the visual absence of clusters, we per-
formed a gap statistics test using the cluster package in R. Data visuali-
zation using ggplot was performed in R studio (Wickham, 2016).

Validation
We compared the genotypes to their predicted k-means cluster. We
color-coded groups according to their predictions (WT predicted cor-
rectly = black, Het predicted correctly = red, Het predicted incorrectly =
blue, WT predicted incorrectly = purple; Fig. 3). This allowed us to deter-
mine the accuracy of predicting genotypes in our model and revealed two
distinct populations with the same genotype. We set a seed value for ran-
dom number generation and used R packages (cluster, factoextra) to test
the optimal number of clusters using k-means and bootstrapping with a
sample size of 100 and a maximum of four clusters. The data visualiza-
tion using ggplot was performed in R studio (Wickham, 2016).

Using predicted clusters to analyze behavior
Using the identified clusters of Het from Figure 3f, we performed a tra-
jectory analysis for metrics contributing significantly to the PCA. We
conducted the Kruskal–Wallis test with uncorrected Dunn’s test to deter-
mine the statistical significance of metrics of interest between WT and
the two clusters of Het (Fig. 4) on each day and within the same group
across days. We used base R, ggplot, emmeans, and dunn.test package
to perform statistical analysis and data visualization in R studio
(Wickham, 2016).

Results
Robust identification of phenotypic heterogeneity in adult Het
Previously, we reported that the adult female Het were inefficient
at pup retrieval, as measured by the time taken to retrieve pups
back to the nest (latency index), and increased physical interac-
tions between the pups and adult that did not result in an efficient
retrieval (errors; Krishnan et al., 2017; Stevenson et al., 2021). We
also reported the individual variations with possible regression
phenotype over days in adult Het, from frame-by-frame manual
analysis of goal-directed movements in a small sample size (N= 6
females per genotype; Stevenson et al., 2021). These intriguing
results identified the need for a systematic, automated, and
unbiased analysis for large sample sizes over multiple days.
Here, we analyzed the end-point metrics of pup retrieval with a
larger sample set of N= 21 for adults and N= 9–11 for adoles-
cents. A two-way mixed-effects ANOVA revealed the significant
effects of the day of retrieval (F= 18.68, p < 0.0001) and genotype
(F= 38.39, p < 0.0001) on latency, but no interaction between
those variables (F= 0.35, p= 0.89; Extended Data Table 2–1).
Post hoc testing revealed that, compared with baseline perfor-
mance on D0, WT and Het significantly decreased in latency
index, over days (Fig. 2a,a’, WT and Het; Extended Data
Table 2-1). However, Het were was significantly worse than
WT on all days of retrieval, and more variable (Fig. 2a,a’, WT

Table 1. Metrics

Metrics Definition

Latency index – Normalized time it takes between retrieving n number of pups:
latency index = [(t1 – t0) + (t2 – t0) +…+ (tn–t0)]/(n× L) out
of the 5 min given to retrieve pups (Krishnan et al., 2017; Stevenson
et al., 2021; Rupert et al., 2023)

Errors – Number of physical interactions with pup during the retrieval phase
that does not result in retrieval or dropping of the pup during
retrieval (retrieval phase of behavior only, excluded in habituation
and isolation)

Distance – Total distance covered (in meters) during phase of behavior

Duration – The total amount of time it takes to retrieve all pups or the max
5 min (retrieval phase only)

Mean speed – Change in distance over time (scalar quantity)
Mean acceleration – Acceleration—change in speed over time (scalar quantity)
Mean step length – The average distance between two steps
Sinuosity – Tortuosity of a random search path (Bovet and Benhamou, 1988;

Benhamou, 2004)
– A function of both the mean cosine of turning angles and step length

(Cheung et al., 2007; McLean and Skowron Volponi, 2018)
– Varies between 0 (straight) and 1 (random motion)

Straightness – Minimum distance to get from point a to b (D) divided by
displacement from origin to final destination (Mykins et al., 2023) (L;
Batschelet, 1981)

– Closer to 1, the more efficient the trajectory. The closer to zero, the
more random the walk (Batschelet, 1981; Benhamou, 2004)

Emax – Dimensionless value that denotes the maximum expected
displacement of a random path as a function of the number of steps
(Cheung et al., 2007; McLean and Skowron Volponi, 2018)

– Values closer to 0 are more sinuous trajectories, and larger values
(approaching infinity) are straighter trajectories (Cheung et al., 2007)

Emaxb – The product of Emax times the defined step size (Cheung et al.,
2007)

– larger values (approaching infinity) are straighter

Nonlinearity – Measure of directional change
– Angular change (in degrees) between two steps, divided by the time

difference between the two steps (Benhamou, 2004; Kitamura and
Imafuku, 2015)

Irregularity – Standard deviation of directional change (nonlinearity; Benhamou,
2004; Kitamura and Imafuku, 2015)

Metric definitions for trajectory analysis.
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vs Het). Consistent with previously reported results, some of the
individual Het performed on par with WT.

A two-way mixed-effects ANOVA revealed a significant effect
of the genotype (F= 29.57, p < 0.001), but not the day of retrieval,
(F= 1.73, p= 0.13) on the number of errors, and no interaction
between those variables (F = 0.37, p= 0.87; Extended Data
Table 2-1). Post hoc testing revealed that WT and Het signifi-
cantly decreased in number of errors, compared with their own
baseline at D0 (Fig. 2b,b’, WT and Het). However, Het were sign-
ificantly worse and more variable than WT on all days except D3
(Fig. 2b,b’, WT vs Het). Collectively, these results recapitulated
our previous results in a larger dataset and suggested the possibil-
ity of tackling individual variations in the Het population.

To better characterize this heterogeneity, we sought to identify
newer dynamic metrics in context-specific motor sequences, in
addition to our established end-point measurements. We used
DeepLabCut to generate animal pose and quantified movement
trajectory profiles across days in adolescent (N=9 WT and N=
11 Het) and adult female WT and Het (N=21 per genotype;
Mathis et al., 2018; Fig. 2, Table 1). We took 13 metrics from
each day of retrieval (13 metrics per day) and across 6 d of pup
retrieval (78 metrics total) to build a behavioral profile for each
mouse (Fig. 3a; Bovet and Benhamou, 1988; Benhamou, 2004,
2014; Cheung et al., 2007; McLean and Skowron Volponi, 2018;
Tanas et al., 2022). We standardized all metrics using z-scores
and performed a multidimensional PCA (Fig. 3a, scaled PCA;
Popovitz et al., 2021; Tanas et al., 2022). We then used k-means
to cluster mice into two groups based on genotype (Group 1:
WT or Group 2: Het) and validated clustering by comparing the
predicted cluster group to the known genotype of the animal
(Group 1: WT; Group 2: Het), whereas incorrectly predicted geno-
type is labeled as Group 3 or 4 (Fig. 3a, k-means and Validation,
respectively). Based on an average analysis across days, we iden-
tified a distinct group of Het clustered at the top of the PC space
(Fig. 3b, Group 2) while another group of Het clustered with

WT, and thus were incorrectly predicted as WT (Fig. 3b, Group
3, blue). The single-day analysis showed that the Group 2 cluster
emerged as early as D1. However, it consolidated with Group 1
and Group 3 on D2 and D3 and emerged again on D4 and D5
(Fig. 3c). This result indicates dynamic variations in the movement
trajectories of individual Het mice over days. The pairwise combi-
nation ofD1 andD5 is sufficient to clusterWT accurately and iden-
tify two different clusters of Het (Fig. 3d–f). However, the pairwise
comparisons between D0 and D5, D2 and D5, D3 and D5, and D4
andD5 demonstrated an inaccurate clustering asWT are predicted
incorrectly (Extended Data Fig. 3-1; WT-incorrectly, purple). As
pup numbers slightly vary between cohorts, we quantified the
number of pups to be retrieved in each identified group to make
sure this is not a major factor driving the identification of clusters
[Fig. 3g; ANOVA (F=0.929, p=0.404); Extended Data Table 3-1].
Together, these novel results robustly quantify the known pheno-
typic heterogeneity in adult Het over multiple days.

Identification of trajectory metrics that classify behavioral
heterogeneity
In order to better characterize the three cluster groups, we plotted
example trajectories from each group and noted striking differ-
ences in the movement patterns over days (Fig. 4a). Due to these
trajectories and distinct metrics features, which are elaborated
below, we adopted a new nomenclature to better describe the
phenotypes in the three groups. We refer to Group 1 as WT,
Group 2 as Het-regressors (Het-R), and Group 3 as Het-
nonregressors (Het-NR). Similar to WT, Het-NR trajectories
were random on D0 and consolidated to oriented and direct
paths toward the nest by D5 (Fig. 4a, WT: black, Het-NR:
blue). Het-R also had random trajectories on D0 but showed
instability in consolidating trajectories over time compared
with WT and Het-NR (Fig. 4a, Het-R: red).

We plotted the variable vectors in the PC space (Fig. 4b) for
D1 and D5, as this allowed us to isolate the regressors with the

Figure 2. Adult Mecp2-heterozygous female mice (Het) are inefficient at pup retrieval task. WT and Het showed significant improvement across days, (a) median latency index, and (b)
median number of errors WT (black, n= 21), Het (blue, n= 21). Box plots showing median scores for latency and error. Each dot represents an animal (a,b). ANOVA Type II analysis for multiple
comparison with Šidák correction was performed and followed by post hoc Kruskal–Wallis uncorrected Dunn’s (Extended Data Table 2-1) to test for statistical significance between genotypes and
within genotype across days. Significance is plotted as correlation matrices color-coded by significance for (a’) latency index and (b’) number of errors. *p< 0.05, **p< 0.01, ***p< 0.001;
****p< 0.0001, N.S., not significant.
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least number of dimensions (Fig. 3f). Sinuosity, the expected
maximum displacement (emax) and expected maximum displa-
cement B (emaxB) contributed to PC1. Distance, duration, non-
linearity, irregularity, latency index, and error contributed to
PC2. The mean acceleration and straightness had negative corre-
lations and did not contribute to either PC (Fig. 4b). The positive
correlations between emax, emaxB, mean speed, mean step
length, and negative correlation with sinuosity contributed to
PC1 and PC2 (Fig. 4c). The breakdown of contributions by
PC1 (Fig. 4c) and PC2 (Fig. 4d) indicated that nonlinearity, irreg-
ularity, distance, and latency contributed to the most variability
in PC2.

We previously reported latency index to evaluate pup retrieval
performance (Krishnan et al., 2017; Stevenson et al., 2021;
Mykins et al., 2023; Fig. 2). We analyzed latency index for the
three phenotypes (WT, Het-NR, Het-R). A three-way
mixed-effects ANOVA revealed the significant effects of the
day of retrieval (F= 9.51, p < 0.0001) and phenotype (F= 8.45,
p < 0.0001) on latency, but no interaction between those variables
(F= 0.89, p= 0.55; Extended Data Table 4-1). Post hoc testing
revealed that WT and Het-NR significantly decreased in latency
index over days, compared with D0 within their respective geno-
types (Fig. 4e,e’, WT, Het-NR; Extended Data Table 4-1). This
suggests learning and consolidation toward efficient pup retrieval
task over multiple days for both groups. However, Het-NR were
significantly worse than WT on D1, D2, D4, and D5 (Fig. 4e,e’,

WT vs Het-NR;), suggesting deficiencies in efficient pup retrieval.
Similar to WT and Het-NR patterns, the Het-R latency index
significantly decreased from D0 to D2–D4, and increased again
to D0 levels on D4–D5. Het-R were significantly worse than
WT on all days (Fig. 4e,e’, WT vs Het-R;) and were significantly
worse than Het-NR onD5 (Fig. 4e,e’, Het-NR vs Het-R; Extended
Data Table 2-1). These results show that the Het-R phenotype is
distinct from both Het-NR and WT.

Nonlinearity is a measure of directional change (Cheung et
al., 2007; Kitamura and Imafuku, 2015; McLean and Skowron
Volponi, 2018). A decrease in directional change is an indica-
tion that the path is more goal-directed. A three-way
mixed-effects ANOVA revealed a significant effect of the day
of retrieval (F = 7.44, p < 0.0001), but not phenotype (F = 0.29,
p = 0.75) on nonlinearity, with a significant interaction between
those variables (F = 0.35, p = 0.89; Extended Data Table 4-1).
Post hoc testing revealed that WT and Het-NR significantly
decreased in nonlinearity over days compared with baseline
within genotype (Fig. 4f,f’, WT, Het-NR), suggesting consoli-
dation of more goal-directed trajectories over days. There
was no significant difference in nonlinearity between WT and
Het-NR on all days (Fig. 4f,f’, WT vs Het-NR; Extended Data
Table 4-1). However, Het-R had significantly increased nonlin-
earity on D4 and D5 and were significantly worse on those days
compared with WT and Het-NR (Fig. 4f,f’, WT vs Het-R,
Het-NR vs Het-R).

Figure 3. Multidimensional analysis identifies two distinct phenotypes of Het. a, Thirteen trajectory metrics for all days of retrieval (78 total loadings) or 13 trajectory metrics on each day
(13 total loadings) were standardized using z-scores for PCA (left). Example of analysis: each point represents one animal’s behavioral profile in PC space, colored by group (scaled PCA). Mice were
clustered into two groups (Group 1 = black, Group 2 = red) using k-means to predict genotype (k-means). The predicted genotypes were validated by comparing animals with their genotype
(Group 1 =WT, black; Group 2 = Het, red; Group 3 = Het predicted incorrectly, blue; Group 4 =WT predicted incorrectly, purple; validation). b, Multidimensional analysis for all days of retrieval
revealed two groups of Het: Het that clustered with WT (Group 3, blue) and Het that were distinctively different from Group 1 and Group 2 (Group 3). c, PCA, k-means clustering, and validation
for each individual day of retrieval (D0–D5) and pairwise comparisons of each day with D5 (D1:D5, D2:D5, D3:D5, and D4:5; Extended Data Fig. 3-1) revealed that the combination of D1:D5
identified the two groups of Het. d, PCA of 13 trajectory metrics for D1 and D5 of retrieval (26 loadings) color-coded by actual genotype (WT = black, Het = red). e, k-means clustering (n= 2) of
13 trajectory metrics for D1 and D5 of retrieval (Group 1 = black, Group 2 = red). f, Validation of predictions supports two distinct groups of Het with reduced data complexity. g, The max
number of pups to retrieve is not significantly different between the three identified groups. For all panels, each dot represents an animal, color-coded by genotype and validated cluster group.
For all panels, regardless of cluster prediction, there are 21 WT and 21 Het mice. ANOVA Type II (Extended Data Table 3-1). N.S = not significant.
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Figure 4. Multidimensional analysis distinguishes phenotypical heterogeneity in Het. a, Example trajectories of WT (black), Het-NR (blue), and Het-R (red) x–y nose position during pup
retrieval toward the nest (purple box) across 6 consecutive days of behavior. b, Variable correlation plots of trajectory metrics (see key below) from D1 and D5 represented in PC space. Variable
vectors grouped in the same direction are positively correlated, and vectors in the opposite direction are negatively correlated. Variance explained (var. exp. %) represents the percent of variance
explained by each PC component. c, d, Percent contribution of top 15 (out of 26) metrics to Principal Component 1 (c) and Principal Component 2 (d). The red dashed line represents the average
expected contribution of each metric. Everything above the red dashed line has a considerable contribution to the component. e, Latency index, (f) median distance nonlinearity, and (g) median
distance traveled during pup retrieval for each test day showed significant improvement in retrieval trajectories across test days for Het-NR. However, Het-R improved over days and regressed by
D5 compared with D0 and were worse than WT and Het-NR. WT (black, n= 21), Het-NR (blue, n= 14), and Het-R (red, n= 7). ANOVA Type III analysis for multiple comparison with Šidák
correction was performed and followed by post hoc Kruskal–Wallis uncorrected Dunn’s (Extended Data Table 4-1) to test for statistical significance between genotypes and within phenotype
across days (e’) latency index, (f’) nonlinearity, and (g’) distance. *p< 0.05, **p< 0.01, ***p< 0.001; ****p< 0.0001, N.S. = not significant. b–d, Trajectory metric key: the number following
the abbreviation indicates the day of retrieval. (Dist, distance; Dur, duration; Err, error; Ex, Emax; ExB, EmaxB; Irr, irregularity; Lat, latency; MAcc, mean acceleration; MS, mean speed; MSL, mean
step length; Non, nonlinearity; Sin, sinuosity; St, straightness).
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The total distance covered in a goal-directed trajectory
decreases with efficiency and is thus indicative of the efficiency
of the path taken. A three-way mixed-effects ANOVA revealed
a significant effect of the day of retrieval (F= 9.34, p < 0.0001)
and phenotype (F= 12.23, p < 0.0001) on distance and a signifi-
cant interaction between those variables (F= 2.73, p= 0.0034;
Extended Data Table 4-1). Post hoc testing revealed that WT
and Het-NR significantly decreased their total distance covered
over days compared with baseline within genotype (Fig. 4g,g’,
WT, Het-NR), suggesting an increased efficiency in determining
the fastest path to retrieve pups back to the nest. Similar to WT
and Het-NR, Het-R significantly decreased in total distance in
early days compared with Het-R baseline (Fig. 4g,g’, Het-NR).
However, Het-R significantly increased the total distance traveled
on D5 compared with D1–D4 and was similar to the total dis-
tance traveled at baseline (Fig. 4g,g’, Het-R). Het-R covered
more total distance than WT on all days (Fig. 4g,g’, WT vs
Het-R) and were significantly worse than Het-NR on D0, D2,
D4, and D5 (Fig. 4g,g’, Het-NR vs Het-R).

Overall, compared withWT, Het-NR displayed mild and day-
specific atypical metrics in latency index and distance traveled,
while still displaying improvement from their own baseline per-
formance in all metrics. However, compared with WT and
Het-NR, Het-R had a larger latency index, mademore directional
changes, and covered more distance during retrieval. Compared
with the baseline, Het-R showed some improvement but was
unable to consolidate the improvement, suggesting regression
in this social motor task by D5.

Features of Het regression are context-dependent
Given the dynamic changes in trajectory metrics during pup
retrieval over days in the Het-R, we wondered if these features
were specific to the act of pup retrieval or other generalized
motor features in this subpopulation. Thus, we performed a
PCA of trajectories during the habituation and isolation phases
of behavior (Fig. 5). As latency and error metrics are specific to
adult and pup interactions during retrieval, and duration is
constant, we excluded them in the multidimensional analysis.
During habituation, the pups huddle together in the nest,
and the adult can choose whether to interact with the pups
or not (Fig. 1a). This phase serves as a control to determine
if the context and action of retrieving pups distinguish
Het-NR and Het-R. We plotted the habituation trajectories
[example plots for WT (black), Het-NR (blue), and Het-R
(red)] and observed no differences in the patterns of their tra-
jectories between D0 and D5 (Fig. 5a). Both genotypes tend to
move around the entire cage during the 5 min habituation
phase. No distinct groups emerged between WT, Het-NR,
and Het-R from the differential PCA analyses (Fig. 5b,c). A
three-way mixed-effects ANOVA revealed no significant
effect of the day of habituation (F = 0.09, p = 0.99) or phenotype
(F = 0.90, p = 0.41) on nonlinearity and no significant interac-
tion between those variables (F = 0.23, p = 0.99; Extended
Data Table 5-1). Post hoc testing revealed no significant differ-
ence in the average nonlinearity during habituation regardless
of phenotype (Fig. 5d; Extended Data Table 5-1). A three-way
mixed-effects ANOVA revealed no significant effect of the day
of habituation (F = 1.37, p = 0.24) or phenotype (F = 1.60, p =
0.20) on distance and no significant interaction between those
variables (F = 0.35, p = 0.96; Extended Data Table 5-1). Post hoc
testing revealed no significant difference in the average distance
during habituation regardless of phenotype (Fig. 5e).

During the isolation phase, the pups are removed from the
home cage, and the adult is left alone for 2 min (Fig. 1a).We plot-
ted the isolation trajectories of the three groups and observed no
differences in the patterns of their trajectories between D0 and
D5 (Fig. 5f). Similar to the habituation phase, both genotypes
moved about the cage with no pups present, and no distinct
groups emerged from the isolation-specific PCA analyses
(Fig. 5f–h). A three-way mixed-effects ANOVA revealed no
significant effect of the day of isolation (F= 0.71, p= 0.16) or phe-
notype (F = 3.055, p= 0.21) on nonlinearity and no significant
interaction between those variables (F=1.077, p=0.38; Extended
Data Table 5-1). Post hoc testing revealed no significant differ-
ence in average nonlinearity during isolation regardless of phe-
notype (Fig. 5i). A three-way mixed-effects ANOVA revealed
no significant effect on the day of isolation (F = 0.64, p= 0.67)
or phenotype (F= 2.032, p= 0.13) on distance and no significant
interaction between those variables (F = 0.60, p= 0.81; Extended
Data Table 5-1). Post hoc testing revealed no significant differ-
ence in average distance during isolation regardless of phenotype
(Fig. 5j). These findings are consistent with the manual
frame-by-frame analysis of maternal behaviors, which demon-
strated that WT and Het behave similarly during the habituation
and isolation phases of pup retrieval (Stevenson et al., 2021).
Together, these results suggest context-specific, atypical beha-
vioral features of Het-R and Het-NR and not generalized motor
phenotype in genotypic adult Het. This is a critical finding that
points to the context-specific processing of sensorimotor infor-
mation in genotypic Het and the subsequent execution of specific
motor sequences in a social context.

Analysis of early days identifies individual variation in later
adult Het-regressors
In order to determine individual variations in Het, we plotted
individual trajectories of Het-NR and Het-R over all days. As
expected, we observed that Het-NR, such as animals 8, 20, and
21, displayed some variability in adapting over time compared
with the other Het-NR animals that plateaued and consolidated
their efficiency in later days (Fig. 6a). In contrast, we observed
variability in the individual trends in Het-R. Animal 10 (x sym-
bol) did not improve in pup retrieval efficiency over days, ani-
mals 3, 4, 6, 9, and 19 improved over days but regressed by D5,
and animal 2 (circle symbol) improved over days but showed
instability in D4 (Fig. 6a’), suggestive of different neural mecha-
nisms being disrupted in individual Het over days.

While it has been difficult to phenotype regression in Het
mouse models of RTT, it is an even greater challenge to deter-
mine the time, frequency, and duration to apply therapeutic
intervention to mitigate regression before its onset. We thus
asked if it was possible to identify the Het-R population (Figs.
3, 6a’) from the initial days of pup retrieval performance.
Using D0 and D1 metrics (Fig. 6b), we obtained a weak informa-
tive power for identifying Het-NR (11/14 = 78.6% accuracy) and
Het-R (3/7 = 43% accuracy). However, combinations of D0–D2
(Fig. 6c) and D0–D3 (Fig. 6d) metrics elicited stronger informa-
tive power for identifying Het-NR and a majority of Het-R early
on (Het-NR: 13/14 = 93%, Het-R: 5/7 = 71%; Het-NR: 13/14 =
93%, Het-R: 6/7 = 86%, respectively). Despite the observations
from select metrics that show Het-R trends similar to WT and
Het-NR in early days (Fig. 4e–g), regression in social behavior
can still be identified using all metrics (Fig. 6c,d). Together, these
results suggest that we can identify potential regressors with a
smaller number of trials, which has implications for designing
preclinical therapeutic studies in the future.
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Experience-dependent regression in Het is specific to age
We previously reported that 6-week-old (adolescent) Het per-
formed pup retrieval comparable with adolescentWT, using end-
point metrics of latency index and error (Mykins et al., 2023).
This is a particularly important result that shows that genotypic
Het can perform as efficiently as the WT at an earlier age, which

then results in regression features in adulthood. To determine if
dynamic pose estimation metrics can identify early signs of regres-
sion in adolescent Het, we generated another deep learning model
and pose for adolescentWT andHet animals and quantified trajec-
tory metrics. We did not observe any distinct genotype groups
through the PCA analysis (Fig. 7a,b). In support of this finding,

Figure 5. Regression is context-dependent. a, Example trajectories of WT (black), Het-NR (blue), and Het-R (red) x–y nose position during habituation on D0 and D5. b, c, PCA for all 6 d (b)
and combined D1 and D5 (c) of habituation revealed no difference between identified groups during habituation (WT = black, Het-NR = light-blue, and Het-R = red). Consistent with this
finding, there is no significant difference in the average (d) nonlinearity and (e) distance traveled across the 6 d of the habituation phase of the pup retrieval paradigm. f, Example trajectories
of WT (black), Het-NR (blue), and Het-R (red) x–y nose position during isolation for D0 and D5. g–j, PCA for all days (g) and combined D1 and D5 (h) of isolation revealed no difference between
the identified groups in the absence of pups. Consistent with this finding, there is no significant difference in the average (i) nonlinearity and (j) distance traveled across the 6 d of the isolation
phase of the pup retrieval paradigm. For b, c, g, and h, each dot represents an animal, color-coded by genotype and phenotype. For d, e, i, and j, the mean ± SEM across each phenotype is
represented. Each dot represents the average nonlinearity or distance of each animal across 6 d of habituation (d, e) and isolation (i, j), respectively. ANOVA Type III analysis for multiple
comparison with Šidák correction was performed and followed by post hoc Kruskal–Wallis uncorrected Dunn’s (Extended Data Table 5-1) to test for statistical significance between phenotypes
and within phenotype across: N.S = not significant. WT (black, n= 21), Het-NR (blue, n= 14), and Het-R (red, n= 7).
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we performed the gap statistic test and determined that the optimal
number of clusters between both genotypes was one (Fig. 7a’,b’).

To determine if there are developmental differences in
retrieval trajectories between adolescence and adulthood within

each genotype, we performed PCA on all metrics for all days
(Fig. 7c) between adolescent and adult WT. We observed no dis-
tinct clusters between adolescent WT (gray) and adult WT
(black; Fig. 7c) in agreement with gap statistics (Fig. 7c’). We

Figure 6. Performance in early days can identify future adult Het-regressors. a–a’, Individual animal trends of latency index for the identified (a) Het-nonregressors (Het-NR) and (a’)
Het-regressors (Het-R) from Figures 2 and 3. Trend lines are color-coded by animal number and shape to highlight individual variation in latency index over 6 d for Het-NR (blue-gradient)
and Het-R (red-gradient + shape to easily identify animals). b–d, PCA analysis for D0 and D1 (b), D0, D1, and D2 (c), and D0, D1, D2, and D3 (d) of retrieval. Analysis revealed that the first 3 (c) or
4 d (d) of pup retrieval accurately identified Het-NR and Het-R, while the first 2 d (b) had a lower accuracy for identifying Het-NR and Het-R. Accuracy was determined by correctly identifying the
21 Het into their established groups (Figs. 3, 4). The dots represent each animal [WT (black, n= 21), Het-NR (blue, n= 14), and Het-R (red, n= 7)], and Het-R are numbered and shaped to easily
identify regressors over time.

Figure 7. Het regression is age-specific. a, PCA for all days of retrieval, and (b) only D1 and D5 of retrieval reveals no difference in PC representation between 6-week-old (adolescent) WT and
Het [WT (9) = gray, Het (11) = orange]. a’, b’, Gap statistics test confirms that the optimal number of clusters is one (dashed line) for (a’) all days of retrieval and (b’) D1 and D5 of retrieval. c,
PCA for all days of retrieval reveals no difference in PC representation between adolescent WT (n= 9, gray) and adult WT (n= 21, black) in agreement with gap statistics (c’). d, PCA for all days
of retrieval shows adolescent Het clusters with adult Het-NR and adult WT, while Het-R cluster separately in agreement with an optimal number of two clusters (d’).
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performed PCA on 13 metrics for all days (Fig. 7d) between ado-
lescent and adult Het and adult WT. The majority of adolescent
Het grouped with adult WT and adult Het-NR (Fig. 7d).
However, one adolescent Het grouped with adult Het-R
(Fig. 7d). These collective findings were supported by a gap sta-
tistic test that indicated there are an optimal number of two clus-
ters (Fig. 7d’). The one adolescent Het clustered with Het-R and
may indicate an adolescent Het at risk for regression over time.
Future large-scale and longitudinal studies are needed to address
these possibilities.

Discussion
One of the major hurdles in diagnosing, understanding, and
treating heterogeneous rare neuropsychiatric diseases is the
lack of appropriate tools to robustly identify and classify complex
morbidity over time and trials with individual resolution. While
males are typically severely affected by MECP2 dosage, females
typically exhibit less severe and more heterogeneous phenotypes
due to random X-chromosome inactivation and mosaic expres-
sion of the wild-type protein (Mykins et al., 2023). Thus, disease
pathobiology caused by X-linked mutations, and by MECP2, is
fundamentally different in females than males. Currently, there
is minimal consensus on behavioral phenotypes in female Het
mice, due to strain variations and lack of systematic analysis
over different ages (Stearns et al., 2007; Garg et al., 2013;
Samaco et al., 2013; Krishnan et al., 2017; Fagiolini et al., 2020;
Ribeiro and MacDonald, 2020; Stevenson et al., 2021; Mykins
et al., 2023). This is particularly important for designing better
therapeutic interventions, as symptoms change over time in indi-
vidual patients. Thus, developing and utilizing appropriate pre-
clinical models are a necessary step. Here, we utilize a pose
estimation algorithm and multidimensional analysis to charac-
terize complex social cognition phenotypes in the heterogeneous
population of adolescent and adult female Mecp2-heterozygous
mice. We found a context- and age-specific regression in a subset
of genotypic Het (Het-regressors, Het-R) and an age-specific
delay in efficient behavior in another subset of genotypic Het
(Het-non-regressors, Het-NR). These are novel results that
finally achieve categorization of known, yet elusive, phenotypic
heterogeneity in female X-linked disorders. Additionally, this is
the first report to faithfully recapitulate regression and mild
developmental delay in this apt preclinical model. This robust
phenotyping in individual animals will be critical in determining
the mechanisms connecting the knownMECP2mosaicism, etiol-
ogy, and disease progression in RTT over time, contexts, and
physiological states. Future work will be needed to correlate het-
erogeneity in disease severity to known models ofMECP2muta-
tions and in different relevant behavioral models (Neul et al.,
2008; Vashi and Justice, 2019; Ehrhart et al., 2021). The implica-
tions of such approaches will be in establishing robust and repro-
ducible phenotyping of female mice across labs and providing
biomarkers through longitudinal progression, physiological
ages, and symptom severity with individual resolution, for better
design for clinical interventions (Leonard et al., 2022).

Pup retrieval task as an ethologically relevant task to study
complex social cognition
Maternal behavior and pup retrieval tasks are well-established
paradigms to study complex dyadic interactions focusing on neu-
rological processes such as motivation, goal-directedmovements,
sensory processing and perception, social communication, and
cognition (Wiesner and Sheard, 1933; Beach and Jaynes, 1956;

Rosenblatt, 1967; Stern and Kolunie, 1989; Morgan et al., 1992;
Stern, 1996; Champagne et al., 2007; Alsina-Llanes et al., 2015;
Lonstein et al., 2015; Champagne and Curley, 2016; Stevenson
et al., 2021). In our assay, naïve virgin female mice are sensitized
to perform efficient pup retrieval. This scenario is akin to a per-
son moving to a new place with roommates, and then motivated
(or induced) to help/interact and care for newborn babies, with-
out any prior experience, for short periods of time every day. It is
a challenging task to navigate this complex social environment,
with demands on cognitive flexibility, sensory processing and
perception, and skilled goal-directed motor sequences. The pur-
pose of using a complex social task, which taps into a combina-
tion of innate and learned neural circuitry, in this heterogeneous
population is based on the premise that brains are evolved to
engage and process complex environmental and social informa-
tion; thus, the challenges will reveal dynamic and nuanced phe-
notypes in behaviors and neural processing over time and
contexts, with reproducible variations in individual animals.
Thus, such complexity is critical for a better utilization of preclin-
ical models of human disorders.

At the neurobiology level, much is known about the contribu-
tions of specific brain regions and neuromodulatory systems to
efficient maternal care (Hemel, 1973; Stern and Mackinnon,
1978; Ehret et al., 1987; Morgan et al., 1992; Keer and Stern,
1999; Cohen et al., 2011; Marlin et al., 2015; Kohl et al., 2017,
2018; Krishnan et al., 2017; Stevenson et al., 2021). The neural
circuit mechanism by which naïve female mice adapt repetitive
and stereotypedmotions over days to efficiently retrieve scattered
pups back to the nest is still under investigation. Perturbation in
the dopaminergic mesolimbic pathway, ventral tegmental area,
and medial prefrontal cortex serotonergic neurons impairs
sequential pup retrieval and maternal behavior, suggesting a
role for neuromodulation in motivation and reward of the pup
(Hansen et al., 1991a,b, 1993; Hansen, 1994; Keer and Stern,
1999; Lonstein and De Vries, 2000; Wu et al., 2016; Gao et al.,
2018, 2020; Holschbach et al., 2018; Xie et al., 2023).
Dopaminergic activity increases in the ventral tegmental area
and nucleus accumbens before pup contact and is required for
reinforcement learning of pup retrieval over days in nulliparous
female mice (Dai et al., 2022; Xie et al., 2023). Many of these
established circuits have strong projections into higher cortical
regions important for sensory motor integration. In this study,
we have established metrics indicating that naive wild-type
mice are adapting sensorimotor strategies to increase retrieval
efficiency and potentially maximize the perceived social reward
from pups. We hypothesize that mice prioritize sensory-
dependent social reward of the pups in early days of retrieval
and utilize higher cortical regions to consolidate motor sequences
in later days. Future work using in vivo optogenetic manipulation
combined with real-time pup retrieval dynamics to investigate
the role of sensorimotor neural circuits is important to elucidate
the underlying neural mechanisms of this relevant task.

Neurobiology underlying sensory and social communication
deficits in Rett syndrome
Long-standing work in the field RTT has identified disruptions in
cortical and subcortical regions to be major factors for sensory,
motor, and social communication deficits in predominantly
Mecp2-null male rodent models. In Mecp2-heterozygous female
mice, it is clear that tactile, auditory, and prefrontal cortices are
dysregulated, likely giving rise to sensory and social phenotypes
(Krishnan et al., 2017; Lau et al., 2020a; Achilly et al., 2021; Xu et
al., 2022; Zhao et al., 2022; Rupert et al., 2023).
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While previous studies have reported regression in motor
skills and respiratory function over weeks inMecp2 rodent mod-
els, it remains unclear when and how regression in social skills
arises over time within Het (Huang et al., 2016; Veeraragavan
et al., 2016; Achilly et al., 2021). Here, using PCA and multidi-
mensional analysis of a social cognition pup retrieval task, we
observed adult Het-R are capable of adapting goal-directed tra-
jectories toward pups in early days and regress as they are unable
to consolidate or maintain these efficient trajectories in later days
(Fig. 4). Compared with WT, Het-NR have a milder phenotype
but are capable of consolidating efficient trajectories over time.
Thus, Het-NR are able to compensate behaviorally, while
Het-R are unable to consolidate social and sensory cues to exe-
cute efficient retrieval. Het-R regression is specific to age as we
do not observe regression in adolescent Het (Mykins et al.,
2023). We observe adult Het have increased interactions with
novel pup stimuli and increased interactions with textures com-
pared with WT controls, supporting that Het may have issues in
cortical circuits for discriminating social and nonsocial cues
(Stevenson et al., 2021; Xu et al., 2022; Zhao et al., 2022;
Mykins et al., 2023). Severe cortical dysregulation in these cir-
cuits may result in the inability of Het-R to consolidate changes
in sensory and social cues over time or prevent reinforcement
learning of the reward of the pup, ultimately leading to regres-
sion. Furthermore, we have previously shown that in adult Het,
pyramidal and PV neurons in the auditory cortex respond differ-
entially to broad tones and pup calls, with lesser synaptic plastic-
ity in the PV neurons (Lau et al., 2020a; Rupert et al., 2023). The
mPFC and auditory cortex reciprocally provide feedback for
auditory tone discrimination; thus, optogenetic manipulation
studies between these regions in the context of pup retrieval
are needed to further dissect the sensory perception and motor
activation pathology in Het (Rodgers and DeWeese, 2014).

An alternative hypothesis is that Het-R may lose the ability to
transfer to the next task of bringing the pups back to the nest,
suggesting issues in brain regions important for motor planning
and execution. In support of this hypothesis, we reported that
adult Het exhibit abnormal maternal behavior task transition
probabilities during pup retrieval (Stevenson et al., 2021). The
locus ceruleus is important for mediating maternal behavior in
mice via the global release of noradrenaline between transition-
ing of behavioral states, suggesting that dysfunction in these cir-
cuits could contribute to inefficient pup retrieval in Het. Mecp2
mutant mice have profound physiological deficits in the locus
ceruleus (Thomas and Palmiter, 1997; Taneja et al., 2009;
Huang et al., 2016; Howell et al., 2017; Dvorkin and Shea, 2022).

Molecular and cellular mechanisms driving phenotypic
variations in Het
The random X-chromosome inactivation patterns across the
body and brain and the type ofMECP2mutations are major con-
tributing factors to the behavioral, cellular, andmolecular hetero-
geneity in RTT. MECP2 expression increases in the postnatal
brain and correlates with the timing of critical period plasticity
of sensory cortices (LaSalle, 2001; Braunschweig et al., 2004;
Durand et al., 2012; Krishnan et al., 2015; Picard and Fagiolini,
2019). Recently, we reported an intriguing observation of a pre-
cocious increase in MECP2 expression within specific cell types
in the primary somatosensory barrel cortex of adolescent Het
that coincides with typical behavioral performance during
sensory-relevant tasks (Mykins et al., 2023). We speculated that
this may provide compensatory phenotypic benefits at an earlier
age, while the inability to further increase MECP2 levels in

adulthood leads to regressive phenotypes (Mykins et al., 2023).
Thus, mosaic MECP2 expression or the inability to maintain
cell-type-specific MECP2 expression may underlie behavioral
regression in our Het-R phenotype. Further in-depth analysis
of cell-type-specific MECP2 expression within our adult
Het-NR and Het-R phenotypes is needed.

Application of computational neuroethology tools to
understand complex endophenotypes in neuropsychiatric
disorders
Basic science research using behavioral endpoints in rodentmodels
has identified key molecular therapeutic targets for treating core
symptoms of RTT patients (Gogliotto et al., 2016, 2017; Tai et
al., 2016; Li et al., 2017; Smith-Hicks et al., 2017; O’Leary et al.,
2018; Garré et al., 2020; Gualniera et al., 2021). Recently, the
FDA approved Trofinetide as the first drug for treating disease
pathology in RTT patients (Neul et al., 2022). However, the chal-
lenge of predictive power to determine which therapeutic interven-
tions will work when and how for individual patients is the holy
grail of personalized medicine. In the preclinical stages, systematic
characterization of etiologically relevant behaviors in female mouse
models of X-linked disorders is critical to move forward in under-
standing the mechanisms of complex endophenotypes in patients
and identifying the efficacy of clinical therapeutics.

The emergence of computational neuroethology tools now
provides a unique opportunity to shift the paradigm from single
constrained reductionist behaviors to studying complex behavior
in free-moving animals (Shemesh and Chen, 2023). The free
availability of open-source marker-less deep learning and
machine learning software for behavioral segmentation using
pose makes it attainable and affordable to analyze complex free-
moving behaviors (Berman et al., 2014; Wiltschko et al., 2015;
Mathis et al., 2018; Nath et al., 2019; Pereira et al., 2019, 2022;
Nilsson et al., 2020; Hsu and Yttri, 2021; Segalin et al., 2021;
Sun et al., 2021; Goodwin et al., 2022; Lauer et al., 2022; Luxem
et al., 2022; Winters et al., 2022). Using unsupervised machine
learning, multiple groups have identified subtle, novel behavioral
differences in wild-type mice and mouse models for Alzheimer’s
disease, stroke, and autism, highlighting the importance of these
approaches for modeling complex endophenotypes of neurolog-
ical disorders in preclinical animal studies (Wiltschko et al., 2020;
Huang et al., 2021; Segalin et al., 2021; Klibaite et al., 2022; Luxem
et al., 2022; Weber et al., 2022).

As the field is broadening to include studies in female
Mecp2-heterozygous mice, there is a need for efficient methods
to assess phenotypic severity. Guy et al. (2007) established a
severity scoring system. However, this system is specific to rapid
phenotypic onset in null males and does not apply to female Het,
which have a slow and progressive phenotypic onset and display
considerable heterogeneity in behaviors. Additionally, this sys-
tem requires extensive monitoring over time and introduces
observer bias due to its qualitative nature. We highlight the
advantage of using multidimensional analysis of behavior
(Fig. 3) for phenotypic characterization (Fig. 4) and provide a
means to score and evaluate Het phenotypic severity. The brevity
and minimal resources for this approach make it an attractive
approach to evaluate the efficacy of therapeutics in ongoing pre-
clinical studies in the apt female Het mouse model.
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